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ERRATA. VOL, II.

3, line 5, read i. p. 25 instead of xxxi. p. 30.

60 „ 76.

p. (181) ,. p. (189).

dPF _ (PF
^^~~^ dydz

" ^dxdy'

10, insert H after the diflferential operator in equation (18).

In the Bakerian Lecture at page 18, line 21, the value of | r* is given as 1112-8, where

r is the radius of each of the movable discs used in the experiments on Viscosity. But with

the value of the diameter as given at page • 4, line 14, this number should be 1220-8. The

values of the quantity A in the fourth line of the Table given at page 19 should therefore all be

increased by 108. The values of Q, the quantity in the fifth line, increase in the same proportion

as the values of A. Hence according to equations (23) and (24) the values of /x, the coefficient

of Viscosity, will be smaller than they appear in the text and wiU approximate to those obtained

by more recent experiments. The above inaccuracy in the numerical reductions was pointed out by

Mr Leahy, Pembroke College, Cambridge.

73, „ 14,



[From the Philosophical Transactions, Vol. CLVI.]

XXVII. The Bakerian Lecture.—On the Viscosity or Internal Friction

of Air and other Gases.

Received November 23, 1865,—Read February 8, 1866.

The gaseous form of matter is distinguislied by the great Bunplification

which occurs in the expression of the properties of matter when it passes into

that state from the solid or liquid form. The simplicity of the relations between

density, pressure, and temperature, and between the volume and the number

of molecules, seems to indicate that the molecules of bodies, when in the gaseous

state, are less impeded by any complicated mechanism than when they subside

into the liquid or soUd states. The investigation of other properties of matter

is therefore likely to be more simple if we begin our research with matter

in the form of a gas.

The viscosity of a body is the resistance which it offers to a continuous

change of form, depending on the rate at which that change is effected.

All bodies are capable of having their form altered by the action of suf-

ficient forces during a sufficient time. M. Kohlrausch* has shewn that torsion

applied to glass fibres produces a permanent set which increases with the time

of action of the force, and that when the force of torsion is removed the fibre

slowly untwists, so as to do away with part of the set it had acquired.

Softer soHds exhibit the phenomena of plasticity in a greater degree ; but the

investigation of the relations between the forces and their effects is extremely

difficult, as in most cases the state of the solid depends not only on the forces

actually impressed on it, but on all the strains to which it has been subjected

during its previous existence.

*' TJeber die elastische Nachwerktmg bei der Toraion," Pogg. Ann. cxix. 1863.

VOL. n. 1



2 ON THE VISCOSITY OR INTERNAL FRICTION

Professor W. Thomson* has shewn that something corresponding to internal

friction takes place in the torsional vibrations of wires, but that it is much

increased if the wire has been previously subjected to large vibrations. I have

also found that, after heating a steel wire to a temperature below 120", its

elasticity was permanently diminished and its internal friction increased.

The viscosity of fluids has been investigated by passing them through

capillary tubest, by swinging pendulums in themj, and by the torsional vibra-

tions of an immersed disk§, and of a sphere filled with the fluid \\.

The method of transpiration through tubes is very convenient, especially

for comparative measurements, and in the hands of Graham and Poiseuille it

has given good results, but the measurement of the diameter of the tube is

difficult, and on account of the smallness of the bore we cannot be certain that

the action between the molecules of the gas and those of the substance of the

tubes does not afiect the result. The pendulum method is capable of great

accuracy, and I believe that experiments are in progress by which its merits

as a means of determining the properties of the resisting medium will be tested.

The method of swinging a disk in the fluid is sunple and direct. The chief

difficulty is the determination of the motion of the fluid near the edge of the

disk, which introduces very serious mathematical difficulties into the calculation

of the result. The method with the sphere is free from the mathematical

difficulty, but the weight of a properly constructed spherical shell makes it un-

suitable for experiments on gases.

In the experiments on the viscosity of air and other gases which I propose

to describe, I have employed the method of the torsional vibrations of disks,

but instead of placing them in an open space, I have placed them each between

two parallel fixed disks at a small but easily measurable distance, in which

case, when the period of vibration is long, the mathematical difficulties of deter-

mining the motion of the fluid are greatly reduced. I have also used three

Proceedings of the Royal Society, May 18, 1865.

+ Liquids : Poiseuille, Mem. de Savants Strangers, 1846. Gases : Graham, Philosophical Transactions,

1846 and 1849.'

+ Baily, Phil. Trans. 1832 ; Bessel, Berlin Acad. 1826 ; Dubuat, Principes d^Eydravligue, 1786. All

these are discussed in Professor Stokes's paper "On the Effect of the Internal Friction of Fluids on the

Motion of Pendulums," Cambridge Phil Trans, vol. ix. pt. 2 (1850).

§ Coulomb, Mem. de VInstUut national, iii. p. 246; 0. E. Meyer, Pogg. Ann cxiii. (1861) p. 55, and

Crelle's Journal, Bd, 59.

II
Helmholtz and Pietrowski, Sitzungsberichte der k. k. Akad, April, 1860.



OF AIR AND OTHER GASES. 3

disks instead of one, so that there are six surfaces exposed to friction, which

may be reduced to two by placing the three disks in contact, without altering

the weight of the whole or the time of vibration. The apparatus was con-

structed by Mr Becker, of Messrs Elliott Brothers, Strand.

Description of the Apparatus.

Plate XXI. p. 30, fig. 1 represents the vacuum apparatus one-eighth of the

actual size. MQRS is a strong three-legged stool supporting the whole. The

top (MM) is in the form of a ring. EE is a brass plate supported by the ring

MM. The under surface is ground truly plane, the upper surface is strengthened

by ribs cast in the same piece with it. The suspension-tube ^C is screwed

into the plate EE, and is 4 feet in height. The glass receiver N rests on a

wooden ring PP with three projecting pieces which rest on the three brackets

QQ, of which two only are seen. The upper surfaces of the brackets and the

under surfaces of the projections are so bevilled off, that by slightly turning the

wooden ring in its own plane the receiver can be pressed up against the plate

EE.

F, G, H, K are circular plates of glass of the form represented in fig. 2.

Each has a hole in the centre 2 inches in diameter, and three holes near the

circumference, by which it is supported on the screws LL.

Fig. 6 represents the mode of supporting and adjusting the glass plates.

LL is one of the screws fixed under the plate EE. >S is a nut, of which the

upper part fits easily in the hole in the glass plate F, while the under part

is of larger diameter, so as to support the glass plate and afford the means of

turning the nut easily by hand. These nuts occupy little space, and enable

the glass disks to be brought very accurately to their proper position.

ACB, fig. 1, is a siphon barometer, closed at A and communicating with

the interior of the suspension-tube at B. The scale is divided on both sides,

so that the difference of the readings gives the pressure within the apparatus.

T is a thermometer, lying on the upper glass plate. F is a vessel containing

pumice-stone soaked in sulphuric acid, to dry the air. Another vessel, containing

caustic potash, is not shewn. Z) is a tube with a stopcock, leading to the air-

pump or the gas generator. C is a glass window, giving a view of the suspended

mirror d.

For high and low temperatures the tin vessel (fig. 10) was used. When
the receiver was exhausted, the ring P was removed, and the tin vessel raised

1—2



4 ON THE VISCOSITY OR INTERNAL FRICTION

SO as to envelope the receiver, which then rested on the wooden support YY.

The tin vessel itself rested, by means of projections on the brackets QQ. The

outside of the tin vessel was then well wrapped up in blankets, and the top

of the brass plate EE covered with a feather cushion; and cold water, hot

water, or steam was made to flow through the tin vessel till the thermometer T,

seen through the window W, became stationary.

The moveable parts of the apparatus consist of

—

The suspension-piece a, fitting air-tight into the top of the tube and holding

the suspension-wire by a clip, represented in fig. 5.

The axis cdek, suspended to the wire by another cHp at C.

The wire was a hard-drawn steel wire, one foot of which weighed 2"6 grains.

The axis carries the plane mirror d, by which its angular position is observed

through the window C, and the three vibrating glass disks /, g, h, represented

in fig. 3. Each disk is 10*56 inches diameter and about '076 thick, and has

a hole in the centre 75 diameter. They are kept in position on the axis by

means of short tubes of accurately known length, which support them on the

axis and separate them from each other.

The whole suspended system weighs three pounds avoirdupoise.

In erecting the apparatus, the lower part of the axis ek is screwed off".

The fixed disks are then screwed on, with a vibrating disk lying between each.

Tubes of the proper lengths are then placed on the lower part of the axia

and between the disks. The axis is then passed up from below through the

disks and tubes, and is screwed to the upper part at e. The vibrating

disks are now hanging by the wire and in their proper places, and the fixed

disks are brought to their proper distances from them by means of the adjusting

nuts.

715 is a small piece of magnetized steel wire attached to the axis.

When it is desired to set the disks in motion, a battery of magnets is

placed under N, and so moved as to bring the initial arc of vibration to the

proper value.

Fig. 4 is a brass ring whose moment of inertia is known. It is placed

centrically on the vibrating disk by means of three radial wires, which keep

it exactly in its place.

Fig. 7 is a tube containing two nearly equal weights, which slide inside

it, and whose position can be read off by verniers.
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The ring and the tube are used in finding the moment of inertia of the

vibrating apparatus.

The extent and duration of the vibrations are observed in the ordinary-

way by means of a telescope, which shews the reflexion of a scale in the

mirror d. The scale is on a circular arc of six feet radius, concentric with the

axis of the instrument. The extremities of the scale correspond to an arc of

vibration of 19° 36', and the divisions on the scale to 17. The readings are

usually taken to tenths of a division.

Method of Observation.

When the instrument was properly adjusted, a battery of magnets was

placed on a board below iV", and reversed at proper intervals till the arc of

vibration extended slightly beyond the limits of the scale. The magnets were

then removed, and any accidental pendulous oscillations of the suspended disks

were checked by applying the hand to the suspension-tube. The barometer and

thermometer were then read off, and the observer took his seat at the telescope

and wrote down the extreme limits of each vibration as shewn by the numbers

on the scale. At intervals of five complete vibrations, the time of the transits

of the middle point of the scale was observed (see Table I.). When the ampli-

tude decreased rapidly, the observations were continued throughout the experi-

ment ; but when the decrement was small, the observer generally left the room

for an hour, or till the amplitude was so far reduced as to furnish the most

accurate results.

In observing a quantity which decreases in a geometrical ratio in equal

times, the most accurate value of the rate of decrement will be deduced from a

comparison of the initial values with values which are to these in the ratio

of e to 1, where e = 271828, the base of the Napierian system of logarithms.

In practice, however, it is best to stop the experiment somewhat before the

vibrations are so much reduced, as the time required would be better spent in

beginning a new experiment.

In reducing the observations, the sum of every five maxima and of the

consecutive five minima was taken, and the differences of these were written as

the terms of the series the decrement of which was to be found.

In experiments where the law of decrement is uncertain, this rough method

is inapplicable, and Gauss's method must be applied ; but the series of amplitudes
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in these experiments is so accurately geometrical, that no appreciable difference

between the results of the two methods would occur.

The logarithm of each term of the series was then taken, and the mean

logarithmic decrement ascertained by taking the difference of the first and last,

of the second and last but one, and so on, multiplying each difference by the

interval of the terms, and dividing the sum of the products by the sum of

the squares of these intervals. Thus, if fifty observations were taken of the

extreme limits of vibration, these were first combined by tens, so as to form

five terms of a decreasing series. The logarithms of these terms were then

taken. Twice the difference of the first and fifth of these logarithms was then

added to the difference of the second and third, and the result divided by

ten for the mean logarithmic decrement in five complete vibrations.

The times were then treated in the same way to get the mean time of

five vibrations. The numbers representing the logarithmic decrement, and the

time for five vibrations, were entered as the result of each experiment*.

The series found from ten different experiments were examined to discover

any departure from uniformity in the logarithmic decrement depending on the

amplitude of vibration. The logarithmic decrement was found to be constant

in each experiment to within the limits of probable error; the deviations from

uniformity were sometimes in one direction and sometimes in the opposite, and

the ten experiments when combined , gave no evidence of any law of increase

or diminution of the logarithmic decrement as the amplitudes decrease. The

forces which retard the disks are therefore as the first power of the velocity,

and there is no evidence of any force varying with the square of the velocity,

such as is produced when bodies move rapidly through the air. In these

experiments the maximum velocity of the circumference of the moving disks

was about -^ inch per second. The changes of form in the air between the

disks were therefore effected very slowly, and eddies were not producedt.

The retardation of the motion of the disks is, however, not due entirely

to the action of the air, since the suspension wire has a viscosity of its own,

which must be estimated separately. Professor W. Thomson has observed great

changes in the viscosity of vrires after being subjected to torsion and longi-

tudinal strain. The wire used in these experiments had been hanging up for

See Table II.

t The total moment of the resistances never exceeded that of the weight of -^ grain acting at the edge

of the disks.
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some months before, and had been set into torsional vibrations with various

weights attached to it, to determine its moment of torsion. Its moment of

torsion and its viscosity seem to have remained afterwards nearly constant, till

steam was employed to heat the lower part of the apparatus. Its viscosity

then increased, and its moment of torsion diminished permanently, but when

the apparatus was again heated, no further change seems to have taken place.

During each course of experiments, care was taken not to set the disks vibrating

beyond the limits of the scale, so that the viscosity of the wire may be

supposed constant in each set of experiments.

In order to determine how much of the total retardation of the motion is

due to the viscosity of the wire, the moving disks were placed in contact with

each other, and fixed disks were placed at a measured distance above and

below them. The weight and moment of inertia of the system remained as

before, but the part of the retardation of the motion due to the viscosity of

the air was less, as there were only two surfaces exposed to the action of the

air instead of six. Supposing the effect of the viscosity of the wire to remain

as before, the difference of retardation is that due to the action of the four

additional strata of air, and is independent of the value of the viscosity of the

wire.

In the experiments which were used in determining the viscosity of air,

five different arrangements were adopted.

Arrangement 1. Three disks in contact, fixed disks at 1 inch above and below.

„ 2. ,, „ ,,
0"5 inch.

,, 3. Three disks, each between two fixed disks at distance 0'683.

4. „ „ „ „ „ 0-425.

5. „ „ „ „ „ 0-18475.

By comparing the results of these different arrangements, the coeflScient

of viscosity was obtained, and the theory at the same time subjected to a

rigorous test.

Definition of the Coefficient of Viscosity.

The final result of each set of experiments was to determine the value of

the coefficient of viscosity of the gas in the apparatus. This coefficient may be

best defined by considering a stratum of air between two parallel horizontal
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planes of indefinite extent, at a distance a from one another. Suppose the

upper plane to be set in motion in a horizontal direction with a velocity of

V feet per second, and to continue in motion till the air in the different parts

of the stratum has taken up its final velocity, then the velocity of the air

will increase uniformly as we pass from the lower plane to the upper. If the

air in contact with the planes has the same velocity as the planes themselves,

then the velocity will increase - feet per second for every foot we ascend.

The friction between any two contiguous strata of air will then be equal

to that between either surface and the air in contact with it. Suppose that

this friction is equal to a tangential force / on every square foot, then

where fi is the coefficient of viscosity, v the velocity of the upper plane, and

a the distance between them.

If the experiment could be made with the two infinite planes as described,

we should find /it at once, for

/«

In the actual case the motion of the planes is rotatory instead of recti-

linear, oscillatory instead of constant, and the planes are bounded instead of

infinite.

It will be shewn that the rotatory motion may be calculated on the same

principles as rectilinear motion; but that the oscillatory character of the motion

introduces the consideration of the inertia of the air in motion, which causes

the middle portions of the stratum to lag behind, as is shewn in fig. 8, where

the curves represent the successive positions of a line of particles of air, which,

if there were no motion, would be a straight line perpendicular to the planes.

The fact that the moving planes are bounded by a circular edge introduces

another difficulty, depending on the motion of the air near the edge being

different from that of the rest of the air.

The lines of equal motion of the air are shewn in fig. 9.

The consideration of these two circumstances introduces certain corrections

into the calculations, as wiU be shewn hereafter.

In expressing the viscosity of the gas in absolute measure, the measures
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of all velocities, forces, &c. must be taken according to some consistent system

of measurement.

If L, M, T represent the units of length, mass, and time, then the dimen-

sions of/ (a pressure per unit of surface) are L~'MT~'; a is a length, and v

is a velocity whose dimensions are LT~\ so that the dimensions of fi are

Thus if /x be the viscosity of a gas expressed in inch-grain-second measure,

and fi' the same expressed in foot-pound-minute measure, then

/Lt 1 inch 1 pound 1 second _
fi

'

1 foot '

1 grain *

1 minute

According to the experiments of MM. Helmholtz and Pietrowski*, the

velocity of a fluid in contact with a surface is not always equal to that of

the surface itself, but a certain amount of actual slipping takes place in certain

cases between the surface and the fluid in immediate contact with it. In the

case which we have been considering, if v^ is the velocity of the fluid in

contact with the fixed plane, and / the tangential force per unit of surface, then

where o- is the coefficient of superficial friction between the fluid and the par-

ticular surface over which it flows, and depends on the nature of the surface as

well as on that of the fluid. The coefficient cr is of the dimensions L~*MT~\

If Vi be the velocity of the fluid in contact with the plane which is moving

with velocity v, and if o-' be the coefficient of superficial friction for that plane,

f=<T\v-v,).

The internal friction of the fluid itself is

Hence ^=/(- + - + -

If we make - = S, and —, = ^, then
cr cr

=/f-^
* SitzungabericlUe der k, k Akad. April 1860.

VOL. II.
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or the fiiction is equal to what it would have been if there had been no

slipping, and if the interval between the planes had been increased by ^ + ^.

By changing the interval between the planes, a may be made to vary while

^ +^ remains constant, and thus the value of )8 + yS' may be determined. In

the case of air, the amount of slipping is so small that it produces no appre-

ciable effect on the results of experiments. In the case of glass surfaces rubbing

on air, the probable value of )8, deduced from the experiments, was /8 = "0027

inch. The distance between the moving surfaces cannot be measured so accu-

rately as to give this value of ^ the character of an ascertained quantity. The

probability is rather in favour of the theory that there is no slipping between

air and glass, and that the value of ^ given above results from accidental

discrepancy in the observations. I have therefore preferred to calculate the

value of. yx on the supposition that there is no slipping between the air and

the glass in contact with it.

The value of fi depends on the nature of the gas and on its physical

condition. By making experiments in gas of different densities, it is shewn

that /x remains constant, so that its value is the same for air at 0"5 inch and

at 30 inches pressure, provided the temperature remains the same. This will

be seen by examining Table IV., where the value of L, the logarithm of the

decrement of arc in ten single vibrations, is the same for the same temperature,

though the density is sixty times greater in some cases than in others. In

fact the numbers in the column headed L' were calculated on the hypothesis

that the viscosity is independent of the density, and they agree very well with

the observed values.

It win be seen, however, that the value of L rises and falls with the

temperature, as given in the second column of Table lY. These temperatures

range from 51" to 74" Fahr., and were the natural temperatures of the room

on different days in May 1865. The results agree with the hypothesis that

the viscosity is proportional to (461" -H^), the temperature measured from absolute

zero of the air-thermometer. In order to test this proportionality, the tempe-

rature was raised to 185" Fahr. by a current of steam sent round the space

between the glass receiver and the tin vessel. The temperature was kept up

for several hours, till the thermometer in the receiver became stationary, before

the disks were set in motion. The ratio of the upper temperature (185" F.)

to the lower (51"), measured from — 461"F., was

1-2605.
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The ratio of the viscosity at the upper temperature to that at the lower was

1-2624,

which shews that the viscosity is proportional to the absolute temperature very

nearly. The simplicity of the other known laws relating to gases warrants

us in concluding that the viscosity is really proportional to the temperature,

measured from the absolute zero of the air-thermometer.

These relations between the viscosity of air and its pressure and temperature

are the more to be depended on, since they agree with the results deduced

by Mr. Graham from experiments on the transpiration of gases through tubes

of small diameter. The constancy of the viscosity for all changes of density

when the temperature is constant is a result of the Dynamical Theory of

Gases*, whatever hypothesis we adopt as to the mode of action between the

molecules when they come near one another. The relation between viscosity

and temperature, however, requires us to make a particular assumption with

respect to the force acting between the molecules. If the molecules act on one

another only at a determinate distance by a kind of impact, the viscosity will

be as the square root of the absolute temperature. This, however, is certainly

not the actual law. If, as the experiments of Graham and those of this paper

shew, the viscosity is as the first power of the absolute temperature, then in

the dynamical theory, which is framed to explain the facts, we must assume

that the force between two molecules is proportional inversely to the fifth

power of the distance between them. The present paper, however, does not

profess to give any explanation of the cause of the viscosity of air, but only

to determine its value in different cases.

Experiments were made on a few other gases besides dry air.

Damp air, over water at 70" F. and 4 inches pressure, was found by the

mean of three experiments to be about one-sixtieth part less viscous than dry

air at the same temperature..

Dry hydrogen was found to be much less viscous than air, the ratio of

its viscosity to that of air being '5 15 6.

A small proportion of air mixed with hydrogen was found to produce a

large increase of viscosity, and a mijxture of equal parts of air and hydrogen

has a viscosity nearly equal to -J^ of that of air.

The ratio of the viscosity of dry carbonic acid to that of air was found

to be -859.

" Illustrations of the Dynamical Theory of Gases," Philosophical Magazine, Jan. 1860.

2—2
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It appears from the experiments of Mr. Graham that the ratio of the

transpiration time of hydrogen to that of air is *4855, and that of carbonic

acid to air "807. These numbers are both smaller than those of this paper.

I think that the discrepancy arises from the gases being less pure in my
experiments than in those of Graham, owing to the difficulty of preventing air

from leaking into the receiver during the preparation, desiccation, and admission

of the gas, which always occupied at least an hour and a half before the

experiment on the moving disks could be begun.

It appears to me that for comparative estimates of viscosity, the method

of transpiration is the best, although the method here described is better

adapted to determine the absolute value of the viscosity, and is less liable to

the objection that in fine capillary tubes the influence of molecular action

between the gas and the surface of the tube may possibly have some effect.

The actual value of the coefficient of viscosity in inch-grain-second measure,

as determined by these experiments, is

•00001492(461' + ^).

At 62" F. /u,
= -007802.

Professor Stokes has deduced from the experiments of Baily on pendulums

Vp
^^ = •116,

which at ordinary pressures and temperatures gives

/A = -00417,

or not much more than half the value as here determined. I have not found

any means of explaining this difference.

In metrical units and Centigrade degrees

^ = •01878(1 + -00365^).

M. 0. E. Meyer gives as the value of /x in centimetres, grammes, and

seconds, at 18' C.,

•000360.

This, when reduced to metre-gramme-second measure, is

/x = -0360.

I make /x, at 18' C, =-0200.
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Hence the value given by Meyer is 1*8 times greater than that adopted in

this paper.

M. Meyer, however, has a different method of taking account of the dis-

turbance of the air near the edge of the disk from that given in this paper.

He supposes that when the disk is very thin the effect due to the edge is

proportional to the thickness, and he has given in Crelle's Journal a vindication

of this supposition. I have not been able to obtain a mathematical solution

of the case of a disk oscillating in a large extent of fluid, but it can easily

be shewn that there will be a finite increase of friction near the edge of the

disk due to the want of continuity, even if the disk were infinitely thin. I

think therefore that the difference between M. Meyer's result and mine is to

be accounted for, at least in part, by his having under-estimated the effect of

the edge of the disk. The effect of the edge will be much less in water than

in air, so that any deficiency in the correction will have less influence on the

results for liquids which are given in M. Meyer's very valuable paper.

Mathematical Theory of the Experiment.

A disk oscillates in its own plane about a vertical axis between two fixed

horizontal disks, the amplitude of oscillation diminishing in geometrical pro-

gression, to find what part of the retardation is due to the viscosity of the

air between it and the fixed disks.

That part of the surface of the disk which is not near the edge may be

treated as part of an infinite disk, and we may assume that each horizontal

stratum of the fluid oscillates as a whole. In fact, if the motion of every

part of each stratum can be accounted for by the actions of the strata above

and below it, there will be no mutual action between the parts of the stratum,

and therefore no relative motion between its parts.

Let 6 be the angle which defines the angular position of the stratum which

is at the distance y from the fixed disk, and let r be the distance of a point

of that stratum from the axis, then its velocity will be r -i- , and the tangential

force on its lower surfex^e arising from viscosity will be on unit of surface

-^'d^t=^ (')•
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The tangential force on the upper surface will be

and the mass of the stratum per unit of surface is pdy, so that the equation

of motion of each stratum is

d'd d'O

Pde^-^mi (2)'

which is independent of r, shewing that the stratum moves as a whole.

The conditions to be satisfied are, that when y = 0, ^ = ; and that when

y = h, e=Ce-''co3{nt + a) (3).

The disk is suspended by a wire whose elasticity of torsion is such that

the moment of torsion due to a torsion 6 is Icj'^O, where / is the moment

of inertia of the disks. The viscosity of the wire is such that an angular

velocity -j- is resisted by a moment 2lk -r-. The equation of motion of the

disks is then

^(f-^^f-'f^-^S- w-

where A = j27rr'dr = ^7rr*, the moment of inertia of each surface, and iV is the

number of surfaces exposed to friction of air.

The equation for the motion of the air may be satisfied by the solution

$ = e"" {e^ cos {nt + qy) - e~^ cos {nt - qy)} (5),

provided 2pq =^ (6),

and q^-f =
P-

(7);

and in order to fulfil the conditions (3) and (4),

2ln{l-k)(e^ + e-'^-2cos2qh) = NAfi{{pn-lq)(^-e-'^) + (qn + lp)2Bm2qb}...{8).

Expanding the exponential and circular functions, we find

2lh(l -k)= NAii{l -icl + ic\n^ - 3?) + ^^^{nH - 1^) +^\^n* + ^'nH^ - ^l')} (9),

, 46>
where c =—-

,

Z = observed Napierian logarithmic decrement of the amplitude in unit of

time,

A; = the part of the decrement due t^ the viscosity of the wire.
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When the oscillations are slow as in these experiments, when the disks

are near one another, and when the density is small and the viscosity large,

the series on the right-hand side of the equation is rapidly convergent.

When the time from rest to rest was thirty-six seconds, and the interval

between the disks 1 inch, then for air of pressure 29*9 inches, the successive

terms of the series were

l-0-0'00508 +0-24866 +0-00072 +0-00386 = 1-24816;

but when the pressure was reduced to 1*44 inch, the series became

1-0 - 0-0002448 + -0005768 + -00000008 + '00000002 = 1-0003321.

The series is also made convergent by diminishing the distance between

the disks. When the distance was -1847 inch, the first two terms only were

sensible. When the pressure was 29*29, the series was

1- -000858 +-000278 = 1- -00058.

At smaller pressures the series became sensibly =1.

The motion of the air between the two disks is represented in fig. 8,

where the upper disk is supposed fixed and the lower one oscillates. A row

of particles of air which when at rest form a straight line perpendicular to the

disks, will when in motion assume in succession the forms of the curves 1, 2,

3, 4, 5, 6. If the ratio of the density to the viscosity of the air is very

small, or if the time of oscillation is very great, or if the interval between

the disks is very small, these curves approach more and more nearly to the

form of straight lines.

The chief mathematical difficulty in treating the case of the moving disks

arises from the necessity of determining the motion of the air in the neigh-

bourhood of the edge of the disk. If the disk were accompanied in its motion

by an indefinite plane ring surrounding it and forming a continuation of its

surface, the motion of the air would be the same as if the disk were of

indefinite extent; but if the ring were removed, the motion of the air in the

neighbourhood of the edge would be diminished, and therefore the effect of its

viscosity on the parts of the disk near the edge would be increased. The

actual effect of the air on the disk may be considered equal to that on a disk

of greater radius forming part of an infinite plane.

Since the correction we have to consider is confined to the space imme-

diately surrounding the edge of the disk, we may treat the edge as if it were
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the straight edge of an infinite plane parallel to xz, oscillating in the direction

of z between two planes infinite in every direction at distance h. Let w be

the velocity of the fluid in the direction of z, then the equation of motion is*

dw Id^w d^w\ , ,

i'lt=i'[T^ + df)
(!»)'

with the conditions w;=(rwhen y=±h (11),

and w = Ccos nt when 3/ = 0, and x is positive. ... (1 2).

I have not succeeded in finding the solution of the equation as it stands,

but in the actual experiments the time of oscillation is so long, and the space

between the disks is so small, that we may neglect —^ , and the equation

is reduced to

d?w d^w ^ ,,^.

5S + d7- =
o (13)

with the same conditions. For the method of treating these conditions I am
indebted to Professor W. Thomson, who has shewn me how to transform

these conditions into another set with which we are more familiar, namely,

w = when x = 0, and w=l when y = 0, and x is greater than +1, and w= —I
when X is less than — 1 . In this case we know that the lines of equal values

of w are hyperbolas, having their loci at the points y = 0, x= ±1, and that

the solution of the equation is

w^-sin-'"^' (14)

where r„ r^ are the distances fi:om the foci.

If we put </» = - log y(r,+ r,Y - 4 + r, + r,} (15),

then the lines for which
<f>

is constant will be ellipses orthogonal to the

hyperbolas, and

^Mh-' ^''^'

and the resultant of the friction on any arc of a curve will be proportional

* Professor Stokes " On the Theories of the Internal Friction of Fluids in Motion, (fee," Cambridge

Phil. Tram. VoL viii.
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to (f>,-<f)^,
where (/>„ is the value of (ft at the beginning, and <^, at the end

of the given arc.

2
In the plane y = 0, when x is very great, <^ = -log4a:, and when x='[,

fk = -\og 2, so that the whole friction between x=l and a very distant point

• 2,
18 -log2x.

TT

Now let w and <^ be expressed in terms of r and 6, the polar co-ordinates

with respect to the origin as the pole ; then the conditions may be stated thus

:

When 0=±-, w = 0. When ^ = and r greater than 1, iv=l. When

= 11 and r greater than 1, w= —I.

Now let x\ y be rectangular co-ordinates, and let

y' = -hQ and x' = -61ogr (17).
IT TT

and let w and (j) be expressed in terms of x' and y ; the differential equa-

tions (13) and (16) will still be true; and when y = ±h, w = 0, and when

y=0 and x' positive, w = l.

When x' is great,
<f)
= j-+-logi, and when x' = 0,

(f>
= -\og2, so that the

TT TT

whole friction on the surface is

|' + ^»g2 (18),

2h
which is the same aa if a portion whose breadth is - log, 2 had been added

to the surface at its edge.

The curves of equal velocity are represented in fig. 9 at u, v, w, x, y.

They pass round the edge of the moving disk AB, and have a set of asymp-

totes £/, F, W, X, Y, arranged at equal distances parallel to the disks.

The curves of equal friction are represented at o, p, q, r, s, t. The form

of these curves approximates to that of straight lines as we pass to the left

of the edge of the disk.

VOL. II. 3
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The dotted vertical straight lines 0, P, Q, R, S, T represent the position

of the corresponding lines of equal friction if the disk AB had been accom-

panied by an extension of its surface in the direction of B. The total friction

on AB, or on any of the curves u, v, w, &c., is equal to that on a surface

extending to the point C, on the supposition that the moving surface has an

accompanying surface which completes the infinite plane.

In the actual case the moving disk is not a mere surface, but a plate

of a certain thickness terminated by a slightly rounded edge. Its section may

therefore be compared to the curve uu" rather than to the axis AB.

The total friction on the curve is still equal to that on a straight line

extending to C, but the velocity corresponding to the curve u is less than that

corresponding to the line AB.

If the thickness of the disk is 2/3, and the distance between the fixed

disks = 26, so that the distance of the surfaces is 6-A the breadth of the strip

which must be supposed to be added to the surface at the edge will be

, = 5log.lo{log„2+log..sm^^i|=^}* (19).

In calculating the moment of Section on this strip, we must suppose it to

be at the same distance from the axis as the actual edge of the disk. Instead

of ^ = -r* m equation (9), we must therefore put A=^'r^+ 2'irr*a, and instead

of h we must put 6-/8.

The actual value of - r* for each surface in inches = 1112*8.
z

The value of / in inches and grains was 175337.

It was determined by comparing the times of oscillation of the axis and

disks without the little magnet, with the times of the brass ring (fig. 4) and

of the tube and weights (fig. 7). Four difierent suspension wires were used in

these experiments.

The following Table gives the numbers required for the calculation of each

of the five arrangements of the disks.

This result is applicable to the calculation of the electrical capacity of a condenser in the form of a

disk between two larger disks at equal distance from it.
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Arrangement
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The values of Q for the five cases are roughly in the proportions of 1, 2, 4,

6, 12, so that it is easy to eliminate K and find /x^. I had reason, however, to

believe that the value of K was altered at a certain stage of the experiments

when steam was first used to heat the air in the receiver. I therefore intro-

duced two values of K, K^ and K^, into the experiments before and after this

change respectively. The values of K^ and K^ deduced from these experiments

were

In ten single vibrations.

^1 = -01568

Z,= -01901.

The value of /x in inch-grain-second measure at temperature 6P Fahrenheit

is for air

fi
= -00001492 (461"+^).

The value of L was then calculated for each experiment and compared with

the observed value. In this way the error of mean square of a single experi-

ment was found. The probable error of fi, as determined from the equations,

was calculated from this and found to be 0-36 per cent, of its value.

In order to estimate the value of the evidence in favour of there being a

finite amount of slipping between the disks and the air in contact with them,

the value of L for each of the forty experiments was found on the supposition

that

^ = •0027 inch and /x = (-000015419) (461°-!-^).

The error of mean square for each observation was found to be slightly

greater than in the former case; the probable error of ^ was 40 per cent., and

that of fi = l*6 per cent.

I have no doubt that the true value of /8 is zero, that is, there is no

slipping, and that the original value of yx is the best.

As the actual observations were very numerous, and the reduction of them

would occupy a considerable space in this paper, I have given a specimen of

the actual working of one experiment.

Table I. shews the readings of the scale as taken down at the time of

observation, with the times of transit of the middle point of the scale after
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the fifth and sixth readings, with the sum of ten successive ampHtudes deduced

therefrom.

Table II. shews the results of this operation as extended to the rest of

experiment 62, and gives the logarithmic decrement for each successive period

of ten semivibrations, with the mean time and corresponding mean logarithmic

decrement.

Table III. shews the method of combining forty experiments of different

kinds. The observed decrement depends on two unknown quantities, the viscosity

of air and that of the wire.

The experiments are grouped together according to the coefficients of fi

and K that enter into them, and when the final results have been obtained,

the decrements are calculated and compared with the results of observation.

The calculated sums of the decrements are given in the last column.

Table IV. shews the results of the twelve experiments with the fifth arrange-

ment. They are arranged in groups according to the pressure of the air, and

it will be seen that the observed values of L are as independent of the pressure

as the calculated values, in which the pressure is taken into account only in

calculating the value of x in the fifth column. By arranging the values of

L —U in order of temperature, it was found that within the range of atmo-

spheric temperature during the course of the experiments the relation between

the viscosity of air and its temperature does not perceptibly differ from that

assumed in the calculation. Finally, the experiments were arranged in order of

time, to determine whether the viscosity of the wire increased during the experi-

ments, as it did when steam was first used to heat the apparatus. There did

not appear any decided indication of any alteration in the wire.

Table V. gives the resultant value of fi in terms of the different unit«

which are employed in scientific measurements.

Note, added February 6, 1866.—In the calculation of the results of the

experiments, I made use of an erroneous value of the moment of inertia of the

disks and axi8 = l"012 of the true value, as determined by six series of experi-

ments with four suspension wires and two kinds of auxiliary weights. The
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numbers in the coefficients of m in Table IV. are therefore all too large, and

the value of /x is also too large in the same proportion, and should be

^ = •00001492(461'+ ^).

The same error ran through all the absolute values in other parts of the

paper as sent in to the Royal Society, but to save trouble to the reader I

have corrected them where they occur.

Table I.—Experiment 62. Arrangement 5. Dry air at pressure 0*55 inch.

Temperature 68" F. May 9, 1865.

Greater
scale reading
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Table III.

Equations from which /x for air was determined
'A6V + e

Number of

experiments
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Table V.—Results.

Coefficient of viscosity in dry air. Units—the inch, grain, and second, and

Fahrenheit temperature,

/I = -00001492 (461 + 0) = "006876 + "0000149^.

At 60" F. the mean temperature of the experiments, ^ = -007763. Taking

the foot as unit instead of the inch, /x = '000179 (461 + ^). In metrical units

(metre, gramme, second, and Centigrade temperature),

/x
= -01878(1 + -00365^).

The coefficient of viscosity of other gases is to be found from that of air

by multiplying /x by the ratio of the transpiration time of the gas to that of

air as determined by Graham*.

Postscript.—Received December 7, 1865.

Since the above paper was communicated to the Royal Society, Professor

Stokes has directed my attention to a more recent memoir of M. 0. E. Meyer,

"Ueber die innere Reibung der Case," in Poggendorff's Annalen, cxxv. (1865).

M. Meyer has compared the values of the coefficient of viscosity deduced from

the experiments of Baily by Stokes, with those deduced from the experiments

of Bessel and of Girault. These values are -000104, -000275, and -000384

respectively, the units being the centimetre, the gramme, and the second.

M. Meyer's own experiments were made by swinging three disks on a vertical

axis in an air-tight vessel. The disks were sometimes placed in contact, and

sometimes separate, so as to expose either two or six surfaces to the action

of the air. The diflference of the logarithmic decrement of oscillation in these

two arrangements was employed to determine the viscosity of the air.

The effects of the resistance of the air on the axis, mirror, &c., and of

the viscosity of the suspending wires are thus eliminated.

The calculations are made on the supposition that the moving disks are

so far from each other and from the surface of the receiver which contains

them, that the effect of the air upon each is the same as if it were in an

infinite space.

At the distance of 30 millims., and with a period of oscillation of fourteen

seconds, the mutual effect of the disks would be very small in air at the

* Philosophical Transactions, 1849.
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ordinary pressure. In November 1863 I made a series of experiments with an

arrangement of three brass disks placed on a vertical axis exactly as in

M. Meyer's experiments, except that I had then no air-tight apparatus, and

the disks were protected from currents of air by a wooden box only.

I attempted to determine the viscosity of air by means of the observed

mutual action between the disks at various distances. I obtained the values

of this mutual action for distances under 2 inches, but I found that the results

were so much involved with the unknown motion of the air near the edge of

the disks, that I could place no dependence on the results unless I had a

complete mathematical theory of the motion near the edge.

In M. Meyer's experiments the time of vibration is shorter than in most

of mine. This will diminish the effect of the edge in comparison with the total

effect, but in rarefied air both the mutual action and the effect of the edge

are much increased. In his calcidations, however, the effect of the three edges

of the disks is supposed to be the same, whether they are in contact or sepa-

rated. This, I think, will account for the large value which he has obtained

for the viscosity, and for the fact that with the brass disks which vibrate in

14 seconds, he finds the apparent viscosity diminish as the pressure diminishes,

while with the gla.ss disks which vibrate in 8 seconds it first increases and then

diminishes.

M. Meyer concludes that the viscosity varies much less than the pressure,

and that it increases sHghtly with increase of temperature. He finds the value

of fi in metrical units (centimetre-gramme-second) at various temperatures,

Temperatare. Viscosity.

8'-3 C. -000333

2r-5 C. -000323

34'-4 C. -000366

In my experiments, in which fixed disks are interposed between the moving

ones, the calculation is not involved in so great difficulties ; and the value of /x

is deduced directly from the observations, whereas the experiments of ML Meyer

give only the value of -Jfjip, from which /x must be determined. For these

reasons I prefer the results deduced from experiments with fixed disks inter-

posed between the moving ones.

M. Meyer has also given a mathematical theory of the internal friction of

gases, founded on the dynamical theory of gases. I shall not say anything of

this part of his paper, as I wish to confine myself to the results of experiment.

VOL. II. 4



[From the Philosophical Transactions, Vol. clvii.]

XXVIII. Chi the Dynamical Theory of Gases.

(Received May 16,—Read May 31, 1866.)

Theories of the constitution of bodies suppose them either to be continuous

and homogeneous, or to be composed of a finite number of distinct particles or

molecules.

In certain applications of mathematics to physical questions, it is convenient

to suppose bodies homogeneous in order to make the quantity of matter in each

differential element a function of the co-ordinates, but I am not aware that any

theory of this kind has been proposed to account for the different properties

of bodies. Indeed the properties of a body supposed to be a uniform plenum

may be affirmed dogmatically, but cannot be explained mathematically.

Molecular theories suppose that all bodies, even when they appear to our

senses homogeneous, consist of a multitude of particles, or small parts the

mechanical relations of which constitute the properties of the bodies. Those

theories which suppose that the molecules are at rest relative to the body may

be called statical theories, and those which suppose the molecules to be in

motion, even while the body is apparently at rest, may be called dynamical

theories.

If we adopt a statical theory, and suppose the molecules of a body kept at

rest in their positions of equilibrium by the action of forces in the directions

of the lines joining their centres, we may determine the mechanical properties

of a body so constructed, if distorted so that the displacement of each molecule

is a function of its co-ordinates when in equilibrium. It appears from the mathe-

matical theory of bodies of this kind, that the forces called into play by a

small change of form must always bear a fixed proportion to those excited by

a small chanofe of volume.
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Now we know that in fluids the elasticity of form is evanescent, while

that of volume is considerable. Hence such theories will not apply to fluids.

In solid bodies the elasticity of form appears in many cases to be smaller in

proportion to that of volume than the theory gives*, so that we are forced

to give up the theory of molecules whose displacements are functions of their

co-ordinates when at rest, even in the case of solid bodies.

The theory of moving molecules, on the other hand, is not open to these

objections. The mathematical difficulties in applying the theory are considerable,

and till they are surmounted we cannot fully decide on the appHcability of the

theory. We are able, however, to explain a great variety of phenomena by the

dynamical theory which have not been hitherto explained otherwise.

The dynamical theory supposes that the molecules of solid bodies oscillate

about their positions of equilibrium, but do not travel from one position to

another in the body. In fluids the molecules are supposed to be constantly

moving into new relative positions, so that the same molecule may travel from

one part of the fluid to any other part. In liquids the molecules are supposed

to be always under the action of the forces due to neighbouring molecules

throughout their course, but in gases the greater part of the path of each

molecule is supposed to be sensibly rectilinear and beyond the sphere of sensible

action of the neighbouring molecules.

I propose in this paper to apply this theory to the explanation of various

properties of gases, and to shew that, besides accounting for the relations of

pressure, density, and temperature in a single gas, it affords a mechanical

explanation of the known chemical relation between the density of a gas and

its equivalent weight, commonly called the Law of Equivalent Volumes. It also

explains the diff'usion of one gas through another, the internal friction of a gas,

and the conduction of heat through gases.

The opinion that the observed properties of visible bodies apparently at rest

are due to the action of invisible molecules in rapid motion is to be found in

Lucretius. In the exposition which he gives of the theories of Democritus as

modified by Epicurus, he describes the invisible atoms as all moving downwards

with equal velocities, which, at quite uncertain times and places, suffer an

imperceptible change, just enough to allow of occasional collisions taking place

* In glass, according to Dr Everett's second series of experiments (1866), the i-atio of the elasticity of

form to that of volume is greater than that given by the theory. In brass and steel it is less.

—

March 7, 1867.
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between the atoms. These atoms he supposes to set small bodies in motion by

an action of which we may form some conception by looking at the motes in

a sunbeam. The language of Lucretius must of course be interpreted according

to the physical ideas of his age, but we need not wonder that it suggested

to Le Sage the fundamental conception of his theory of gases, as well as his

doctrine of ultramundane corpuscles.

Professor Clausius, to whom we owe the most extensive developments of

the dynamical theory of gases, has given* a list of authors who have adopted

or given countenance to any theory of invisible particles in motion. Of these,

Daniel Bernoulli, in the tenth section of his Hydrodynamics, distinctly explains

the pressure of air by the impact of its particles on the sides of the vessel

containing it.

Clausius also mentions a book entitled Deux Traites de Physique MScanique,

publics par Pierre Prevost, comme simple Editeur du premier et comme Auteur

du second, Geneve et Paris, 1818. The first memoir is by G. Le Sage, who

explains gravity by the impact of "ultramundane corpuscles" on bodies. These

corpuscles also set in motion the particles of light and various ethereal media,

which in their turn act on the molecules of gases and keep up their motions.

His theory of impact is faulty, but his explanation of the expansive force of

gases is essentially the same as in the dynamical theory as it now stands.

The second memoir, by Prevost, contains new applications of the principles of

Le Sage to gases and to light. A more extensive application of the theory of

moving molecules was made by Herapathf. His theory of the collisions of

perfectly hard bodies, such as he supposes the molecules to be, is faulty,

inasmuch as it makes the result of impact depend on the absolute motion of

the bodies, so that by experiments on such hard bodies (if we could get them)

we might determine the absolute direction and velocity of the motion of the

earth J.
This author, however, has applied his theory to the numerical results

of experiment in many cases, and his speculations are always ingenious, and

often throw much real light on the questions treated. In particular, the theory

of temperature and pressure in gases and the theory of diffusion are clearly

pointed out.

Poggendorffs Anncdm, Jan. 1862. Translated hj G. C. Foster, B.A,, Phil. Mag. June, 1862,

t MatheTnatical Physics, «kc., by John Herapath, Esq. 2 vols. London : Whittaker and Co., and

Herapath's Railway Journal Office, 1847.

% Mathematical Physics, (fee, p. 134.
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Dr Joule* has also explained the pressure of gases by the impact of their

molecules, and has calculated the velocity which they must have in order to

produce the pressure observed in particular gases.

It is to Professor Clauslus, of Zurich, that we owe the most complete

dynamical theory of gases. His other researches on the general dynamical theory

of heat are well known, and his memoirs On the hind of Motion which we call

Heat, are a complete exposition of the molecular theory adopted in this paper.

After reading his investigation
-f-

of the distance described by each molecule

between successive collisions, I published some propositions J on the motions and

collisions of perfectly elastic spheres, and deduced several properties of gases,

especially the law of equivalent volumes, and the nature of gaseous friction. I

also gave a theory of diffusion of gases, which I now know to be erroneous,

and there were several errors in my theory of the conduction of heat in gases

which M. Clausius has pointed out in an elaborate memoir on that subject §.

M. 0. E. Meyer" has also investigated the theory of internal friction on

the hypothesis of hard elastic molecules.

In the present paper I propose to consider the molecules of a gas, not

as elastic spheres of definite radius, but as small bodies or groups of smaller

molecules repelling one another with a force whose direction always passes very

nearly through the centres of gravity of the molecules, and whose magnitude

is represented very nearly by some function of the distance of the centres of

gravity. I have made this modification of the theory in consequence of the

results of my experiments on the viscosity of air at different temperatures, and

I have deduced from these experiments that the repulsion is inversely as the

fifth power of the distance.

If we suppose an imaginary plane drawn through a vessel containing a great

number of such molecules in motion, then a great many molecules will cross

the plane in either direction. The excess of the mass of those which traverse

the plane in the positive direction over that of those which traverse it in the

negative direction, gives a measure of the flow of gas through the plane in

the positive direction.

* Some Remarks on Heat and the Constitution of Elastic Fluids, Oct. 3, 1848.

t Phil. Mag. Feb. 1859.

X
" Illustrations of the Dynamical Theory of Gases," Phil. Mag. 1860, January and July.

§ Poggendorff, Jan. 1862; Phil. Mag. June, 1862.

II
"Ueber die innere Reibung der Gase" (Poggendorflf, Vol. cxxv. 1865).
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If the plane be made to move with such a velocity that there is no excess

of flow of molecules in one direction through it, then the velocity of the plane

is the mean velocity of the gas resolved normal to the plane.

There will still be molecules moving in both directions through the plane,

and carrying with them a certain amount of momentum into the portion of

gas which lies on the other side of the plane.

The quantity of momentum thus communicated to the gas on the other

side of the plane during a unit of time is a measure of the force exerted on

this gas by the rest. This force is called the pressure of the gas.

If the velocities of the molecules moving in different directions were inde-

pendent of one another, then the pressure at any point of the gas need not

be the same in all directions, and the pressure between two portions of gas

separated by a plane need not be perpendicular to that plane. Hence, to

account for the observed equality of pressure in all directions, we must suppose

some cause equalizing the motion in all directions. This we find in the deflection

of the path of one particle by another when they come near one another.

Since, however, this equalization of motion is not instantaneous, the pressures

in all directions are perfectly equalized only in the case of a gas at rest, but

when the gas is in a state of motion, the want of perfect equality in the

pressures gives rise to the phenomena of viscosity or internal friction. The

phenomena of viscosity in all bodies may be described, independently of hypo-

thesis, as follows :

—

A distortion or strain of some kind, which we may call S, is produced in

the body by displacement. A state of stress or elastic force which we may

call F is thus excited. The relation between the stress and the strain may

be written F=ES, where E is the coefficient of elasticity for that particular

kind of strain. In a solid body free from viscosity, F will remain = ^>S, and

dF^-p^dS
dt dt

'

If, however, the body is viscous, F wUl not remain constant, but will tend to

disappear at a rate depending on the value of F, and on the nature of the

body. If we suppose this rate proportional to F, the equation may be written

dF_j^dS_F
dt ~ dt T'
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which will indicate the actual phenomena in an empirical manner. For if *S'

be constant,

F=ESe'K

shewing that F gradually disappears, so that if the body is left to itself it

gradually loses any internal stress, and the pressures are finally distributed as

in a fluid at rest.

If
-J—

is constant, that is, if there is a steady motion of the body which
at

continually increases the displacement,

shewing that F tends to a constant value depending on the rate of displax^e-

ment. The quantity FT, by which the rate of displacement must be multipUed

to get the force, may be called the coeflScient of viscosity. It is the product

of a coefficient of elasticity, F, and a time T, which may be called the ''time

of relaxation" of the elastic force. In mobile fluids T is a very small fraction

of a second, and F is not easily determined experimentally. In viscous solids

T may be several hours or days, and then F is easily measured. It is possible

that in some bodies T may be a function of F, and this would account for

the gradual untwisting of wires after being twisted beyond the limit of perfect

elasticity. For if T diminishes as F increases, the parts of the wire furthest

from the axis will yield more rapidly than the parts near the axis during the

twisting process, and when the twisting force is removed, the wire will at first

untwist till there is equilibrium between the stresses in the inner and outer

portions. These stresses will then undergo a gradual relaxation; but since the

actual value of the stress is greater in the outer layers, it will have a more

rapid rate of relaxation, so that the wire will go on gradually untwisting for

some houra or days, owing to the stress on the interior portions maintaining

itself longer than that of the outer parts. This phenomenon was observed by

Weber in silk fibres, by Kohlrausch in glass fibres, and by myself in steel wires.

In the case of a collection of moving molecules such as we suppose a gas

to be, there is also a resistance to change of form, constituting what may be

called 'the linear elasticity, or "rigidity" of the gas, but this resistance gives

way and diminishes at a rate depending on the amount of the force and on

the nature of the gas.
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Suppose the molecules to be confined in a rectangular vessel with perfectly-

elastic sides, and that they have no action on one another, so that they never

strike one another, or cause each other to deviate from their rectilinear paths.

Then it can easily be shewn that the pressures on the sides of the vessel due

to the impacts of the molecules are perfectly independent of each other, so that

the mass of moving molecules will behave, not like a fluid, but like an elastic

soHd. Now suppose the pressures at first equal in the three directions perpen-

dicular to the sides, and let the dimensions a, h, c of the vessel be altered

by small quantities, 8a, 86, Be.

Then if the original pressure in the direction of a was p, it will become

/ , „ 8a 86 Be

or if there is no change of volume,

§^=-2 —pa'
shewing that in this case there is a "longitudinal" elasticity of form of which

the coefficient is 2p. The coefficient of "Rigidity" is therefore =J9.

This rigidity, however, cannot be directly observed, because the molecules

continually deflect each other from their rectilinear courses, and so equalize the

pressure in all directions. The rate at which this equalization takes place is

great, but not infinite; and therefore there remains a certain inequahty of

pressure which constitutes the phenomenon of viscosity.

I have found by experiment that the coefficient of viscosity in a given gas

is independent of the density, and proportional to the absolute temperature, so

that if ET be the viscosity, ETa:^

.

But E=p, therefore T, the time of relaxation, varies inversely as the density

and is independent of the temperature. Hence the number of collisions pro-

ducing a given deflection which take place in unit of time is independent of

the temperature, that is, of the velocity of the molecules, and is proportional

to the number of molecules in unit of volume. If we suppose the molecules

hard elastic bodies, the number of collisions of a given kind will be proportional

to the velocity, but if we suppose them centres of force, the angle of deflection

will be smaller when the velocity is greater; and if the force is inversely as

the fifth power of the distance, the number of deflections of a given kind will
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be independent of the velocity. Hence I have adopted this law in making my
calculations.

The effect of the mutual action of the molecules is not only to equalize

the pressure in all directions, but, when molecules of different kinds are present,

to communicate motion from the one kind to the other. I formerly shewed

that the final result in the case of hard elastic bodies is to cause the averaoreo
ins viva of a molecule to be the same for all the different kinds of molecules.

Now the pressure due to each molecule is proportional to its vis viva, hence

the whole pressure due to a given number of molecules in a given volume will

be the same whatever the mass of the molecules, provided the molecules of

different kinds are permitted freely to communicate motion to each other.

When the flow of vis viva from the one kind of molecules to the other

is zero, the temperature is said to be the same. Hence equal volumes of

different gases at equal pressures and temperatures contain equal numbers of

molecules.

This result of the dynamical theory affords the explanation of the "law of

equivalent volumes" in gases.

We shall see that this result is true in the case of molecules acting as

centres of force. A law of the same general character is probably to be found

connecting the temperatures of liquid and solid bodies with the energy possessed

by their molecules, although our ignorance of the nature of the connexions

between the molecules renders it difficult to enunciate the precise form of the law.

The molecules of a gas in this theory are those portions of it which move

about as a single body. These molecules may be mere points, or pure centres

of force endowed with inertia, or the capacity of performing work whOe losing

velocity. They may be systems of several such centres of force, bound together

by their mutual actions, and in this case the different centres may either be

separated, so as to form a group of points, or they may be actually coincident,

so as to form one point.

Finally, if necessary, we may suppose them to be small solid bodies of a

determinate form ; but in this case we must assume a new set of forces binding

the parts of these small bodies together, and so introduce a molecular theory

of the second order. The doctrines that all matter is extended, and that no

two portions of matter can coincide in the same place, being deductions from

our experiments with bodies sensible to us, have no application to the theory

of molecules.

VOL. n. 5
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The actual energy of a moving body consists of two parts, one due to the

motion of its centre of gravity, and the other due to the motions of its parts

relative to the centre of gravity. If the body is of invariable form, the motions

of its parts relative to the centre of gravity consist entirely of rotation, but

if the parts of the body are not rigidly connected, their motions may consist

of oscillations of various kinds, as well as rotation of the whole body.

The mutual interference of the molecules in their courses will cause their

energy of motion to be distributed in a certain ratio between that due to the

motion of the centre of gravity and that due to the rotation, or other internal

motion. If the molecules are pure centres of force, there can be no energy of

rotation, and the whole energy is reduced to that of translation; but in all

other cases the whole energy of the molecule may be represented by ^Mif^,

where ^ is the ratio of the total energy to the energy of translation. The

ratio ^ will be dijBferent for every molecule, and will be different for the same

molecule after every encounter with another molecule, but it will have an

average value depending on the nature of the molecules, as has been shown

by Clausius. The value of ^ can be determined if we know either of the

specific heats of the gas, or the ratio between them.

The method of investigation which I shall adopt in the following paper,

is to determine the mean values of the following functions of the velocity of

all the molecules of a given kind within, an element of volume :

—

(a) the mean velocity resolved parallel to each of the coordinate axes

;

(^) the mean values of functions of two dimensions of these component

velocities ;

(y) the mean values of functions of three dimensions of these velocities.

The rate of translation of the gas, whether by itself, or by diffusion through

another gas, is given by (a), the pressure of the gas on any plane, whether

normal or tangential to the plane, is given by (/8), and the rate of conduction

of heat through the gas is given by (y).

I propose to determine the variations of these quantities, due, 1st, to the

encounters of the molecules with others of the same system or of a different

system ; 2nd, to the action of external forces such as gravity ; and 3rd, to the

passage of molecules through the boundary of the element of volume.

I shall then apply these calculations to the determination of the statical

caaes of the final distribution of two gases under the action of gravity, the
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equilibrium of temperature between two gases, and the distribution of tempe-

rature in a vertical column. These results are independent of the law of force

between the molecules. I shall also consider the dynamical cases of diffusion,

viscosity, and conduction of heat, which involve the law of force between the

molecules.

On the Mutual Action of Two Molecules.

Let the masses of these molecules be if,, Jf,, and let their velocities

resolved in three directions at right angles to each other be ^,, 17,, {, and

^,, ry,, 4. The components of the velocity of the centre of gravity of the two

molecules will be

^,if, +^A rnMr+vM. LM. + LM.
M, + M, ' M, +M, ' M,-^M,

•

The motion of the centre of gravity will not be altered by the mutual

action of the molecules, of whatever nature that action may be. "We may
therefore take the centre of gravity as the origin of a system of coordinates

moving parallel to itself with uniform velocity, and consider the alteration of

the motion of each particle with reference to this point as origin.

If we regard the molecules as simple centres of force, then each molecule

will describe a plane curve about this centre of gravity, and the two curves

will be similar to each other and synmietrioal with respect to the line of apses.

If the molecules move with sufficient velocity to carry them out of the sphere

of their mutual action, their orbits wiU each have a pair of asymptotes inclined

at an angle 7^
— ^ to the line of apses. The asymptotes of the orbit of 3/,

wlQ be at a distance b^ from the centre of gravity, and those of M^ at a

distance 6„ where

MA= M,b,.

The distance between two parallel asymptotes, one in each orbit, will be

b = b, + h,.

If, while the two molecules are stiU beyond each other's action, we draw

a straight line through J/, in the direction of the relative velocity of 3/, to

Mj, and draw from M, a perpendicular to this line, the length of this perpen-

5—2
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dicular will be 6, and the plane including h and the direction of relative motion

will be the plane of the orbits about the centre of gravity.

When, after their mutual action and deflection, the molecules have again

reached a distance such that there is no sensible action between them, each

will be moving with the same velocity relative to the centre of gravity that

it had before the mutual action, but the direction of this relative velocity will

be turned through an angle 2^ in the plane of the orbit.

The angle ^ is a function of the relative velocity of the molecules and of

b, the form of the function depending on the nature of the action between

the molecules.

If we suppose the molecules to be bodies, or systems of bodies, capable of

rotation, internal vibration, or any form of energy other than simple motion of

translation, these results will be modified. The value of 6 and the final velocities

of the molecules will depend on the amount of internal energy in each molecule

before the encounter, and on the particular form of that energy at every instant

during the mutual action. We have no means of determining such intricate

actions in the present state of our knowledge of molecules, so that we must

content ourselves with the assumption that the value of is, on an average,

the same as for pure centres of force, and that the final velocities differ from

the initial velocities only by quantities which may in each collision be neglected,

although in a great many encounters , the energy of translation and the internal

energy of the molecules arrive, by repeated small exchanges, at a final ratio,

which we shall suppose to be that of 1 to /3 — 1.

We may now determine the final velocity of M^ after it has passed beyond

the sphere of mutual action between itself and M^.

Let V be the velocity of 31^ relative to M^, then the components of V are

#i^l^2, Vi-V2, L-L-

The plane of the orbit is that containing V and b. Let this plane be

inclined <^ to a plane containing V and parallel to the axis of x ; then, since

the direction of V is turned round an angle 2^ in the plane of the orbit,

while its magnitude remains the same, we may find the value of ^^ after the

encounter. Calling it ^'i,

^'^ = ^^ + M!fw, «^^ - ^^) ^ '"'^^ "^ Av.-V.Y + {L-LY sin 20cos<l>} (1).
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There will be similar expressions for the components of the final velocity

of if, in the other coordinate directions.

If we know the initial positions and velocities of 3f, and 3/, we can

determine F, the velocity of M, relative to M^; h the shortest distance between

if, and il/j if they had continued to move with uniform velocity in straight

lines ; and
<f)

the angle which determines the plane in which V and b lie.

From V and h we can determine 6, if we know the law of force, so that the

problem is solved in the case of two molecules.

When we pass from this case to that of two systems of moving molecules,

we shall suppose that the time during which a molecule is beyond the action

of other molecules is so great compared with the time during which it ia

deflected by that action, that we may neglect both the time and the distance

described by the molecules during the encounter, as compared with the time

and the distance described while the molecules are free from disturbing force.

We may also neglect those cases in which three or more molecules are within

each other's spheres of action at the same instant.

On the Mutual Action of Two Systems of Moving Molecv.les.

Let the number of molecules of the first kind in unit of volume be ^V,,

the mass of each being J/,. The velocities of these molecules will in general

be different both in magnitude and direction. Let us select those molecules

the components of whose velocities lie between

f, and ^1 + cZ^i , -q^ and 77, + d-q,

,

L and ^^ + dt„
,

and let the number of these molecules be dN^. The velocities of these molecules

will be very nearly equal and parallel.

On account of the mutual actions of the molecules, the nimiber of mole-

cules which at a given instant have velocities within given 'limits \\aLl be

definite, so that

dN,=f{i,'n,Qdi4^Mr (^)-

We shall consider the form of this function aftei wards.

Let the number of molecules of the second kind in unit of volume be

y^, and let dN^ of these have velocities between ^; and ^, + c?^3, i^; and t;, + c/t;.^
,

C, and it + d^, where

dX,=f(i,r).Z.)deM4L.



38 THE DYNAMICAL THEORY OF GASES.

The velocity of any of the dN^ molecules of the first system relative to

the dNt molecules of the second system is V, and each molecule M^ vsdll in

the time St describe a relative path Vdt among the molecules of the second

system. Conceive a space bounded by the following surfaces. Let two cylindrical

surfaces have the common axis Vht and radii b and b + dh. Let two planes

be drawn through the extremities of the line Vht perpendicular to it. Finally,

let two planes be drawn through Vht making angles
(f>

and
(f)
+ d({> with a plane

through V parallel to the axis of x. Then the volume included between the

four planes and the two cylindric surfaces will be Vbdbd<f>ht.

If this volume includes one of the molecules M,, then during the time ht

there will be an encounter between M^ and M^, in which b is between b and

h + db, and
(f)

between
<f)

and
<f)
+ d(f>.

Since there are dN^ molecules similar to M^ and dN^ similar to M, in unit

of volume, the whole number of encounters of the given kind between the two

systems will be

Vbdbd<f>BtdN,dN,.

Now let Q be any property of the molecule M^, such as its velocity in a

given direction, the square or cube of that velocity or any other property of the

molecule which is altered in a known manner by an encounter of the given

kind, so that Q becomes Q' after the encounter, then during the time Bt a

certain number of the molecules of the first kind have Q changed to Q', while

the remainder retain the original value of Q, so that

BQdN,=W-Q) Vbdbd<j>BtdN,dN„

or ^-^^ = {Qf-Q)VbdU^dN,dN, (3).

Here 29^^ refers to the alteration in the sum of the values of Q for the
ot

dNi molecules, due to their encounters of the given kind with the dN^ molecules

of the second sort. In order to determine the value of
g^

'

, the rate of

alteration of Q among all the molecules of the first kind, we must perform

the following integrations:

—

1st, with respect to <j> from <;^ = to <^= 2ir.

2nd, with respect to b from 6 = to 6=oo. These operations will give
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the results of the encounters of every kind between the dN^ and dN, mole-

cules.

3rd, with respect to dN„ or /„ (^^t?,^) c^^/Zr^.c?^,.

4th, with respect to dN„ ov /^{^,rj^Qd^4vi<iL-

These operations require in general a knowledge of the forms of/i and/,.

1st. Integration with respect to
<f).

Since the action between the molecules is the same in whatever plane it

takes place, we shall first determine the value of I {Q' — Q)d<j>'m several cases,

making Q some function of ^, 77, and ^.

(a) Let Q = ^, and Q' = i\, then

jy.-Qd<f> = j^^{i.-l)^nsin'0 (4).

{^) Let Q = l' and Q' = e',

^'
+(^-LY-2{i,-^,y}7rsm^2d-] (5).

By transformation of coordinates we may derive from this

rV.V, - iv,) d<i> =T^m' H^^'f*- -'^'f'' + i (^' - ^^=) (f-''" + f'''')} ^" ^">' ^

'"
-3M.($,-l){v,-V,)] (6),

with similar expressions for the other quadratic functions of i, t), C-

(y) Let Q = id^,' + 'n,' + L% and Q' = ei{i7 + v'+ i\'); then putting

^.'

+

1.' + L' = v,\ LL + ri.-n., + a, = u, a + -n.' + ^' = v^\

and (^,-^,)' + (^.-^0' + (^.-W=^^ ^e find

^yj\^-Ly^)d<i>=^^^^.sm^e{(L-L)v,^^2UU-v,')]

+ [^^){^^ sin' e - Stt sin' 29) 2 (f, -Q (
U- V^)

M, V
(87rsin'^ + 27rsin'2^)f,F'

+ (^;^J(8^sin'^-2^sin' 2d) 2 {^.-QV^

(7).
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These are the principal functions of ^, rj, C whose changes we shall have to

consider; we shall indicate them by the symbols a, /8, or y, according as the

function of the velocity is of one, two, or three dimensions.

2nd. Integration with respect to b.

We have next to multiply these expressions by hdb, and to integrate with

respect to b from h = to 6 = oo . We must bear in mind that ^ is a function

of h and V, and can only be determined when the law of force is known.

In the expressions which we have to deal with, $ occurs under two forms

only, namely, sin' 6 and sin' 20. If, therefore, we can find the two values of

B,= ( iTrhdhsm'd, and B,= \ nbdbsm'^e (8),

we can integrate all the expressions with respect to b.

B^ and B^ will be functions of V only, the form of which we can determine

only in particular cases, after we have found ^ as a function of b and V.

Determination of for certain laws of Force.

Let us assume that the force between the molecules M^ and M^ is repul-

sive and vanes inversely as the nth power of the distance between them, the

value of the moving force at distance unity being K, then we find by the

equation of central orbits,

TT

1-'<
J,

.
'\

/.v-
''''

n — 1 \a,

where x = -, or the ratio of b to the distance of the molecules at a given

time : x is therefore a numerical quantity ; a is also a numerical quantity and

is given by the equation

-J. T^^a^^ (10)

The limits of integration are x — Q and x = x', where x' is the least positive

root of the equation

i-^-„4:(r=« (")•
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It is evident that 6 la a, function of a and n, and when n is known

may be expressed as a function of a only.

^- '''={^m^r^^ ^''^'

30 that if we put

^, = j
47rac?a sin' ^, A,= \ 7rac?a sin' 2^ (13),

Ay^ and A, will be definite numerical quantities which may be ascertained when

n is given, and jBj and -B, may be found by multiplying A^ and A, by

\ M,M, J

Before integrating further we have to multiply by V, so that the form in

which V will enter into the expressions which have to be integrated with respect

to dN^ and dN, will be

It will be shewn that we have reason from experiments on the viscosity

of gases to believe that n = 5. In this case V will disappear from the expres-

sions of the form (3), and they will be capable of immediate integration with

respect to dN^ and dN,.

f
If we assume n = 5 and put a* = 2 cot'

2(f>
and x = Jl- tan' <^ cos y\iy

|-^ = ^"^'2'^jo7l-sin'<^8in'l, (14),

Jcoa24F^i^4„

where -Fg^^ is the complete elliptic function of the first kind and is given in

Legendre's Tables. I have computed the following Table of the distance of the

asymptotes, the distance of the apse, the value of 6, and of the quantities whose

summation leads to A^ and A^.

VOL. II. 6
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where Q is some function of ^, t), {, &c., already determined, and f, is the

function which indicates the distribution of velocity among the molecules of the

second kind.

In the case in which n = 5, V disappears, and we may write the result

of integration Q^v

where Q is the mean value of Q for all the molecules of the second kind,

and A^, is the number of those molecules.

If, however, n is not equal to 5, so that V does not disappear, we should

require to know the form of the function f, before we could proceed further

with the integration.

The only case in which I have determined the form of this function is

that of one or more kinds of molecules which have by their continual encoun-

ters brought about a distribution of velocity such that the number of molecules

whose velocity lies within given limits remains constant. In the Philosophical

Magazine for January 1860, I have given an investigation of this case, founded

on the assumption that the probability of a molecule having a velocity resolved

parallel to x lying between given limits is not in any way affected by the

knowledge that the molecule has a given velocity resolved parallel to y. As

this assumption may appear precarious, I shall now determine the form of the

function in a different manner.

On the Final Distribution of Velocity among the Molecules of Two Systems acting

on one another according to any Law of Force.

From a given point let lines be drawn representing in

direction and magnitude the velocities of every molecule of

either kind in unit of volume. The extremities of these lines

will be distributed over space in such a way that if an ele-

ment of volume dV be taken anywhere, the number of such

lines which will terminate within dV will be f{r)dV, where

r is the distance o{ dV from O.

Let OA = a be the velocity of a molecule of the first kind, and OB = b

that of a molecule of the second kind before they encounter one another, then

6—2
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BA will he the velocity of A relative to B; and if we divide AB in. G
inversely as the masses of the molecules, and join OG, OG will be the velocity

of the centre of gravity of the two molecules.

Now let OA' = a' and OR = b' be the velocities of the two molecules after

the encounter, GA = GA' and GB = GR, and A'GE is a straight Hne not

necessarily in the plane of OAB. Also AGA' = 20 is the angle through which

the relative velocity is turned in the encounter in question. The relative motion

of the molecules is completely defined if we know BA the relative velocity

before the encounter, 2$ the angle through which BA is turned during the

encounter, and ^ the angle which defines the direction of the plane in which

BA and RA' lie. All encounters in which the magnitude and direction of BA,

and also 9 and <^, lie within certain almost contiguous limits, we shall class

as encounters of the given kind. The number of such encounters in unit of

time will be

n^n^de (17),

where n, and Wj are the numbers of molecules of each kind under consideration,

and i^ is a fiinction of the relative velocity and of the angle 6, and de depends

on the Umits of variation within which we class encounters as of the same kind.

Now let A describe the boundary of an element of volume dV while AB
and A'R move parallel to themselves, then B, A\ and R will also describe

equal and similar elements of volume.

The number of molecules of the first kind, the lines representing the velo-

cities of which terminate in the element dV at A, will be

n,=f,{a)dV (18).

The number of molecules of the second kind which have velocities corresponding

to OB will be
n,=f._{h)dV (19);

and the number of encounters of the given kind between these two sets of

molecules will be

f,(a)Mb){dVYFdc (20).

The lines representing the velocities of these molecules after encounters of the

given kind will terminate within elements of volume at A' and R, each equal

to dV.
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In like manner we should find for the number of encounters between

molecules whose original velocities corresponded to elements equal to dV described

about A' and B', and whose subsequent velocities correspond to elements equal

to c^F described about A and B,

MaU(V)(dV)'Fde (21),

where F' is the same function of RA' and A'GA that F is of BA and AGA'.

F is therefore equal to F'.

When the number of pairs of molecules which change their velocities from

OAy OB to OA', OR is equal to the number which change from OA', OB
to OA, OB, then the final distribution of velocity will be obtained, which

will not be altered by subsequent exchanges. This will be the case when

fMMi)=fM)MV) (22).

Now the only relation between a, h and a', h' is

M,a' + M,lf = M,a' + M.p, (23),

whence we obtain f,{a) = C,e~^\ f,(b) = Cy^ (24),

where M,a' = MJ3"- (25).

By integrating jjjC^e' *' didrj dC, and equating the result to xV„ we

obtain the value of C^. If, therefore, the distribution of velocities among .V,

molecules is such that the number of molecules whose component velocities are

between i and ^+dC, rf and rj + drj, and C and C + dC is

dN,= ^\e~ "' did-qdC (26),
aV

then this distribution of velocities will not be altered by the exchange of

velocities among the molecules by their mutual action.

This is therefore a possible form of the final distribution of velocities. It

is also the only form ; for if there were any other, the exchange between

velocities represented by OA and OA' would not be equal. Suppose that the

number of molecules having velocity OA' increases at the expense of OA.

Then since the total number of molecules corresponding to OA' remains constant,

OA' must communicate as many to OA", and so on till they return to OA.

Hence if OA, OA', OA", &c. be a series of velocities, there will be a

tendency of each molecule to assume the velocities OA, OA', OA", &c. in order,

returning to OA. Now it is impossible to assign a reason why the successive
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velocities of a molecule should be arranged in this cycle, rather than in the

reverse order. If, therefore, the direct exchange between OA and OA' is not

equal, the equality cannot be preserved by exchange in a cycle. Hence the

direct exchange between OA and OA' is equal, and the distribution we have

determined is the only one possible.

This final distribution of velocity is attained only when the molecules have

had a great number of encounters, but the great rapidity with which the

encounters succeed each other is such that in all motions and changes of

the gaseous system except the most violent, the form of the distribution of

velocity is only slightly changed.

When the gas moves in mass, the velocities now determined are com-

pounded with the motion of translation of the gas.

When the differential elements of the gas are changing their figure, being

compressed or extended along certain axes, the values of the mean square of

the velocity will be different in different directions. It is probable that the

form of the function will then be

Am)=-^ie-i^'''^^ (27),
apyrr

where a, $, y are slightly different. I have not, however, attempted to investi-

gate the exact distribution of velocities in this case, as the theory of motion

of gases does not require it.

When one gas is diffusing through another, or when heat is being conducted

through a gas, the distribution of velocities will be different in the positive

and negative directions, instead of being symmetrical, as in the case we have

considered. The want of symmetry, however, may be treated as very small in

most actual cases.

The principal conclusions which we may draw from this investigation are

as follows. Calling a the modulus of velocity,

- 2
1st. The mean velocity is v — -j=a (28).

2nd. The mean square of the velocity is v' = xa' (29).

3rd. The mean value of f* is ?* = o** (3^)-
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4th. The mean value of i* is ^' = |a* (31).

5th. The mean value of fV is f^' =K (32)-

6th. When there are two systems of molecules

M,a' =MJ3' (33),

whence M,v,' = M,iw (34),

or the mean vis viva of a molecule will be the same in each system. This

is a very important result in the theory of gases, and it is independent of the

nature of the action between the molecules, as are all the other results relating

to the final distribution of velocities. We shall find that it leads to the law

of gases known as that of Equivalent Volumes.

Valuation of Functions of the Velocity due to encounters between the Molecules.

SO
We may now proceed to write down the values of -g- in the diflferent

cases. We shall indicate the mean value of any quantity for all the molecules

of one kind by placing a bar over the symbol which represents that quantity

for any particular molecule, but in expressions where all such quantities are to

be taken at their mean values, we shall, for convenience, omit the bar. W"e

shall use the symbols h, and S,- to indicate the eSect produced by molecules of

the first kind and second kind respectively, and 83 to indicate the effect of

external forces. We shall also confine ourselves to the case in which n = 5,

since it is not only free from mathematical difficulty, but is the only case which

is consistent with the laws of viscosity of gases.

In this case V disappears, and we have for the effect of the second system

on the first,

'^-M^^^}''!:^''-''"'
<"'•

where the functions of ^, 77, C in j{Q'-Q)d(f> must be put equal to their mean

values for all the molecules, and A, or A, must be put for A according as

sin'^ or sin* 2^ occurs in the expressions in equations (4), (5), (6), (7). We

thus obtain

W t^lEOT^F^-^-^-^^--^'*
^''^''
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(37);

.(38);

(r)
8t

^ = W(l4-i/J^-^- [^.{S^r,»+ 2£. ( t.- r«)}

Jf,

+M^, (2^^ - ^^J 2 (^. - ^0 ( C^^ F,0

M, (39),

using the symbol S^ to indicate variations arising from tlie action of molecules

of the second system.

These are the values of the rate of variation of the mean values of

ii, ^i, ^{qi, and ^iFi^ for the molecules of the first kind due to their encounters

with molecules of the second kind. In all of them we must multiply up all

functions of ^, -q, C, and take the mean values of the products so found. As
this has to be done for all such functions, I have omitted the bar over each

function in these expressions.

To find the rate of variation due to the encounters among the particles of

the same system, we have only to alter the suffix
,j)

into
^j,

throughout, and to

change K, the coefficient of the force between M^ and if, into K^, that of the

force between two molecules of the first system. We thus find

W f =0 ,(40);

<'^) ^=(m!f^'^^M%'+L'-2S,'-{v,-v.+iA.-2i,-m (41);

-^ = {m})'^'^^^MZ.v,-(J:} (42);
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W^'=(2i?)^'^'^'-''("^-'^'-^'' ^''>-

These quantities must be added to those in equations (30) to (39) in order

to get the rate of variation in the molecules of the first kind due to their

encounters with molecules of both systems. When there is only one kind of

molecules, the latter equations give the rates of variation at once.

On the Action of External Forces on a System of Moving Molecules.

"We shall suppose the external force to be like the force of gravity, pro-

ducing equal acceleration on all the molecules. Let the components of the force

in the three coordinate directions be X, Y, Z. Then we have by dynamics for

the variations of ^, £", and ^F"* due to this cause,

W Tt =
^ (")•

(^) %^-=2fX (45);

^-^ =nX + ^Y (16);

(r)^'=2f(fx+,,r+£2)+;fp <*)•

where 8, refers to variations due to the action of external forces.

On the Total rate of change of the different functions of the velocity of the mole-

cules of the first system arising from their encounters with molecules of both

systems and from the action of external forces.

To find the total rate of change arising from these causes, we must add

h9. ^=^ .r.A ^3^

ht ' Bt '
^"""^ W

'

the quantities already found. We shall find it, however, most convenient in

the remainder of this investigation to introduce a change in the notation, and

to substitute for

^, 7}, and C, u + i, v + r), and u' + C (^8),

VOL. II. 7
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where u, v, and w are so chosen that they are the mean values of the com-

ponents of the velocity of all molecules of the same system in the immediate

neighbourhood of a given point. We shall also write

M,N, = p,, M^,= p, (49),

where p, and pj are the densities of the two systems of molecules, that is, the

mass in unit of volume. We shall also write

{2|-)'=*"
{m,M,{M,+ M,))' = ''- ^-^ (2§?)' = ^ <^«):

Pi> Pj> K> h> and k are quantities the absolute values of which can be deduced

from experiment* We have not as yet experimental data for determining

M, N, or K.

We thus find for the tate of bhange of the various ftlnctions of the velocity,

(a) -^ = kA^,{u,-u,) +X

kp.

+AM (-n,^ + C.'
- 2^/ + r?/ + C: - 2^:)}

also -^ = - ^KA,pJ^Vi + h^W+M ^^^^ " ^^"^ '"'

~

^'^ ^^'
^

'^'^

kp.

(51);

(52);

.(53).

(y) As the expressions for the variation of functions of three dimensions

in mixed media are complicated, and as we shall not have occasion to use

them, I shall give the case of a single medium,

I (£/ + U' + U') = - ^k,p,A, (^,' + ^,r},^ +m +X (3^,^ + ^/ + L^)

+ 2Y^,'n, + 2Za. (54).
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Theory of a Medium composed of Moving Molecules.

We shall suppose the position of every moving molecule referred to three

rectangular axes, and that the component velocities of any one of them, resolved

in the directions of x, y, z, are

W + ^, V + Tf, w-\-t„

where w, v, w are the components of the mean velocity of all the molecules

which are at a given instant in a given element of volume, and ^, 17, t, are

the components of the relative velocity of one of these molecules with respect

to the mean velocity.

The quantities u, v, w may be treated as functions of x, y, z, and t, in

which case differentiation will be expressed by the symbol d. The quantities

^, 7), 4, being different for every molecule, must be regarded as functions of t

for each molecule. Their variation with respect to t will be indicated by the

symbol 8.

The mean values of ^* and other functions of ^, 17, t, for all the molecules

in the element of volume may, however, be treated as functions of x, y, 2,

and t.

If we consider an element of volume which always moves with the velocities

u, V, w, we shall find that it does not always consist of the same molecules,

because molecules are continually passing through its boundary. We cannot

therefore treat it as a mass moving with the velocity u, v, w, as is done in

hydrodynamics, but we must consider separately the motion of each molecule.

When we have occasion to consider the variation of the properties of this element

during its motion as a function of the time we shall use the symbol d.

We shall call the velocities u, v, w the velocities of translation of the medium,

and ^, -q, t, the velocities of agitation of the molecules.

Let the number of molecules in the element dx dy dz be N dx dy dz, then

we may call N the number of molecules in unit of volume. If M is the mass

of each molecule, and p the density of the element, then

MN= p (55).

Transference of Quantities across a Plane Area.

We must next consider the molecules which pass through a given plane

of unit area in unit of time, and determine the quantity of matter, of momentum,

7—2



52 THE DYNAMICAL THEORY OF GASES.

of heat, &c. which is transferred from the negative to the positive side of this

plane in unit of time.

We shall first divide the N molecules in unit of volume into classes

according to the value of ^, tj, and ^ for each, and we shall suppose that the

number of molecules in unit of volume whose velocity in the direction of x lies

between ^ and i+d^, -q and -q + d-q, t, and i + dt, is dN, dN will then be a

function of the component velocities, the sum of which being taken for all the

molecules will give N the total number of molecules. The most probable form

of this function for a medium in its state of equiHbrium is

AT PW+C
dN=—,e~ «' d^d-qdi (56).

aV
In the present investigation we do not require to know the form of this

function.

Now let us consider a plane of unit area perpendicular to x moving with

a velocity of which the part resolved parallel to x is u\ The velocity of the

plane relative to the molecules we have been considering is u-{u + ^), and since

there are dN of these molecules in unit of volume it will overtake

{u'-{u^-^)]dN

such molecules in unit of time, and the number of such molecules passing

from the negative to the positive side of the plane, will be

{u-\-^-u)dN.

Now let Q be any property belonging to the molecule, such as its mass,

momentum, vis viva, &c., which it carries with it across the plane, Q being

supposed a function of f or of ^, -q, and ^, or to vary in any way from one

molecule to another, provided it be the same for the selected molecules whose

number is dN, then the quantity of Q transferred across the plane in the

positive direction in unit of time is

l(u-u'+^)QdN,

or {u-u)jQdN+jiQdN (57).

If we put QN for jQdN, and JQ^ for jiQdN, then we may call Q the

mean value of Q, and ^Q the mean value of $Q, for all the particles in the

element of volume, and we may write the expression for the quantity of Q
which crosses the plane in unit of time

{u-u')QN + lQN (58).
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(a) Transference of Matter across a Plane— Velocity of the Fluid.

To determine the quantity of matter which crosses the plane, make Q equal

to M the mass of each molecule ; then, since M is the same for all molecules

of the same kind, M=M; and since the mean value of f is zero, the expres-

sion is reduced to

{u-u)MN={u-u)p (59).

If u = u, or if the plane moves with velocity u, the whole excess of matter

transferred across the plane is zero ; the velocity of the fluid may therefore be

defined as the velocity whose components are u, v, iv.

(yS) Transference of Momentum across a Plane—System of Pressures at any

point of the Fluid.

The momentum of any one molecule in the direction of x is M{u + ^).

Substituting this for Q, we get for the quantity of momentum transferred

across the plane in the positive direction

(u-u)up + f'p (60).

If the plane moves with the velocity u, this expression is reduced to ^'p,

where f' represents the mean value of ^'.

This is the whole momentum in the direction of x of the molecules projected

from the negative to the positive side of the plane in unit of time. The

mechanical action between the parts of the medium on opposite sides of the

plane consists partly of the momentum thus transferred, and partly of the

direct attractions or repulsions between molecules on opposite sides of the plane.

The latter part of the action must be very small in gases, so that we may

consider the pressure between the parts of the medium on opposite sides of the

plane as entirely due to the constant bombardment kept up between them.

There will also be a transference of momentum in the directions of y and :

across the same plane,

{u-u)vp-{-$r)p (61),

and (u-u)2vp + Ep (62),

where ^-q and ^{ represent the mean values of these products.
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If the plane moves with the mean velocity u of the fluid, the total force

exerted on the medium on the positive side by the projection of molecules into

it from the negative side will be

a normal pressure ^p in the direction of x,

a tangential pressure ^p in the direction of y,

and a tangential pressure ^Cp in the direction of z.

If X, Y, Z are the components of the pressure on unit of area of a plane

whose direction cosines are I, m, n,

X=U^p +m^p + 7i^^

Y^l^p+mrfp +n7)Cp ,,,.(63),

Z^liCp -hTmilp + nCp

When a gas is not in a state of violent motion the pressures in all direc-

tions are nearly equal, in which case, if we put

ep + ^p-^Cp = Sp (64),
_

the quantity p will represent the mean pressure at a given point, and ^'p, rj^p,

and ~Cp wiU difier from p only by small quantities ; rji^p, C^p, and ^rjp will then

be also small quantities with respect to p.

Energy in the Medium—Actual Heat.

The actual energy of any molecule depends partly on the velocity of its

centre of gravity, and partly on its rotation or other internal motion with respect

to the centre of gravity. It may be written

^M{{u-\-iy + {v + rjY + {w + ^y} +^EM (65),

where ^EM is the internal part of the energy of the molecule, the form of

which is at present unknown. Summing for all the molecules in unit of volume,

the energy is

^{u' + v'+ yf)p + ^ie + v' + C)p + iEp (66).

The first term gives the energy due to the motion of translation of the

medium in mass, the second that due to the agitation of the centres of gravity

of the molecules, and the third that due to the internal motion of the parts of

each molecule.
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If we assume with Clausius that the ratio of the mean energy of internal

motion to that of agitation tends continually towards a definite value (/3-1),

we may conclude that, except in very violent disturbances, this ratio is always

preserved, so that

E = {fi-l){^' + l' + C) (67).

The total energy of the invisible agitation in unit of volume will then be

i^(f + ^' + (68),

or WP (69).

This energy* being in the form of invisible agitation, may be called the

total heat in the unit of volume of the medium.

(y) Transference of Energy across a Plane— Conduction of Heat.

Putting <? = iy8(f + 7y' + r)^, and u = u (70),

we find for the quantity of heat carried over the unit of area by conduction

in unit of time

i^ii'+ff+mp (71)'

where ^, &c. indicate the mean values of ^, &c. They are always small

quantities.

On the Rate of Variation of Q in an Element of Volume, Q being any property

of the Molecules in that Element.

Let Q be the value of the quantity for any particular molecule, and Q
the mean value of Q for all the molecules of the same kind within the element.

The quantity ^ may vary from two causes. The molecules within the

element may by their mutual action or by the action of external forces produce

an alteration of Q, or molecules may pass into the element and out of it, and

so cause an increase or diminution of the value of ^ wathin it. If we employ

the symbol S to denote the variation of Q due to actions of the first kind on

the individual molecules, and the symbol 3 to denote the actual variation of Q
in an element moving with the mean velocity of the system of molecules under
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consideration, then by the ordinary investigation of the increase or diminution

of matter in an element of volume as contained in treatises on Hydrodynamics,

dQN hQ .r d
dt

=^Ng^-^«---')^^+^^^
(72),

-^{(^-0 QN+y^QN}-^^ {(w-w) QN+iQN]

where the last three terms are derived from equation (59) and two similar

equations, and denote the quantity of Q which flows out of an element of volume,

that element moving with the velocities u, v\ w'. If we perform the differen-

tiations and then make u=u, v=v, and w' = w, then the variation will be that

in an element which moves with the actual mean velocity of the system of

molecules, and the equation becomes

Equation of Continuity.

Put Q-M the mass of a molecule; M is unalterable, and we have,

putting MN=p,
dp (du dv dw\ ^ ,^ ,.

i+p[r.+Ty+dz)='' (^'^'

which is the ordinary equation of continuity in hydrodynamics, the element

being supposed to move with the velocity of the fluid. Combining this equa-

tion with that from which it was obtained, we find

^f+|(?^^+|(^^)+rf4(^e^)=^f (").

a more convenient form of the general equation.

Eqtiations of Motion (a).

To obtain the Equation of Motion in the direction of x, put ^ = -M, (wj -f ^,),

the momentum of a molecule in the direction of x.

SOWe obtain the value of g-- firom equation (51), and the equation may be

written

P'lt'^dz (^^^) + d^ ^P^^) + dz ^f"^^ = *^^^' (""' " ""'^ + ^/>i-
•

•(5'6).
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In this equation the first term denotes the efficient force per unit of volume,

the second the variation of normal pressure, the third and fourth the variations

of tangential pressure, the fifth the resistance due to the molecules of a different

system, and the sixth the external force acting on the system.

The investigation of the values of the second, third, and fourth terms

must be deferred till we consider the variations of the second degree.

Condition of Equilibrium of a Mixture of Gases.

In a state of equilibrium u^ and w, vanish, pi^,' becomes p^, and the tan-

gential pressures vanish, so that the equation becomes

S=^'' (^^>'

which is the equation of equilibrium in ordinary hydrostatics.

This equation, being true of the system of molecules forming the first medium

independently of the presence of the molecules of the second system, shews

that if several kinds of molecules are mixed together, placed in a vessel and

acted on by gravity, the final distribution of the molecules of each kind will

be the same as if none of the other kinds had been present. This is the same

mode of distribution as that which Dalton considered to exist in a mixed

atmosphere in equilibrium, the law of diminution of density of each constituent

gas being the same as if no other gases were present.

This result, however, can only take place after the gases have been left

for a considerable time perfectly undisturbed. If currents arise so as to mix

the strata, the composition of the gas will be made more uniform throughout.

The result at which we have arrived as to the final distribution of gases,

when left to themselves, is independent of the law of force between the

molecules.

Diffusion of Gases.

If the motion of the gases is slow, we may still neglect the tangential

pressures. The equation then becomes for the first system of molecules

h^ +^ = tA^M«,-u,) +Xp (78),

VOL. n. 8
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and for the second.

P^

du^ dp.^

dt
+ '^ = kA,p,p,{u,-u,) + Xp, (79).

In all cases of quiet diffusion we may neglect the first term of each

equation. If we then put p^ i-p^ =p, and /d, + pj = p, we find by adding,

1=^" (^»)-

If we also put p,u^+p.,u^=pu, then the volumes transferred in opposite direc-

tions across a plane moving with velocity u will be equal, so that

Mu.-u)=M'^-u,)=^^;^.(x„^^ (81).

Here Pi(u,-u) is the volume of the first gas transferred in unit of time

across unit of area of the plane reduced to pressure unity, and at the actual

temperature; and p^{u — u^) is the equal volume of the second gas transferred

across the same area in the opposite direction.

The external force X has very little effect on the quiet diffusion of gases

in vessels of moderate size^ We may therefore leave it out in our definition

of the coefficient of diffusion of two gases.

When two gases not acted on by gravity are placed in different parts of

a vessel at equal pressures and temperatures, there will be mechanical equi-

librium from the first, and u will always be zero. This will also be approxi-

mately true of heavy gases, provided the denser gas is placed below the lighter.

Mr Graham has described in his paper on the Mobility of Gases*, experiments

which were made under these conditions. A vertical tube had its lower tenth

part filled with a heavy gas, and the remaining nine-tenths with a lighter gas.

After the lapse of a known time the upper tenth part of the tube was shut

off, and the gas in it analyzed, so as to determine the quantity of the heavier

gas which had ascended into the upper tenth of the tube during the given time.

In this case we have u = (82),

p,„,= _J^l^. (83),^^ ' p^pJcA^p dx ^ '

* Philosophical Transactions, 1863.
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and by the equation of continuity,

W^i^r',u,) = (84).

whence ^. = ^Py 1 ^. (85);

or if we put D = ^',
,
—

,

dt-^d:^ ^^^^-

The solution of this equation is

^, = C,+ C>-'"'^'cos(r2j; + a) + &c (87).

If the length of the tube is a, and if it is closed at both ends,

i?.= Q + C,e""^ cos^+C^ -^ cos2— + &C (88),

where C^, C„ C, are to be determined by the condition that when t = 0, Pi=p,

from x = to x = -^, and p^ = from x =-^ to x = a. The general expression

for the case in which the first gas originally extends from x = to x = b, and

in which after a time t the gas from x = to x = c is collected, is

p, h la r -^< . irb . TTC 1 -4^^ . ^nb . 27rc
,

. ^ ,__.
^' = -+-7--e »* sm— sm— + — e '•' sm sm— +&c. '^ (89),
p a ir'c

\
a a 2' a a J

where — is the proportion of the first gas to the whole in the portion from

x = to x = c.

In Mr Graham's experiments, in which one-tenth of the tube was filled

with the first gas, and the proportion of the first gas in the tenth of the tube

at the other end ascertained after a time t, this proportion will be

We find for a series of values of -^^ taken at equal intervals of time T.

P

where tJ-^^^^

8—2



60 THE DYNAMICAL THEORY OF GASES.

Time El
P'

T -01193

2T -02305

ZT -03376

4r -04366

Sr -05267

67 -06072

87 -07321

lOT -08227

\2T -08845

00 '10000

Mr Graham's experiments on carbonic acid and air, when compared with this

Table, give T=500 seconds nearly for a tube 0-57 metre long. Now

log^^
(91),

whence X) = -0235

for carbonic acid and air, in inch-grain-second measure.

Definition of the Coefficient of Diffusion,

D is the volume of gas reduced to unit of pressure which passes in unit

of time through unit of area when the total pressure is uniform and equal to p,

and the pressure of either gas increases or diminishes by unity in unit of

distance. D may be called the coefiBcient of diffusion. It varies directly as the

square of the absolute temperature, and inversely as the total pressure p.

The dimensions of D are evidently DT~\ where L and T are the standards

of length and time.

In considering this experiment of the interdiffusion of carbonic acid and

air, we have assumed that air is a simple gas. Now it is well known that

the constituents of air can be separated by mechanical means, such as passing

them through a porous diaphragm, as in Mr Graham's experiments on Atmolysis.
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The discussion of the interdiffusion of three or more gases leads to a much

more complicated equation than that which we have found for two gases, and

it is not easy to deduce the coefl&cients of interdiifusion of the separate gases.

It is therefore to be desired that experiments should be made on the inter-

diffusion of every pair of the more important pure gases which do not act

chemically on each other, the temperature and pressure of the mixture being

noted at the time of experiment.

Mr Graham has also published in Brando's Journal for 1829, pt. 2, p. 74,

the results of experiments on the diffusion of various gases out of a vessel

through a tube into air. The coefl&cients of diffusion deduced from these ex-

periments are

—

Air and Hydrogen -026216

Air and Marsh-gas '010240

Air and Ammonia '00962

Air and defiant gas '00771

Air and Carbonic acid '00682

Air and Sulphurous acid '00582

Air and Chlorine '00486

The value for carbonic acid is only one third of that deduced from the

experiment with the vertical column. The inequality of composition of the

mixed gas in different parts of the vessel is, however, neglected ; and the dia-

meter of the tube at the middle part, where it was bent, was probably less

than that given.

Those experiments on diflFusion which lasted ten hours, all give smaller

values of D than those which lasted four hours, and this would also result

from the mixture of the gases in the vessel being imperfect.

Interdiffusion through a small hole.

When two vessels containing different gases are connected by a small hole.

the mixture of gases in each vessel will be nearly uniform except near the

hole ; and the inequality of the pressure of each gas will extend to a distance

from the hole depending on the diameter of the hole, and nearly proportional

to that diameter.
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Hence in tlie equation

,^+^'=i^p^,K-«.)+xp, .(92)
^^ dt dx

the term -,— will vary inversely as the diameter of the hole, while u^ and u^

dx

will not vary considerably with the diameter.

Hence when the hole is very small the right-hand side of the equation

may be neglected, and the flow of either gas through the hole will be inde-

pendent of the flow of the other gas, as the term kAp^^{u^-u^) becomes com-

paratively insignificant.

One gas therefore will escape through a very fine hole into another nearly

as fast as into a vacuum; and if the pressures are equal on both sides, the

volumes difiused will be as the square roots of the specific gravities inversely,

which is the law of diffusion of gases established by Graham*.

Variation of the invisible agitation (y3).

By putting for Q in equation (75)

and eliminating by means of equations (76) and (52), we find

lu this equation the first term represents the variation of invisible agitation

or heat; the second, third, and fourth represent the cooling by expansion; the

...(94).

* Trans. Royal Society of Edinburgh, Vol. xii. p. 222.
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fifth, sixth, and seventh the heating effect of fluid friction or viscosity ; and

the last the loss of heat by conduction. The quantities on the other side of

the equation represent the thermal effects of diffusion, and the communication

of heat from one gas to the other.

The equation may be simplified in various cases, which we shall take in

order.

Ist. Equilibrium of Temperature between two Gases.—Law of Equivalent Volumes.

We shall suppose that there is no motion of translation, and no transfer

of heat by conduction through either gas. The equation (94) is then reduced

to the following form,

ip. |-A(f,' +V + = ;^^W(f^ + '/=' + «-3/,(f,' +V + «}....(95).

If we put

j^^_ ii: + v:-+ C;-) = Q„ and ^^^ (f,=+ ,. + C,=) = ft (96),

we find -{Q,-Q,)=-^^^(Mj>.A + M,p^,){Q,-Q,) (97),

or Q.-Q. = Ce--, where ^ =^:f^j^M + ^-^.M) jg^^
(98).

If, therefore, the gases are in contact and undisturbed, Q^ and Q. will

rapidly become equal. Now the state into which two bodies come by exchange

of invisible agitation is called equilibrium of heat or equality of temperature-

Hence when two gases are at the same temperature,

Q. = Q. (99),

1_2,_3/.(^,1+^,MJ^

^ £l

Pt
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Hence if the pressures as well aa the temperatures be the same in two

^^ = ^' (100),

Pi P»

or the masses of the individual molecules are proportional to the density of

the gas.

This result, by which the relative masses of the molecules can be deduced

from the relative densities of the gases, was first arrived at by Gay-Lussac

from chemical considerations. It is here shewn to be a necessary result of the

Dynamical Theory of Gases; and it is so, whatever theory we adopt as to

the nature of the action between the individual molecules, as may be seen by

equation (34), which is deduced from perfectly general assumptions as to the

nature of the law of force.

We may therefore henceforth put ^ for ~, where Sj, s, are the specific

gravities of the gases referred to a standard gas.

If we use 6 to denote the temperature reckoned from absolute zero of a

gas thermometer, M, the mass of a molecule of hydrogen, F,' its mean square

of velocity at temperature unity, s the specific gravity of any other gas referred

to hydrogen, then the mass of a molecule of the other gas is

M=M,s (101).

Its mean square of velocity, ^'~s
^^^ (102).

Pressure of the gas, l> = ^7^^o' (103).

We may next determine the amoimt of cooling by expansion.

Cooling hy Expansion.

Let the expansion be equal in aU directions, then

dx~dy~dz~ 3p dt
''

du
and — and all terms of unsymmetrical form will be zero.

dy
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If the mass of gas is of the same temperature throughout there will be

no conduction of heat, and the equation (94) will become

*''^f-*^'l=« <^«^).

^'f-^fi^f^-Sfif (lOG),

3^ 2 dp ,,„,,

T = 30J C"^)'

which gives the relation between the density and the temperature in a gas

expanding without exchange of heat with other bodies. We also find

dp _ dp dO

-'-^'j (-).

which gives the relation between the pressure and the density.

Specific Heat of Unit of Mass at Constant Volume^

The total energy of agitation of unit of mass is ^)3F' = ^£', or

^=^f (m-

If, now, additional energy in the form of heat be communicated to it without

changing its density,

^^=f? =ff| (no).

Hence the specific heat of unit of mass of constant volume is in dynamical

measure

'^^^-^P-
(111)

VOL. u. 9
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Specific Heat of Unit of Mass at Constant Pressure.

By the addition of the heat dE the temperature was raised dd and the

pressure 9p. Now, let the gas expand without communication of heat till the

pressure sinks to its former value, and let the final temperature be + d'0.

The temperature will thus sink by a quantity dd-d'0, such that

^S-d'B _ 2 dp _ 2 a^

e~ ~
2 + 3y8 "^ ~ 2 + 3)8 ^

'

d'B 3^ dd , X

^^^^^^^
"r== 2 + 3)8 y ^ ^'

and the specific heat of unit of mass at constant pressure is

fe-'-^fe (•-)•

The ratio of the specific heat at constant pressure to that of constant volume

is known in several cases from experiment. We shall denote this ratio by

y= 2±|^ (114),
'^

3/8 ^ '

whence )8 = f^ (115).
•y-i

The specific heat of unit of volume in ordinary measure is at constant volume

,4t^ ("«).

and at constant pressure

^f. ("^)>

where J is the mechanical equivalent of unit of heat.

From these expressions Dr Rankine* has calculated the specific heat of air,

and has found the result to agree with the value afterwards determined ex-

perimentally by M. Regnaultt.

* Transactions of the Royal Sodtty of Edinburgh, Vol. xx. (1850).

t Comptes Rendus, 1853.
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Tfiermal Effects of Diffusion.

If two gases are diffusing into one another, then, omitting the terras rela-

ting to heat generated by friction and to conduction of heat, the equation (94)

gives

.(118).

By comparison with equations (78), and (79), the right-hand side of this equa-

tion becomes

X (pi^i + p.u,) + Y {piVi + p,v,) +Z (p,u\ + p,w,)

_ /dp, dp, dp, \_(dp, dp, dp \

- ip. ^ {^x + V,' + W,') - ip, - (U/+ V,' + W',').

The equation (118) may now be written

X{p,u, + p,u,) + Y {p,v, -f p,v.) -fZ (p,u\ + pjv,) - (-^ + -^
d.pu ^ d.pv

^
d.pw
dz

,.(119).

The whole increase of energy is therefore that due to the action of the

external forces minus the cooling due to the expansion of the mixed gases.

If the diffusion takes place without alteration of the volume of the mixture,

the heat due to the mutual action of the gases in diffusion will be exactly

neutralized by the cooling of each gas as it expands in passing from places

where it is dense to places where it is rare.

9—2
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Determination of the Inequality of Pressure in different directions due to the

Motion of the Medium.

(120).

...(121),

Let us put Pifi*=i'i + 5i and p^i'=p2 + q,

Then by equation (52),

the kst term depending on diffusion; and if we omit in equation (75) terms

of three dimensions in i, -q, I, which relate to conduction of heat, and neglect

quantities of the form ^p and p^-p, when not multiplied by the large coeffi-

cients \ ky, and k^, we get

+ 2i>^-f/>(x; + j;^.+

du dv dw\ _hq
dx dy dzl St

(122).

If the motion is not subject to any very rapid changes, as in all cases

except that of the propagation of sound, we may neglect — .
In a single

system of molecules

= -3kA^ .(12a),

whence
2p (du - /du

,
dv

,
dwW , .

1 1 p
If we make I t^- =/a (125),

/Lt will be the coefficient of viscosity, and we shall hare by equation (120),

(dv . (du dv
, dwW

(dv) , (du dv dw\\

(125),;
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and by transformation of co-ordinates we obtain

^ (dv dvr'

dz dy

fdw du\

^ fdu dv

(127).

w

These are the values of the norittal and tangential stresses in a simple gas

when the variation of motion is not very rapid, and when /x, the coefficient

of viscosity, is so small that its square may be neglected.

Equations cf Motion corrected for Viscosity.

Substituting these values in the equation of motion (76), we find

du dp (d'u ,
ct'u . d\] . d fdu dv

^

dw\ ^ . .

ith two other equations wbich may be written down with symmetry. The

form of these equations is identical with, that of those deduced by Poisson*

from the theory of elasticity, by supposing the strain to be continually relaxed

at a rate proportional to its amount. The ratio of the third and fourth terms

agrees with that given by Professor Stokes f.

If we suppose the inequality of pressure which we have denoted by q to

exist in the medium at any instant, and not to be maintained by the motion

of the medium, we find, from equation (123),

q^ = Ce-"''''^ (129)

= Ce~^ if T=-j\- = f^ (130);

the stress q is- therefore relaxed at a rate proportional to itself, so that

1 = 1 (131).

We may call T the niodulus of the time of relaxation.

Journal de I'Ecole Polytechnique, 1829, Tom. xiii. Cah. xx. p. 139.

t " On the Friction of Fluids in Motion and the Equilibrium and Motion of Elastic Solids^" Camhr'uhje

Phil. Tram. Vol. viil. (1845), p. 297, equation (2).
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If we next make ^ = 3, so that the stress q does not become relaxed, the

medium will be an elastic solid, and the equation

^^^^-^^s-t^(i:4,-w)=° (-)

n.ay be written ^ {(p„-^) + 2^ ^-Jp (| +| + |)}
= (133),

where a, /8, y are the displacements of an element of the medium, and jt)„

is the normal pressure in the direction of x. If we suppose the initial value

of this quantity zero, and j>„ originally equal to p, then, after a small dis-

placement,

i'-i'-^(l+|+S)-i's (-^)^

and bj transformation of co-ordinates the tangential pressure

^^=-^(|4f) (>-)•

The medium has now the mechanical properties of an elastic solid, the

rigidity of which is p, while the cubical elasticity is fp*.

The same result and the same ratio of the elasticities would be obtained

if we supposed the molecules to be at rest, and to act on one another with

forces depending on the distance, as in the statical molecidar theory of elas-

ticity. The coincidence of the properties of a medium in which the molecules

are held in equilibrium by attractions and repulsions, and those of a medium

in which the molecules move in straight lines without acting on each other

at all, deserve notice from those who speculate on theories of physics.

The fluidity of our medium is therefore due to the mutual action of the

molecules, causing them to be deflected from their paths.

The coefficient of instantaneous rigidity of a gas is therefore p \

The modulus of the time of relaxation is 2" >....(136).

The coefficient of viscosity is /x =pT J

Now p varies as the density and temperature conjointly, while T varies

inversely as the density.

Hence ft varies as the absolute temperature, and is independent of the

density.

Camh. Phil. Trans. Vol. viil. (1845), p. 311, equation (29).
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This result is confirmed by the experiments of Mr Graham on the Tran-

spiration of Gases*, and by my own experiments on the Viscosity or Internal

Friction of Air and other Gases f.

The result that the viscosity is independent of the density, follows from

the Dynamical Theory of Gases, whatever be the law of force between the

molecules. It was deduced by myself J from the hypothesis of hard elastic

molecules, and M. 0. E. Meyer § has given a more complete investigation on

the same hypothesis.

The experimental result, that the viscosity is proportional to the absolute

temperature, requires us to abandon this hypothesis, which would make it vary

as the square root of the absolute temperature, and to adopt the hypothesis

of a repulsive force inversely as the fifth power of the distance between the

molecules, which is the only law of force which gives the observed result.

Using the foot, the grain, and the second as units, my experiments give

for the temperature of 62* Fahrenheit, and in dry air,

ft = 0-0936.

If the pressure is 30 inches of mercury, we find, using the same units,

_p = 477360000.

Since pT=fi, we find that the modulus of the time of relaxation of

rigidity in air of this pressure and temperature is

5oa9Ao600 of a second.

This time is exceedingly small, even when compared with the period of

vibration of the most acute audible sounds ; so that even in the theory of

sound we may consider the motion as steady during this very short time, and

use the equations we have already found, as has been done by Professor Stokes
||.

Philosophical Transactions, 1846 and 1849.

t Proceedings of the Royal Society, February 8, 1866; Philosophical Transactions, 1866, p. 249.

X Philosophical Magazine, January 1860. [Vol. i. xx.]

§ Poggendorflf's AnruUen, 1865.

II

" On the effect of the Internal Friction of Fluids on the motion of Pendulums," Cambridge Transac-

tions, Vol. IX. (1850), art. 79.
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Viscosity of a Mixture of Gases,

In a complete mixture of gases, in which there is no diffusion going on,

the velocity at any point is the same for all the gases.

t(^rM-J)=^ (-^).Putting

equation (122) becomes

p,U= - 3M.Mi - m^^Tm, (^^'^^+ 3iM.)Mi - ^{3^, - 2^,) ^^^Mr- •>(! 38),

Similarly,

pJI^ - 3M.M.- ^;:p^^ {2MA.^mA.)p.q.-K^A,-^A,)j^^m (139).

Since p=Pi+Pi and q = qi + q„ where p and q refer to the mixture, we
shall have

tiU=-q=-{q, + q,),

where fx is the coefficient of viscosity of the mixture.

If we put Sj and 5^ for the specific gravities of the two gases, referred

to a standard gas, in which the values of p and p at temperature 0^ and p,

and pa,

'^ pA ' SAAs,Ep,' + IIp,p,+ ZAMGp.' ^ ^'

where p, is the coefficient of viscosity of the mixture, and

£! =
Jcs,

--^(25A + 3M,)

F= 3A, {k,s, + k^s,) - {3A, - 2A,) k

11= ZA^,s, (Zk,k^, + 2}c'A,)

25,,

Si + S, (141),

This expression is reduced to p^ when ^, = 0, and to p, when Pi=0. For

other values of p^ and p^ we require to know the value of k, the coefficient
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of mutual interference of the molecules of the two gases. This might be

deduced from the observed values of /x for mixtures, but a better method is

by making experiments on the interdiffusion of the two gases. The experi-

ments of Graham on the transpiration of gases, combined with my experiments

on the viscosity of air, give as values of k^ for air, hydrogen, and carbonic acid,

Air k,= 4-81 xlO",

Hydrogen ^•, = 1 42'8 x 1 0'",

Carbonic acid... /:,= 3-9 x 10".

The experiments of Graham in 1863, referred to at page 58, on the inter-

diffiision of air and carbonic acid, give the coefficient of mutual interference

of these gases,

Air and carbonic acid ^•=5•2xl0"';

and by taking this as the absolute value of k, and assuming that the ratios

of the coefficients of interdiffusion given at page 76 are correct, we find

Air and hydrogen ^ = 29-8x10"'.

These numbers are to be regarded as doubtful, as we have supposed air to

be a simple gas in our calculations, and we do not know the value of k between

oxygen and nitrogen. It is also doubtful whether our method of calculation

applies to experiments such as the earlier observations of Mr Graham.

I have also examined the transpiration-times determined by Graham for

mixtures of hydrogen and carbonic acid, and hydrogen and air, assuming a

value of k roughly, to satisfy the experimental results about the middle of

the scale. It will be seen that the calculated numbers for hydrogen and car-

bonic acid exhibit the peculiarity observed in the experiments, that a small

addition of hydrogen increases the transpiration-time of carbonic acid, and that

in both series the times of mixtures depend more on the slower than on the

quicker gas.

The assumed values of A in these calculations were

—

For hydrogen and carbonic acid ^=12-5x10"

For hydrogen and air /:= 18'8 x 10";

and the results of observation and calculation are, for the times of transpiration

of mixtures of

—

VOL. IL 10
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Hydrogen and Carbonic acid
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sions in ^, rj, {, whose values will depend on the distribution of velocity among

the molecules. If the distribution of velocity is that which we have proved to

exist when the system has no external force acting on it and haa arrived at

its final state, we shall have by equations (29), (31), (32),

j^=3r.r=3^- (144),

r?= ?•?= ^^ (145).

fP= e-C= K (146);
p

and the equation of conduction may be written

5^^^=-3V^^{^^ + ^^ +m (^^^)'

[Addition made December 17, 1866.]

[Final EquilihriiXm of Temperature.']

[The left-hand side of equation (147), as sent to the Royal Society, con-

tained a term 2(/8 — 1)--/-, the result of which was to indicate that a column

of air, when left to itself, would assume a temperature varying with the height,

and greater above than below. The mistake arose from an error* in equation

(143). Equation (147), as now corrected, shews that the flow of heat depends

on the variation of temperature only, and not on the direction of the variation

of pressure. A vertical column would therefore, when in thermal equilibrium,

have the same temperature throughout.

When I first attempted this investigation I overlooked the fact that ^* is

not the same as ^ . ^% and so obtained as a result that the temperature

diminishes as the height increases at a greater rate them it does by expansion

when air is carried up in mass. This leads at once to a condition of instability,

* The last term on the left-hand side was not multiplied by /3.

10—2
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which Is inconsistent with the second law of thermodynamics. I wrote to

Professor Sir W. Thomson about this result, and the difficulty I had met with,

but presently discovered one of my mistakes, and arrived at the conclusion

that the temperature would increase with the height. This does not lead to

mechanical instability, or to any self-acting currents of air, and I was in some
degree satisfied with it. But it is equally inconsistent with the second law of

thermodynamics. In fact, if the temperature of any substance, when in thermic

equiUbrium, is a function of the height, that of any other substance must be

the same function of the height. For if not, let equal columns of the two

substances be enclosed in cylinders impermeable to heat, and put in thermal

communication at the bottom. If, when in thermal equilibrium, the tops of

the two columns are at different temperatures, an engine might be worked
by taking heat from the hotter and giving it up to the cooler, and the

refuse heat would circulate round the system till it was aU converted into

mechanical energy, which is in contradiction to the second law of thermo-

dynamics.

The result as now given is, that temperature in gases, when in thermal

equilibrium, is independent of height, and it follows from what has been said

that temperature is independent of height in all other substances.

K we accept this law of temperature as the actual one, and examine our

assumptions, we shall find that unless f* = 3^. f, we should have obtained a

different result. Now this equation is derived from the law of distribution of

velocities to which we were led by independent considerations. We may there-

fore regard this law of temperature, if true, as in some measure a confirmation

of the law of distribution of velocities.]

Coefficient of Conductivity.

If C is the coefficient of conductivity of the gas for heat, then the quantity

of heat which passes through unit of area in unit of time measured as me-

chanical energy, is

de_^ ^ f do

^dx-'k^A,^ dx
^^^^^•

by equation (147).
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Substituting for /3 its value in terms of y by equation (115), and for A;,

its value in terms of \l by equation (125), and calling ^„ p„ and Q^ the simul-

taneous pressure, density, and temperature of the standard gas, and s the spe-

cific gravity of the gas in question, we find

^=3(^.tJ <'^^)-

For air we have y= 1*409, and at the temperature of melting ice, or

274°'6C. above absolute zero, /^ = 918*6 feet per second, and at 16''6 C,

^ = 0"0936 in foot-grain-second measure. Hence for air at 16°6C. the conduc-

tivity for heat is

(7=1172 (150).

That is to say, a horizontal stratum of air one foot thick, of which the upper

surface is kept at 17" C, and the lower at 16" C, would in one second transmit

through every square foot of horizontal surface a quantity of heat the mechanical

energy of which is equal to that of 2344 grains moving at the rate of one foot

per second.

Principal Forbes* has deduced from his experiments on the conduction of

heat in bars, that a plate of wrought iron one foot thick, with its opposite

surfaces kept 1"C. different in temperature, would, when the mean temperature

is 25" C, transmit in one minute through every square foot of surface as much
heat as would raise one cubic foot of water 0""0127 C.

Now the dynamical equivalent in foot-^grain-second measure of the heat

required to raise a cubic foot of water 1"C. is 1 '91 57 x 10'".

It appears from this that iron at 25" C. conducts heat 3525 times better

than air at 16"' 6 C.

M. Clausius, from a different form of the theory, and from a different value

of /x, found that lead should conduct heat 1400 times better than air. Now
iron is twice as good a conductor of heat as lead, so that this estimate is not

far different from that of M. Clausius in actual value.

In reducing the value of the conductivity from one kind of measure to

another, we must remember that its dimensions are MLT"', when expressed in

absolute dynamical measure.

* " Experimental Inquiry into the Laws of the Conduction of Heat in Bars," Edinburgh Transactions,

1861—62.
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Since all the quantities which enter into the expression for C are constant

except /x, the conductivity is subject to the same laws as the viscosity, that is,

it is independent of the pressure, and varies directly as the absolute tempera-

ture. The conductivity of iron diminishes as the temperature increases.

Also, since y is nearly the same for air, oxygen, hydrogen, and carbonic

oxide, the conductivity of these gases will vary as the ratio of the viscosity

to the specific gravity. Oxygen, nitrogen, carbonic oxide, and air will have
equal conductivity, while that of hydrogen will be about seven times as great.

The value of y for carbonic acid is 1'27, its specific gravity is ^ of

oxygen, and its viscosity ^ of that of oxygen. The conductivity of carbonic

acid for heat is therefore about ^ of that of oxygen or of air.



[From the Proceedings of the Royal Society, No. 91, 1867.]

XXIX. On the Theory of the Maintenance of Electric Currents by Mechanical

Work ivithout the use of Permanent Magnets.

The machines lately brought before the Royal Society by Mr Siemens

and Professor Wheatstone consist essentially of a fixed and a moveable electro-

magnet, the coils of which are put in connexion by means of a commutator.

The electromagnets in the actual machines have cores of soft iron, which

greatly increase the magnetic effects due to the coils ; but, in order to simplify

the expression of the theory as much as possible, I shall begin by supposing

the coils to have no cores, and, to fix our ideas, we may suppose them in

the form of rings, the smaller revolving within the larger on a common

diameter.

The equations of the currents in two neighbouring circuits are given in

my paper "On the Electromagnetic Field*/' and are there numbered (4) and (5),

^=Rx + ^^{Lx + My),

r) = Sy + ^^{Mx + Ny\

where x and y are the currents, ^ and rj the electromotive forces, and B and S

the resistances in the two circuits respectively. L and N are the coefficients

of self-induction of the two circuits, that is, their potentials on themselves

when the current is unity, and M is their coefficient of mutual induction,

which depends on their relative position. In the electromagnetic system of

measurement, X, M, and N are of the nature of lines, and E and S are

velocities. L may be metaphorically called the "electric inertia" of the first

circuit, N that of the second, and L -f 2M-\-N that of the combined circuit.

Philosophical Transactions, 1865, p. 469.
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Let us first take the case of the two circuits thrown into one, and the

two coils relatively at rest, so that M is constant. Then

(R^S)x + ^^(L + 2M+N)x = (1),

whence x = x,e~^^^^' (2).

where x^ is the initial value of the current. This expression shews that the

current, if left to itself in a closed circuit, will gradually decay.

i+ 2if+iV ._.

If we put —
R-\-S

— ^'''
'••V'^^

_t

then x = x,e ^ (4).

The value of the time t depends on the nature of the coils. In coils of

similar outward form, t varies as the square of the linear dimension, and

inversely as the resistance of unit of length of a wire whose section is the

sum of the sections of the wires passing through unit of section of the coil.

In the large experimental coil used in determining the B.A. unit of re-

sistance in 1864, T was about '01 second. In the coils of electromagnets t is

much greater, and when an iron core is inserted there is a still greater in-

crease.

Let us next ascertain the effect of a sudden change of position in the

secondary coil, which alters the value of M from M^ to M^ in a time t^ — t^,

during which the current changes from x^ to x„_. Integrating equation (1) with

respect to t, we get

{R + S) \l\dt + (L + 2M,-\-N)x,-{L + 2M, + N)x, = (5).

If we suppose the time so short that we may neglect the first term in com-

parison with the others, we find, as the effect of a sudden change of position,

{L-\-2M, + N)x,=={L+2M, + N)x, (6).

This equation may be interpreted in the language of the dynamical theory,

by saying that the electromagnetic momentum of the circuit remains the same

after a sudden change of position. To ascertain the effect of the commutator,

let us suppose that, at a given instant, currents x and y exist in the two

coils, that the two coils are then made into one circuit, and that x' is the
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current in the circuit the instant after completion; then the same equation (1)

gives

{L + 2M-\-N)x' = (L^-M)x^-{N-\-M)y (7).

The equation shews that the electromagnetic momentum of the completed

circuit is equal to the sum of the electromagnetic momenta of the separate coils

just before completion.

The commutator may belong to one of four different varieties, according to

the order in which the contacts are made and broken. If A, B be the ends

of the first coil, and C, D those of the second, and if we enclose in brackets

the parts in electric connexion, we may express the four varieties as in the

following Table :

—

(1)
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During the whole motion the current has also been decaying at a rate

which varies according to the value of L + 2M+N; but since M varies from

+ if to —J/, we may, in a rough theory, suppose that in the expression for

the decay of the current M=0.

If the secondary coil makes a semlrevolation in time T, then the ratio of

the current x^, after a semirevolution, to the current x^ before the semirevolution,

will be

X, ^T— = e ' r,

^^^^^ '=R^ '••••'•••• W'

and r is a ratio depending on the kind of commutator.

For the first kind,

""-i-mTN (!")•

By increasing the speed, T may be indefinitely diminished, so that the

question of the maintenance of the current depends ultimately on whether r is

greater or less than unity. When r is greater than 1 or less than — 1, the

current may be maintained by giving a sufficient speed to the machine ; it will

be always in one direction in the first case, and it will be a reciprocating current

in the second

When r lies between +1 and -1, no current can be maintained.

Let there be p windings of wire in the first coil and q windings in the

second, then we may write

L = lp\ M=mpq, N= nq^ (11),

where Z, m, n are quantities depending on the shape and relative position of

the coils. Since L-^2M+N must always be a positive quantity, being the

coefficient of self-induction of the whole circuit, ln — m\ and therefore LN—M*
must be positive. When the commutator is of the first kind, the ratio r is

greater than unity, provided pm is greater than qn ; and when

f=£('V-3-

In

which is the maximum value of r.

-(i-^r (12).
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When the ratio of p to q lies between that of n to m and that of m to I,

r lies between 4- 1 and — 1 , and the current must decay ; but when pi is less

than qm, a reciprocating current may be kept up, and will increase most rapidly

when

U^-J
p=" 1_ /l_"''
q m\ V In

-1 '-=-(1-3"' <>3).

When the commutator is of the second kind, the first step is to close both

circuits, so as to render the currents in them independent. The second circuit

is then broken, and the current in it is thus stopped. This produces an effect

on the first circuit by induction determined by the equation

Lx+ My = Lx' -r My' (14).

In this case M= —M^, y = x, and y=0, so that

(L-M)x^Lx (15);

where x is the original, and x' the new value of the current.

The next step is to throw the circuits into one, M being now positive.

If x" be the current after this operation,

{L + M) X =(L-\-2M+N) x" (16).

The whole effect of this commutator is therefore to multiply the current by

the ratio

D-M'
L{L + 2M+N)'

The whole effect of the semirotation is to multiply the current by the ratio

L + 2M+N
L-2M+N'

The total effect of a semirevolution supposed instantaneous is to multiply the

current by the ratio

V-M*
^''L{L-2M-^N)'

11—2
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If p and q be the number of windings in the first and second coils respec-

tively, the ratio r becomes

'^~l{lp'-2mpq + nq')'

which is greater than 1, provided 2lmp is greater than (ln + m^)q. When

q * \m I ) ^ SJ m I r

we have for the maximum value of r,

I- + 2--

In the experiment of Professor Wheatstone, in which the ends of the

primary coil were put in permanent connexion by a short wire, the equations

are more complicated, as we have three currents instead of two to consider.

The equations are

Rx + j^(Lx + My) = Sy + ^^{Mx + Ny) = Qz-^j^Kz (17),

x + y + z = (18),

where Q, K, and z are the resistance, self-induction, and current in the short

wire. The resultant equations are of the second degree; but as they are only

true when the magnetism of the cores is considered rigidly connected with the

currents in the coils, an elaborate discussion of them would be out of place

in what professes to be only a rough explanation of the theory of the experi-

ments.

Such a rough explanation appears to me to be as follows:

—

Without the shunt, the current in the secondary coil is always in rigid

connexion with that in the primary coil, except when the commutator is

changing. With the shunt, the two currents are in some degree independent;

and the secondary coil, whose electric inertia is small compared with that of

the primary, can have its current reversed and varied without being clogged

by the sluggish primary coil.
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On the other hand, the primary coil loses that part of the total current

which passes through the shunt; hut we know that an iron core, when highly

magnetized, requires a great increase of current to increase its magnetism,

whereas its magnetism can be maintained at a considerable value by a current

much less powerful. In this way the diminution in resistance and self-induction

due to the shunt may more than counterbalance the diminution of strength in

the primary magnet.

Also, since the self-induction of the shunt is very small, all instantaneous

currents will run through it rather than through the electromagnetic coils, and

therefore it will receive more of the heating effect of variable currents than

a comparison of the resistances alone would lead us to expect.



[Extracted from The Quarterly Journal of Pure and Applied Mathematics, No. 32, 1867.]

XXX. On the Equilibrium of a Spherical Envelope.

I PROPOSE to determine the distribution of stress in an indefinitely thin

and inextensible spherical sheet, arising from the action of external forces applied

to it at any number of points on its surface.

Notation. Let two systems of lines, cutting each other at right angles, be

drawn upon any surface, and let their equations be

<^ {xyz) = G and ^^ (xyz) = H,

where each curve is found by putting G or H equal to a constant, and com-

bining it with the equation of the surface itself, which we may denote by

yl,{xyz)^S.

Now let G be made constant, and let H vary, and let dS^ be the element

of length of the curve ((x = constant) intercepted between the two curves for

which H varies by dH, then -j^ will be a function of H and G.

In the same way, making dS^ an element of the curve (1^= constant) we

may determine -v^ as a function of H and G.

Now let the element dS^ experience a stress, consisting of a force X in

the direction in which G increases, and Y in the direction in which H in-

creases, acting on the positive side of the linear element dS^, and equal and

opposite forces acting on the negative side. These will constitute a longitudinal

tension normal to dS^, which we shall denote by

_X_
^""'dS,'
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and a shearing force on the element, which we shall call

Y

In like manner, if the element dS^ is acted on by forces Y' and X' , it

will experience on its positive side a tension and a shearing force, the values

of which will be

That the moments of these forces on the elements of area dS^, dS^ may-

vanish,

or the shearing force on dS^ must be equal to that on dS^

When there is no shearing force, then p,^ and p^ are called the principal

stresses at the point, and if p^^ vanishes everywhere, the curves, ((? = constant)

and (-ff= constant), are called lines of principal stress. In this case the con-

ditions of equilibrium of the element dSidS^ are

dp,, dS, , . d'S, ^^^ + (i^n-i^.)5^^=0 (1),

dp^dS, _ d% _
dHdG^^^'' ^'''UGdH'^ ^2^'

^'+P^ = N,-N, (3).

The first and second of these equations are the conditions of equilibrium

in the directions of the first and second lines of principal tension respectively.

The third equation is the condition of equilibrium normal to the surface

;

r, and r^ are the radii of curvature of normal sections touching the first and

second lines of principal stress. They are not necessarily the principal radii of

curvature. N, is the normal pressure of any fluid on the surface from the side

on which r, and r, are reckoned positive, and N, is the normal pressure on the

other side.

If the systems of curves G and H, instead of being lines of principal stress,

had been lines of curvature, we should still have had the same equation (3),

but r, and r, would have been the principal radii of curvature, and p,, and p^.
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would have been the tensions in the principal planes of curvature, and not

necessarily principal tensions.

In the case of a spherical surface not acted on by any fluid pressure,

r, = i\, and iV, = iV, = 0, so that the third equation becomes

Pn+P» = (4),

whence we obtain from the first and second equations

-=--(sy=---©'=-- (^)-

where C^ is a function of H, and (7, of G. If then we draw two lines of

the system (IZ"= constant) at such a distance tha,t p^(dS^y = (dhy at any point

where {dhf is constant, this equation will continue true through the whole

length of these lines, that is, the principal stresses will be inversely as the

square of the distance between the consecutive lines of stress. Since this is

true of both sets of Hues, we may assume the form of the functions G and

Hy so that they not only indicate lines of stress, but give the value of the

stress at any point by the equations

fdHy [dG\ ,.x

where (^= constant) is a line of principal tension, and ((t = constant) a line of

principal pressure.

K we now draw on the spherical surface lines corresponding to values of G

differing by unity, and also lines corresponding to values of H differing by

unity, these two systems of lines will intersect everywhere at right angles, and

the distance between two consecutive lines of one system wiU be equal to the

distance between two consecutive Imes of the other, and the principal stresses

will be in the directions of the lines, and inversely as the square of the

intervals between them.

Now if two systems of lines can be drawn on a siuface so as to fulfil

these conditions, we know from the theory of electrical conduction in a sheet

of uniform conductivity, that if one set of the curves are taken as equipotential

lines, the other set will be lines of flow, and that the two systems of lines

will give a solution of some problem relating to the flow of electricity through

a conducting sheet. But we know that unless electricity be brought to some

point of the sheet, and carried off at another point, there can be no flow of
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electricity in the sheet. Hence, if such systems of lines exist, there must

be some singular points, at which all the lines of flow meet, and at which

-y^- is infinite.

If -j^ is nowhere infinite, there can be no systems of lines at all,

and if -j-^ is infinite at any point, there is an infinite stress at that point.

which can only be maintained by the action of an external force applied at that

point.

Hence a spherical surface, to which no external forces are applied, must

be free fi"om stress, and it can easily be shewn from this that, when the external

forces are given, there can be only one system of stresses in the surface.

This is not true in the case of a plane surface. In a plane surface,

equation (3) disappears, and we have only two differential equations connecting

the stresses at any point, which are not sufficient to determine the distribution

of stress, unless we have some other conditions, such as the equations of elas-

ticity, by which the question may be rendered determinate.

The simplest case of a spherical surface acted on by external forces is that

in which two equal and opposite forces P are applied at the extremities of a

diameter. There will evidently be a tension along the meridian lines, com-

bined with an equal and opposite pressure along the parallels of latitude, and

the magnitude p of either of these stresses will be

P
2na sin^ 6

(7),

where a is the radius of the sphere, P the force at the poles, and the

angular distance of a point of the surface from the pole. If
<f)

is the longitude,

and if r^ and r„ are the rectilineal distances of a point from the two poles

respectively, and if we make

G = log/^^ndH=<i> (8),

then G and H will give the lines of principal stress, and

^~27ra\dsj ~27ra\dsj
*^''

VOL. II.
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To pass from this case to that in which the two forces are applied at

any points, I shall make use of the following property of inverse surfaxies.

If a surface of any form is in equilibrium under any system of stresses,

and if lines of principal stress be drawn on it, then if a second surface be the

inverse of the first with respect to a given point, and if lines be drawn on

it which are inverse to the lines of principal stress in the first surface, and

if along these lines stresses are applied which are to those in the corresponding

point of the first surface inversely as the squares of their respective distances

from the point of invei-sion, then every part of the second surface will either

be in equilibrium, or will be acted on by a resultant force in the direction

of the point of inversion.

For, if we compare corresponding elements of lines of stress in the two

surfaces, we shall find that the forces acting on them are in the same plane

with the line through the point of inversion, and make equal angles with it.

The moment of the force on either element about the point of inversion is

therefore as the product of the length of the element, into its distance

from the point of inversion into the intensity of the stress. But the length

of the element is as its distance, and the stress is inversely as the square of

the distance, therefore the 'moments of the stresses about the point of inversion

are equal, and in the same plane. If now any portion of the first surface is

in equilibrium, it will be in equilibrium as regards moments about the point

of inversion. The corresponding portion of the second siirface will also be in

equilibrium as regards moments about the point of inversion. It is therefore

either in equilibrium, or the resultant force acting on it passes through the

point of inversion.

Now let the first surface be a sphere ; we know that the second surface

is also a sphere. In the first surface the condition of equilibrium normal to

the surface is ^11+^^22 = 0. In the second surface the stresses are to those

in the first in the inverse ratio of the squares of the distances. Hence in

the second surface also, Pu-^P^ = ^> or there is equilibrium in the direction of

the normal. But we have seen that the resultant, if any, is in the radius

vector. Therefore, if we except the limiting case in which the radius vector

is perpendicular to the normal, the equilibrium is complete in all directions.

We may now, by inverting the spherical surface, pass from the case of

a sphere acted on by a pair of tensions applied at the extremities of a
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diameter to that in which the forces are applied at the extremities of any

chord of the sphere, subtending at the centre an angle = 2a. The lines of tension

will be circles passing through the extremities of the chord. Let the angle

which one of these circles makes with the great circle through these points

be
<f).

The angle
<f>

is the same as the corresponding angle in the inverse

surface.

The lines of pressure, being orthogonal to these, will be circles whose

planes if produced pass through the polar of the chord. Let r,, r, be the

distances of any point on the sphere from the extremities of the chord, then

— is constant for each of these circles, and has the same value as it has in

the inverse surface. Hence, if we make

G = log/-^ and H = 4> (10),

G and H will give the lines of principal stress, and the absolute value of the

stress at any point will be

_Psin a fdGy _ P sin a /c^ffy ,

P~ 27ra [dsj ~ 2na [dsj ^ ^

If we draw tangent planes to the sphere at the extremities of the chord,

and if qi, q. are the perpendiculars from any point of the spherical surface

on these planes, it is easy to shew that at that point

Pa sin'

a

,._,

p=-2.^q: <''>

If any number of forces, forming a system in equilibrium, be applied at

different points of a spherical envelope, we may proceed as follows. First

decompose the system of forces into a system of pairs of equal and opposite

forces acting along chords of the sphere. To do this, if there are n forces

applied at n points, draw a number of chords, which must be at least 3(n — 2),

so as to render all the points rigidly connected. Then determine the tension

along each chord due to the external forces. If too many chords have been

drawn, some of these tensions vnll involve unknown quantities. The ji forces

will now be transformed into as many pairs of equal and opposite forces as

chords have been drawn.

12—2
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Next find the distribution of stress in the spherical surface due to each

of these pairs of forces, and combine them at every point by the rules for the

composition of stress*. The result will be the actual distribution of stress, and

if any unknown forces have been introduced in the process, they will disappear

from the result.

The calculation of the resultant stress from the component stresses, when

these are given in terms of unsymmetrical spherical co-ordinates of difierent

systems, would be very difficult; I shall therefore shew how to effect the same

object by a method derived from Mr Airy's valuable paper, "On the strains

in the interior of beamsf."

If we place the point of inversion on the surface of the sphere, the in-

verse surface is a plane, and if jp^, p^, and pyy represent the components of

stress in the plane referred to rectangular axes, we have for equilibrium

^ +^=0 (13),
dx ay

^ +^ = (14).
dx dy

These equations are equivalent to the following

:

d'F d'F d'F ,_.
P^ = df' P^=-d^y^ Pyy=d^- ^^^^'

where F is any function whatever of x and y.

The form of the function F cannot, in the case of a plane, be determined

from the equations of equilibrium, as strains may exist independently of ex-

ternal forces. To solve the question we require to know not only the original

strains, but the law of elasticity of the plane sheet, whether it is uniform, or

variable from point to point, and in different dii'ections at the same point.

When, however, we have found two solutions of F corresponding to different

cases, we can combine the results by simple addition, as the expressions (equa-

tion 15) are linear in form.

In the case of two forces acting on a sphere, let A, B (fig. 29) be the

points corresponding to the points of application in the inverse plane; AP = r^,

* Rankin's Applied Mechanics, p. 82.

t Philosophical Transactions, 1863, Part I. p. 49.
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BP = 1\, angle APB = XAT=<f). Bisect AB in. C, and draw PD perpendicular

to AB. Then the line of tension at P is a circle through A and B, for which

<f>
is constant, and the line of pressure is an orthogonal circle for which the

ratio of r, to r, is constant, and the angle
<f>

and the logarithms of the ratio

of r, to r, differ from the corresponding quantities in the sphere only by con-

stants. We may therefore put

Psina (day _ Psing fdHV _ _
P''-~2^^\dSj ~

27ra \dSj ~ ^=="

where the values of G and H are the same as in equations (8) and (10).

Transforming these principal stresses into their components, we get

^"'~ 2na \dx\ dy\)
''

Psina dG dG /,yv

27ra dx dy

_ Psina /dG
^^~ 27ra \dy

dG
dx

.(18).

From the relations between G and H we have

dG^_dH ^^dG^dH ,^g.

dx dy dy dx

d^Gd^G ^ , d^H dm . ,„v
whence ^+^ = ^ ^^^ ^ +^ = ^ (2^)'

The values of the component stresses, being expressed as functions of the

second degree in G, cannot be compounded by adding together the corresponding

values of G, we must, therefore, in order to express them as linear functions,

find a value of F, such that

d'F P sin a \(dG\ (dGV\ ,_, v

We shall then have, by differentiation with respect to x, and integration

with respect to y,

-^y-'-^^Ti^f^^^ (-)-



94 EQTJILIBEIUM OF A SPHERICAL ENVELOPE.

Since -,—I- -r— = in this case, the arbitrary functions must be zero, and
dy? ay''

we have to find the value of F from that of G by ordinary integration of (21).

The result is

„ Psma {AD-AC, AP PD . , AT>n\V (oa\

or if the co-ordinates of A and B are (a^, h^ and (a^, h„),

„ Psina f. {2x-a,-a:)(a,-a,) + {2y-\-\){\-hy (x-a,Y + (y-h>)'

^ =^^:^ \* (a,-a0^ + (6,-6,)^ ^ '^^
(x - a^f + (y - 6,)^

(2y - 6, - 6,) (
3^a,)^(2x -g -^^ / ., ^^. .^a^-. t^Al ...(25).

If we obtain the values of F for all the different pairs of forces acting

on the sphere, and add them together, we shall find a new value of F, the

second diSerential coeflScients of which, with respect to x and y will give a

system of components of stress in the plane, which, being transferred to the

sphere by the process of inversion, will give the complete solution of the

problem in the case of the sphere.

We have now solved the problem in the case of any number of forces

applied to points of the spherical surface, and all other cases may be reduced

to this, but it is worth while to notice certain special cases.

If two equal and opposite twists be applied at any two points of the

sphere, we can determine the distribution of stress. For if we put

G? = log^+<^ and iI=log-^-<^ (26),

the equations of equilibrium will still hold, and the principal stresses at any

point will be inclined 45" to those in the case already considered.

If M be the moment of the couple in a plane perpendicular to the chord,

the absolute value of the principal stresses at any point is

Jf sina IdG''
p = vm (-)•

4i7-a='

In figure 30 are represented the stereographic projections of the principal

lines of stress in the cases which we have considered. When a tension is

applied along the chord AB, the lines of tension are the circles through AB,
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and the lines of pressure are the circles orthogonal to them. These circles are

so drawn in the figure that the differences of the values of G and // are -^n.

The spiral lines which pass through the intersections of these circles are

the principal lines of stress in the case of twists applied to the spherical

surface at the extremities of the chord AB.

In the case of a sphere acted on by fluid pressure, if the pressure is a

fiinction of the distance from a given point, we may take the line joining

that point with the centre of the sphere as an axis, and then the lines of

equal fluid pressure will be circles, and the fluid pressure N will be a function

of 6, the angular distance from the pole. If we suppose the total efiect of

pressure balanced by a single force at the opposite pole, then we shall have

for the equilibrium of the segment, whose radius is 6,

2Bm'ep,, = aj Nam2dd0 (28),

and p„ = Na-p,i,

to determine p„ the tension in the meridian, and p^ that in the parallels of

latitude.



[From the Proceedings of the Royal Society of Edinburgh, Session 1867-68.]

XXXI. Oil the best Arrangement for producing a Pure Spectrum on a Screen.

In experiments on the spectrum, it is usual to employ a slit through

which the light is admitted, a prism to analyse the hght, and one or more

lenses to bring the rays of each distinct kind to a distinct focus on the screen.

The most perfect arrangement is that adopted by M. Kirchhoff, in which two

achromatic lenses are used, one before and the other after the passage of the

light through the prism, so that every pencil consists of parallel rays while

passing through the prism.

But when the observer has not achromatic lenses at his command, or when,

as in the case of the highly refrangible rays, or the rays of heat, he is re-

stricted in the use of materials, it may still be useful to be able to place

the lenses and prism in such a way as to bring the rays of all colours to

their foci at approximately the same distance from the prism.

We shaU first examine the effect of the prism in changing the conver-

gency or divergency of the pencils passing through it, and then that of the

lens, so that by combining the prism and the lens we may cause their defects

to disappear.

When a pencil of light is refracted through a plane surface, its convergency

or divergency is less in that medium which has the greatest refractive index

;

and this change is greater as the angle of incidence is greater, and also as

the index of refraction is greater.

When the pencil passes through a prism its convergency or divergency

will be diminished as it enters, and will be increased when it emerges, and

the emergent pencil will be more or less convergent or divergent than the

incident one, according as the angle of emergence is greater or less than that of
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incidence. This effect will increase with the difference of these angles and with

the refractive index.

When the angle of incidence is equal to that of emergence the convergence

of the pencil is unaltered, but since the more refrangible rays have the greatest

angle of emergence, their convergency or divergency will be greater than that

of the less refrangible rays.

This effect will be increased by making the angle of incidence less, and

that of emergence greater; and it will be diminished by increasing the angle

of incidence, that is, by turning the prism round its edge towards the slit. If

the angle of the prism is not too great, the convergency or divergency of all

the pencils may be made the same (a,pproximately) by turning the prism in this

way.

This correction, however, diminishes the separation of the colours. It is

inapplicable to a prism of large angle, and it takes no account of the chromatic

aberration of the lens. By altering the arrangement, the lens may be made to

correct the prism. The effect of a convex lens is to increase the convergency, and

to diminish the divergency, of eveiy pencil ; but the change is greatest on the

most refrangible rays. The prism, except when its base is very much turned

towards the slit, makes the highly refrangible rays more convergent or more

divergent than the less refrangible rays, according as they were convergent or

divergent originally. If the rays pass through the prism before they reach the

lens, the pencils will be divergent at incidence, and the more refrangible will

be most divergent at emergence. If they then fall on the lens, they will be

more converged than the rest ; so that by a proper arrangement all may be

brought to their foci at approximately the same distance. If the violet rays

come to their focus first, we must turn the base of the prism more towards the

light, and vice versa.

We proceed to the numerical calculation of the proper arrangement.

To find the variation of position of the focus of light passed through a prism

dependent on the nature of the light.

VOL. II. 13
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Let /x be the index of refraction of the prism, a its angle, <^i and
(f),

the

angles of incidence and emergence, 0, and 6^ the angles of the ray within the

prism with the normals to the first and second surfaces, S the difference of these

angles—then by geometry

and by the law of refraction,

sin </>i
= ft sin 6,, sin <^, = /t sin 6^,

(f),
is constant, being the angle of incidence for all kinds of light, but the other

angles vary with ft, so that

dd^ _ sin 6^ dd^ _ sin^i d^ _ sin a

djl ~ /x. cos Oj^' dfj. fJL cos 0^
'

o?ft cos 0^ cos <^2

The last expression gives the dispersion, or breadth of the spectmm, and

shews that it increases as the base of the prism is turned from the light.

As the slit is parallel to the edge of the prism, we have only to consider

the primary foci of the pencils when we wish to render the image distmct.

Let i\ be the distance of the focus of incident light from the prism, v,

that of the emergent light, and u that within the prism, all measured to the

right, then by the ordinary formula,

cos' ^1
"

ft cos' ^1
'

ft COS'^o cos'
(f).j,

i\ cos' 0^ cos' ^2 = i\ cos' 0, cos' <^i.

Taking the differential coefficient of the logarithms of these quantities,

1 dv, 2 sin 0, d0, _ 2 sin <^, d(f), _]_dv,_ 2 sin 0, d0,

Vi dfji.

~
cos 0^ dfjL cos

<f)^ ^fx v„ dfi cos 0, dfi
'

1 dv, 1 dv^ _ 2 sin
<f),

sin a _ 2 sin'
, _ 2 sin 0, sin 0,

v^dfi~ v.,dii~ cos 0^ cos' (j)^ ft cos' ^, ft cos 0, cos 0o.

Substituting for these angles their values in terms of a and 8 we find

1 di\ 1 dv, 4 sin a
(ft'

- l) sin a - sin 8 {1 + fi' cos (a - 8)}

v,djx~v,djl~ {cos a + coa By 1 - ^ft' (l - cos (a - 8)}

The quantity on the right of this equation is always positive, unless the

value of 8 exceeds that given by the equation

(ft' - 1) sin a = sin 8 {1 + ft' cos (a - 8)}.
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If /x=l-5 and a = 60°, then S = 22''52', that is, the ray within the prism

makes an angle of 11*26' with the base, which corresponds to an angle of

incidence 82' 50', or the incident ray is inclined 7* 10' to the face of the prism.

If two lenses* are used, of the same material with the prism, we may
correct the defects of the prism without turning it so far from its position of

least deviation.

Let a be the distance of the slit from the prism, and b that of the screen

from the prism. Let /i be the focal length of the lens between the prism

and slit, and J] that of the lens between the prism and the screen, then the

condition of a flat image is

1 di\ 1 di\ _ 1 / 1\ i\

i\ dfj,^ r.dfj,'' [x-l \/ /,

Let us first find the conditions of a flat spectrum 8

When 8 = 0, i\ = v^ and we obtain the conditions

1_J^_1_1_/11\ (1 +C03 g)' {l-iiM' (1 -cos g)} _ A V
« fi~A b~\a'^b) 4(/x-l)'(/x+l)sin^g ~[a'^b)'^'

from which yj and f^ may be found in terms of known quantities.

i = i(l+c) + ic.

f, b^ 'a
When g, the angle of the prism, is 60", then

._ 3(4-;.')
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K a is greater in proportion to b, a concave lens must be placed in front

of the prism. The most convenient arrangement will be that in which the

prism is placed in the position of least deviation, and the lens placed between

the prism and the screen, while the distance from the slit to the prism is to

that between the prism and the screen as 1-c is to c. For quartz, in which

/I = 1-584 for the ordinary ray, - = 2-53, so that the best arrangement is

a = 1*5 3 6, or the lens should be placed on the side next the screen, and the

distance from the slit which admits the light to the prism should be about

one and a half times the distance from the prism to the screen.



[From the Proceedings of the London Mathematical Society, Vol. Ii.]

XXXII. The Construction of Stereograms of Surfaces.

To make a surface visible, lines must be drawn upon it ; and to exhibit

the nature of the surface, these lines ought to be traced on the surface ac-

cording to some principle, as for instance the contour lines and lines of greatest

slope on a surface may be drawn. Monge represents surfaces to the eye by

their two systems of lines of curvature, which have the advantage of being

independent of the direction assumed for the co-ordinate axes. For stereoscopic

representation it is necessary to choose curves which are easily followed by the

eye, and which are sufficiently dijfferent in form to prevent a curve of the

one figure from being visually united with any other than the corresponding

curve in the other figure. I have found the best way in practice to be as

follows:—First determine how many curves, are to be drawn on the surface,

and at what intervals, and find the numerical values of the co-ordinates of

points on these curves. A convenient method of drawing the figures according

to Cartesian co-ordinates is to draw an equilateral triangle, find its centre of

gravity, and take a point about ^ of the side of the triangle distant hori-

zontally from the centre of gravity as the origin, and the lines joining this

point with the angles as unit axes. For the other figure, the point must be

taken on the opposite side of the centre of gravity. I have found that this

rule gives a convenient amount of relief to the figures. When the co-ordinates

of a point are easily expressed in terms of tetrahedral co-ordinates x, y, z, w,

I draw the two lines (x = 0, y = 0) and (z = 0, ty = 0) in both figures. By means

of a sector I divide the first line in P in the ratio of z to iv, and the second

in Q in the ratio oi x to y; I then lay a rule along the line PQ (without

drawing the line) and divide PQ in the ratio of a:-fy to z-f-w, in order to find

the point R in the figure. By drawing the two lines once for all in each

figure, and performing the same process of finding ratios in each figure, we get

each point without making any marks on the paper, which come to be very

troublesome in complicated figures. In this way I have drawn the figures of

cyclides, &c.



[Proceedings of the London Mathematical Society, Vol. ii.]

XXXIII. On Reciprocal Diagrams in Space, and their relation to

Airy's Function of Stress.

Let F be any function of the co-ordinates x, y, z oi a point in space, and

let i, 7}, C be another system of co-ordinates which we may suppose referred

tov axes parallel to the axes of x, y, z, but at such a distance (in thought)

that figures referred to x, y, z do not interfere with the figures referred to ^, rj, ^.

We shall call the figure or figures referred to x, y, z the First Diagram,

and those referred to ^, t), C the Second Diagram.

Let the connection between the two diagrams be expressed thus

—

dF _dF dF
^~dx' "^ dy' ^ dz'

When the form of F is known, ^, 7/ and t, may be found for every value

of x, y, z, and the form of the second diagram fixed.

To complete the second diagram, let a function <^ of f, tj, t, be found from

the equation

<j> = x^+yyi + zl-F\

then it is easily shewn that

_d^ _d<f> _d<f)

"^"dr y~'dri'
^"^'

Hence the first diagram is determined from the second by the same process

that the second is determined from the first. They are therefore Reciprocal

Diagrams both as regards their form and their functions.

But reciprocal diagrams have a mechanical significance which is capable

of extensive applications, from the most elementary graphic methods for calcu-

lating the stresses of a roof to the most intricate questions about the internal
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molecular forces in solid bodies. I shall indicate two independent methods of

representing internal stress by means of reciprocal diagrams.

First Method. Let a, b be any two contiguous points in the first diagram,

and a, /8 the corresponding points in the second. Let an element of area be

described about ab perpendicular to it. Then if the stress per unit of area on

this surface is compounded of a tension parallel to a^ and equal to F-y ^^^^

a pressure parallel to ab and equal to ^{j^'^'^ "^
TT* ) ' ^ being a constant

introduced for the sake of homogeneity, then a state of internal stress defined

in this way will keep every point of the first figure in equiUbrium.

The components of stress, as thus defined, will be

.„=p(f--). ..-(f--). .=-(f--).

and these are easily shewn to fulfil the conditions of equilibrium.

If any number of states of stress can be represented in this way, they

can be combined by adding the values of their functions (F), since the quan-

tities are linear. This method, however, is applicable only to certain states of

stress ; but if we write

_d'B d'C _d'C d'A _<IAa.^
P^~i:^^'dy^' ^^~d^^dz'' P""' dif

'^
djf

'

d'A __.^ =__^^
^^' dydz' ^"'~ dzdx' ^^ dxdy'

we get a general method at the expense of using three functions A, B, C,

and of giving up the diagram of stress.

Second Method. Let a be any element of area in the first diagram, and

a the corresponding area in the second. Let a uniform normal pressure equal

to F per unit of area act on the area a, and let a force equal and parallel

to the resultant of this pressure act on the area a, then a state of internal

stress in the first figure defined in this way will keep every point of it in

equilibrium.



104 RECIPROCAL DIAGRAMS IN SPACE.

The components of stress as thus defined will be

^""^Uy*"^ dydz\)' ^^ ^Ufdaf dzdx\,

Id'F d'F d'F\
^«" U^ dy- dxdyj'

_pfd'F d^ d^F d^F\ ^pld'F d'F d'F d^F \

^^~ \dz dx dxdy dx' dy dzj
' -^^ \dx dy dy dz df dz dx)

'

(d'F d'F _ d^ d'F\
^^ ~ [dy dz dz dx dz' dx dy)

'

This is a more complete, though not a perfectly general, representation of

a state of stress ; but as the functions are not linear, it is difficult of appHcation.

If however we confine ourselves to problems in two dimensions, either

method leads to the expression of the three components of stress in terms of

the function introduced by the Astronomer-Royal*.

_pd'F __p_dLl_ -pdil
^'^'^

dy^' ^^~ dxdy' ^^~ daf'

and if ah and a/S be corresponding lines, the whole stress across the line ab

is perpendicular to ayS and equal to Pa^.

* "On Strains in the Interior of Beams." Phil Tram. 1863.



[From the Proceedings of the Royal Society, No. 100, 1868.]

XXXIV. On Governors.

A GovEKNOR is a part of a machine by means of wMch the velocity of

the machine is kept nearly uniform, notwithstanding variations in the driving-

power or the resistance.

Most governors depend on the centrifugal force of a piece connected with

a shaft of the machine. When the velocity increases, this force increases, and

either increases the pressure of the piece against a surface or moves the piece,

and so acts on a break or a valve.

In one class of regulators of machinery, which we may call moderators*,

the resistance is increased by a quantity depending on the velocity. Thus in

some pieces of clockwork the moderator consists of a conical pendulum revolving

within a circular case. When the velocity increases, the ball of the pendulum

presses against the inside of the case, and the Motion checks the increase of

velocity.

In Watt's governor for steam-engines the arms open outwards, and so

contract the aperture of the steam-valve.

In a water-break invented by Professor J. Thomson, when the velocity is

increased, water is centrifugally pumped up, and overflows with a great velocity,

and the work is spent in lifting and conmiimicating this velocity to the water.

In aU these contrivances an increase of driving-power produces an increase

of velocity, though a much smaller increase than would be produced without

the moderator.

But if the part acted on by centrifugal force, instead of acting directly

on the machine, sets in motion a contrivance which continually increases the

See Mr C. "W. Siemens " On Unifonn Rotation," Fhil. Trans. 1866, p. 657.

VOL. II. 14
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resistance as long as the velocity is above its normal value, and reverses its

action when the velocity is below that value, the governor will bring the

velocity to the same normal value whatever variation (within the working limits

of the machine) be made in the driving-power or the resistance.

I propose at present, without entering into any details of mechanism, to

direct the attention of engineers and mathematicians to the dynamical theory

of such governors.

It will be seen that the motion of a machine with its governor consists

in general of a uniform motion, combined with a disturbance which may be

expressed as the sum of several component motions. These components may be

of four different kinds :

—

1. The disturbance may continually increase.

2. It may continually diminish.

3. It may be an oscillation of continually increasing amplitude.

4. It may be an oscillation of continually decreasing amplitude.

The first and third cases are evidently inconsistent with the stability of

the motion ; and the second and fourth alone are admissible in a good governor.

This condition is mathematically equivalent to the condition that all the possible

roots, and all the possible parts of the impossible roots, of a certain equation

shall be negative.

I have not been able completely to determine these conditions for equations

of a higher degree than the third ; but I hope that the subject will obtain

the attention of mathematicians.

The actual motions corresponding to these impossible roots are not generally

taken notice of by the inventors of such machines, who naturally confine their

attention to the way in which it is designed to act; and this is generally

expressed by the real root of the equation. If, by altering the adjustments of

the machine, its governing power is continually increased, there is generally a

limit at which the disturbance, instead of subsiding more rapidly, becomes an

oscillating and jerking motion, increasing in violence till it reaches the limit of

action of the governor. This takes place M'hen the possible part of one of the

impossible roots becomes positive. The mathematical investigation of the motion

may be rendered practically useful by pointing out the remedy for these distur-

bances.

This has been actually done in the case of a governor constructed by Mr

Fleeming Jenkin, with adjustments, by which the regulating power of the
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governor could be altered. By altering these adjustments the regulation could

be made more and more rapid, till at last a dancing motion of the governor,

accompanied with a jerking motion of the main shaft, shewed that an alteration

had taken place among the impossible roots of the equation.

I shall consider three kinds of governors, corresponding to the three kinds

of moderators already referred to.

In the first kind, the centrifugal piece has a constant distance from the

axis of motion, but its pressure on a surface on which it rubs varies when the

velocity varies. In the moderator this friction is itself the retarding force. In

the governor this surface is made moveable about the axis, and the friction

tends to move it ; and this motion is made to act on a break to retard the

machine. A constant force acts on the moveable wheel in the opposite direction

to that of the friction, which takes off the break when the friction is less than

a given quantity.

Mr Jenkin's governor is on this principle. It has the advantage that the

centrifugal piece does not change its position, and that its pressure is always

the same function of the velocity. It has the disadvantage that the normal

velocity depends in some degree on the coefficient of sliding friction between

two surfaces which cannot be kept always in the same condition.

In the second kind of governor, the centrifugal piece is free to move further

from the axis, but is restrained by a force the intensity of which varies with

the position of the centrifugal piece in such a way that, if the velocity of

rotation has the normal value, the centrifugal piece will be in equilibrium in

every position. If the velocity is greater or less than the normal velocity, the

centrifugal piece will fly out or fall in without any limit except the limits of

motion of the piece. But a break is arranged so that it is made more or less

powerful according to the distance of the centrifugal piece from the axis, and

thus the oscillations of the centrifugal piece are restrained within narrow limits.

Governors have been constructed on this principle by Sir W. Thomson and

by M. Foucault. In the first, the force restraining the centrifugal piece is that of

a spring acting between a point of the centrifugal piece and a fixed point at

a considerable distance, and the break is a friction-break worked by the reaction

of the spring on the fixed point.

In M. Foucault's arrangement, the force acting on the centrifugal piece is

the weight of the balls acting downward, and an upward force produced by

14—2
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weights acting on a combination of levers and tending to raise the balls. The

resultant vertical force on the balls is proportional to their depth below the

centre of motion, which ensures a constant normal velocity. The break is :

—

in the first place, the variable friction between the combination of levers and

the ring on the shaft on which the force is made to act ; and, in the second

place, a centrifugal air-fan through which more or less air is allowed to pass,

according to the position of the levers. Both these causes tend to regulate the

velocity according to the same law.

The governors designed by the Astronomer-Royal on Mr Siemens's principle

for the chronograph and equatorial of Greenwich Observatory depend on nearly

similar conditions. The centrifugal piece is here a long conical pendulum, not

far removed from the vertical, and it is prevented from deviating much from a

fixed angle by the driving-force being rendered nearly constant by means of a

differential system. The break of the pendulimi consists of a fan which dips

into a liquid more or less, according to the angle of the pendulum with the

vertical. The break of the principal shaft is worked by the differential apparatus

;

and the smoothness of motion of the principal shaft is ensured by connecting it

with a fly-wheel.

In the third kind of governor a liquid is pumped up and thrown out over

the sides of a revolving cup. In the governor on this principle, described by

Mr C. W. Siemens, the cup is connected with its axis by a screw and a spring,

in such a way that if the axis gets ahead of the cup the cup is lowered and

more liquid is pumped up* If this adjustment can be made perfect, the normal

velocity of the cup will remain the same through a considerable range of

driving-power.

It appears from the investigations that the oscillations in the motion must

be checked by some force resisting the motion of oscillation. This may be done

in some cases by connecting the oscillating body with a body hanging in a

viscous liquid, so that the oscillations cause the body to rise and fall in the liquid.

To check the variations of motion in a revolving shaft, a vessel filled with

viscous liquid may be attached to the shaft. It wiU have no effect on uniform

rotation, but will check periodic alterations of speed.

Similar effects are produced by the viscosity of the lubricating matter in

the sliding parts of the machine, and by other unavoidable resistances ; so that

it is not always necessary to introduce special contrivances to check oscillations.
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I shall call all such resistances, if approximately proportional to the velocity,

by the name of " viscosity," whatever be their true origin.

In several contrivances a differential system of wheel-work is introduced

between the machine and the governor, so that the driving-power acting on the

governor is nearly constant.

I have pointed out that, under certain conditions, the sudden disturbances

of the machine do not act through the differential system on the governor, or

vice versa. When these conditions are fulfilled, the equations of motion are not

only simple, but the motion itself is not liable to disturbances depending on

the mutual action of the machine and the governor.

Distinction between Moderators and Governors.

In regulators of the first kind, let P be the driving-power and R the

resistance, both estimated as if applied to a given axis of the machine. Let V

dx
be the normal velocity, estimated for the same axis, and -7- the actual velocity,

and let M be the moment of inertia of the whole machine reduced to the

given axis.

Let the governor be so arranged as to increase the resistance or diminish

(dx \
-tt — T^ ) , then the equation of motion will be

^.K)=^-^-^(t-^) (^)-

When the machine has obtained its final rate the first term vanishes, and

^=V +?^ (2)
dt ^^ F ^'^^•

Hence, if P is increased or R diminished, the velocity will be permanently

increased. Regulators of this kind, as Mr Siemens* has observed, should be

called moderators rather than governors.

'• On Uniform Rotation," Phil. Trans. 1866, p. 657.
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In the second kind of regulator, the force ^\-^-^)> instead of being

applied directly to the machine, is applied to an independent moving piece, B,

which continually increases the resistance, or diminishes the driving-power, by

a quantity depending on the whole motion of B.

If y represents the whole motion of B, the equation of motion of ^ is

K^D^^d-'^) (=»)

and that of M
^(3fg=P-ie-i.(|-F) + (., (4).

where G is the resistance applied by B when B moves through one unit of space.

We can integrate the first of these equations at once, and we find

B^ = F{x-Vt) (5);

so that if the governor B has come to rest x = Vt, and not only is the velocity

of the machine equal to the normal velocity, but the position of the machine

is the same as if no disturbance of the driving-power or resistance had taken

Jenkin's Governor.—In a governor of this kind, invented by .Mr Fleeming

Jenkin, and used in electrical experiments, a centrifugal piece revolves on the

principal axis, and is kept always at a constant angle by an appendage which

slides on the edge of a loose wheel, B, which works on the same axis. The

pressure on the edge of this wheel would be proportional to the square of the

velocity ; but a constant portion of this pressure is taken off by a spring which

acts on the centrifugal piece. The force acting on B to turn it round is therefore

-C";

and if we remember that the velocity varies within very narrow limits, we may

write the expression

where i^ is a new constant, and F^ is the lowest limit of velocity within which

the governor will act.
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Since this force necessarily ax;ts on -B in the positive direction, and since

it is necessary that the break should be taken oflf as well as put on, a weight

W la applied to B, tending to turn it in the negative direction ; and, for a

reason to be afterwards explained, this weight is made to hang in a viscous

liquid, so as to bring it to rest quickly.

The equation of motion of B may then be written

^t=^(t-'^-)-^^?-^ <«)>

where Y is • a coefficient depending on the viscosity of the liquid and on other

resistances varying with the velocity, and W is the constant weight.

Integrating this equation with respect to t, we find

B^ =F{x-V,t)-Yy-Wt (7).

If B has come to rest, we have

x = (r. + -^)< + ^3, (8),

or the position of the machine is afiected by that of the governor, but the

final velocity is constant, and

W
V. + ^=V. (9),

where V is the normal velocity.

The equation of motion of the machine itself is

M<^, =P-n-F[^^-v)-Gy (10).

This must be combined with equation (7) to determine the motion of the

whole apparatus. The solution is of the form

x = ^ie-'' + ^,e"'' + yl,e»^+ Vt (11),

where n^ n„ n, are the roots of the cubic equation

MBn'-i-{MY+FB)7i' + FYn +FG=0 (12).

If n be a pair of roots of this equation of the form a±J-lh, then the

part of X corresponding to these roots will be of the form
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If a is a negative quantity, this will indicate an oscillation the amplitude

of which continually decreases. If a is zero, the amplitude will remain constant,

and if a is positive, the amplitude will continually increase.

One root of the equation (12) is evidently a real negative quantity. The

condition that the real part of the other roots should be negative is

[F Y\YG ... ...

\^-^b)b~B^^ positive quantity.

This is the condition of stability of the motion. If it is not fulfilled there

will be a dancing motion of the governor, which will increase tiU it is as great

as the limits of motion of the governor. To ensure this stability, the value of

Y must be made sufficiently great, as compared with G, by placing the weight

W in a viscous liquid if the viscosity of the lubricating materials at the axle

is not sufficient.

To determine the value of F, put the break out of gear, and fix the

moveable wheel; then, if V and V be the velocities when the driving-power

is P and P\
P-FF= V-V

To determine G, let the governor act, and let y and y be the positions

of the break when the driving-power is P and P', then

P— P'

y-y

General Theory of Chronometric Centrifugal Pieces.

Sir W. ThoTuson's and M. FoucauWs Governors.—Let A be the moment of

inertia of a revolving apparatus, and 6 the angle of revolution. The equation

of motion is

dt\^ dtj
L (1),

where L is the moment of the applied force round the axis.
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Now, let A be a function of another variable
<f>

(the diverLjence of the

centrifugal piece), and let the kinetic energy of the whole be

where B may also be a fiinction of 4>, if the centrifugal piece is con^plex.

If we also assume that P, the potential energy of the apparatus, is a

function of <^, then the force tending to diminish
<f>,

arising from the action of

gravity, spnngs, &c., will be -jr .

The whole energy, kinetic and potential, is

E = iA'^' + i_B'^^' + P = jLd0 (2).

Differentiating with respect to t, we find

d4>/,dAde' rdBd^l dP\^. dScVe j.d^d^

dt \^dj di\
"^^

d4. di\ ^ f/</>r
^ dt de^"" dt dt^

dO _dd (dAddd^ .^
^dt~di\dcfdtdt.dt'

(3),

whence we have, by eliminating L,

d {T>H\_xdATd\^(lBd^'' _dP M)
dt[^'dt)-^dfdti^d<t>dv d<f>

The first two terms on the right-hand side indicate a force tending t..

increase <^, depending on the squares of the velocities of the main shaft anil

of the centrifugal piece. The force indicated by these terms may be called the

centrifugal force.

If the apparatus is so arranged that

P= ^^o)' + conat (^)'

where cj is a constant velocity, the equation becomes

d /^d<}>\ .dAldSf A
.

,dBdT
dt

^d<f>\ .dAjae^ \ dBd4> /gx

VOL. II.
^*
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In this case the value of
(f)

cannot remain constant unless the angular

velocity is equal to w.

A shaft with a centrifugal piece arranged on this principle has only one

velocity of rotation without disturbance. If there be a small disturbance, the

equations for the disturbance 6 and ^ may be written

^1^3^t=^ «•

^§-S4!- («)•

dA
The period of such small disturbances is -r-r {AB)~^ revolutions of the shaft.

They will neither increase nor diminish if there are no other terms in the

equations.

To convert this apparatus into a governor, let us assume viscosities X
and Y in the motions of the main shaft and the centrifugal piece, and a

dA
resistance G(f) applied to the main shaft. Putting -rj cj = K, the equations be-

come

^S+^f+^f+^^=^ w-

^f+4t-^f =» -•<^«)-

The condition of stability of the motion indicated by these equations is

that all the possible roots, or parts of roots, of the cubic equation

ABn'-{-{AY+BX)n' + (XY+K')n + GK=0 (11)

shall be negative ; and this condition is

{^ + ^(^y+l^')>GK (12).

Combination of Governors.—If the break of Thomson's governor is applied

to a moveable wheel, as in Jenkins governor, and if this wheel works a

steam-valve, or ' a more powerful break, we have to consider the motion of

three pieces. Without entering into the calculation of the general equations of
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motion of these pieces, we may confine ourselves to the case of small distur-

bances, and write the equations

d^e (10 j^d(f)A-^X-^^K^^^T4>^J^ = P-R,
de dt

d^<f> d<f> dd

^de^^ dt'^di

dSft

de

dxjji

dt

=

=

.(13).

where 6,
<f),

xp are the angles of disturbance of the main shaft, the centrifugal

arm, and the moveable wheel respectively, A, B, C their moments of inertia,

X, F, Z the viscosity of their connexions, K is what was formerly denoted by

^ (u, and T and J are the powers of Thomson's and Jenkin's breaks respectively.
d({)

The resulting equation in n is of the form

Aif + X)i Kn + T J
-K Bn+Y

-T Civ + Zn

(14).

n' + it A^-B^Cj^'^lABCyX^Y^'^^^
K'-]

/XYZ+KTC+K'Z\
,
KTZ

,

+ ^M ABC J-^'^A-B^-^

Z
KTZ KTJ

ABC'

fB\
1

(13).

I have not succeeded in determining completely the conditions of stability

of the motion from this equation; but I have found two necessary conditions,

which are in fact the conditions of stability of the two governors taken

separately. If we write the equation

if +pn* + qif + rn- + 5?i 4- 1 = (16),

then, in order that the possible parts of all the roots shall be negative, it is

necessary that

pq>r and ps>t (l'')-

I am not able to shew that these conditions are sufl&cient. This compound

governor has been constnacted and used.

15—2
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On the Motion of a Liquid in a Tube revolving about a Vertical Axis.

Mr C. W. Siemens's Liquid Governor.—Let p be tlie density of the fluid, k

the section of the tube at a point whose distance from the origin measured

along the tube is s, r, B, z the co-ordinates of this point referred to axes fixed

with respect to the tube, Q the volume of liquid which passes through any

section in unit of time. Also let the following integrals, taken over the whole

tube, be

]plcr'ds = A, jprW = B, jp^ds = C (l),

the lower end of the tube being in the axis of motion.

Let
<f)

be the angle of position of the tube about the vertical axis, then

the moment of momentum of the liquid in the tube is

H=A^^^BQ (2).

The moment of momentum of the liquid thrown out of the tube in unit of

time is

f^='>'^<2f+''J<?'-- («)•

where r is the radius at the orifice, k its section, and a the angle between the

direction of the tube there and the direction of motion.

The energy of motion of the fluid in the tube is

^'^=*^f[+^<2S+4^<2" W-

The energy of the fluid which escapes in unit of time is

^'= P.<2(A + .) + *p.-'«f + .icosag>f
+i|(? (5).

The work done by the prime mover in turning the shaft in unit of time is

di_d^/dH dH\ ,.

dt~ dt \dt "^
dt I

^
''

The w'ork spent on the liquid in unit of time is

dW dW
dt

'^
dt '
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Equating this to the work done, we obtain the equations of motion

4^4?+'"^^3^''^--^'=^ in

B^+o'§+i^<?+,,i,+^-ip^^;=o (8).

These equations apply to a tube of given section throughout. If the fluid

is in open channels, the values of A and C will depend on the depth to

which the channels are filled at each point, and that of k will depend on the

depth at the overflow.

In the governor described by Mr C. W. Siemens in the paper already

referred to, the discharge is practically limited by the depth of the fluid at

the brim of the cup.

The resultant force at the brim is /= -Jg' + (0*1^.

If the brim is perfectly horizontal, the overflow will be proportional to x^

(where x is the depth at the brim), and the mean square of the velocity relative

to the brim will be proportional to x, or to Q^.

If the breadth of overflow at the surface is proportional to a;", where x is the

height above the lowest point of overflow^ then Q will vary as af "^*, and the mean

square of the velocity of overflow relative to tke cup a^ a; or as ^. .

If n= — ^, then the overflow and the mean square of the velocity are both

proportional to x.

From the second equation we find for the mean square of velocity

^-K4^^^-''t-^(^-^ <^)-

If the velocity of rotation and of overflow is constant, this becomes

Q_^d4>
~=r'

dt
2g{h + z) (10).

From the first equation, supposing, as in Mr Siemens's construction, that

cos a= and B = 0, we find

^=p<t (")•
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In Mr Siemens's governor there is an arrangement by which a fixed rela-

tion is established between L and z,

L=-Sz (12).

f =
4f|'-..* + ^f.<?f (13).

If the conditions of overflow can be so arranged that the mean square of

the velocity, represented by p- » is proportional to Q, and if the strength of

the spring which determines S is also arranged so that

f=f'^-<? i^')-

the equation will become, if 2gli = o}^r^,

o-^f -f<i-^ (-)•

which shews that the velocity of rotation and of overflow cannot be constant

unless the velocity of rotation is w.

The condition about the overflow is probably difficult to obtain accurately

in practice ; but very good results have been obtained within a considerable range

of driving-power by a proper adjustment of the spring. If the rim is uniform,

there will be a maximum velocity for a certain driving-power. This seems to

be verified by the results given at p. 667 of Mr Siemens's paper.

K the flow of the fluid were limited by a hole, there would be a minimum

velocity instead of a maximum.

The difierential equation which determines the nature of small disturbances

is in general of the fourth order, but may be reduced to the third by a

proper choice of the value of the mean overflow.

Theory of Differential Gearing.

In some contrivances the main shaft is connected with the governor by a

wheel or system of wheels which are capable of rotation round an axis, which

is itself also capable of rotation about the axis of the main shaft. These two

axes may be at right angles, as in the ordinary system of differential bevel

wheels; or they may be parallel, as in several contrivances adapted to clockwork.
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Let i and rj represent the angular position about each of these axes respec-

tively, that of the main shaft, and
<f>

that of the governor; then 6 and
<f)

are linear functions of i and r), and the motion of any point of the system can

be expressed in terms either of f and 17 or of ^ and
<f}.

Let the velocity of a particle whose mass is m resolved in the direction of

X be

dx d^
,

dr) , V

drP'di+1-di <'''

with similar expressions for the other co-ordinate directions, putting suffixes

2 and 3 to denote the values of p and q for these directions. Then Lagrange's

equation of motion becomes

aSf+H8,-Sm(§Sx+§Sy +g8z) = (2).

where H and H are the forces tending to increase ^ and rj respectively, no

force being supposed to be applied at any other point.

Now putting hx=pM+ 9i^, (3),

, d^x d'^
^

d'-q ,.^d dt^=P^de^^^di^ W'

the equation becomes

(B-2,nyf-S«tp?§) Sf+ (h - tmp<i ^-tnut'll) 8, = 0...(5);

and since 8^ and ^ are independent, the coefficient of each must be zero.

K we now put

X(mp')=L, t(mpq) = M, t{mq')=N (6),

where p*=Pi+P,'-\-p,\ P? =Mi +M« + Ps^^ and q' = q' + q,' + q»\

the equations of motion will be

H=^f-^§ (^).

«=^f+^^. w-

If the apparatus is so arranged that ^"=0, then the two motions will be

independent of each other ; and the motions indicated by ^ and 17 will be about
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conjugate axes—that is, about axes such that the rotation round one of them

does not tend to produce a force about the other.

Now let © be the driving-power of the shaft on the differential system,

and ^ that of the differential system on the governor; then the equation of

motion becomes

eBe^^<P^(B-L§-^M^^^^(n-M§-N^S,^0 (9);

^^d '^
hri =RBe+sm ^'''^'

and if we put X' =.Lr + 2MPR +A^ir-
]

M' = LPQ +M{PS+QR) + NRS^^ (11),

the equations of motion in 6 and </> will be

\
(12).

If M' = 0, then the motions in and <^ will be independent of each other.

If M is also 0, then we have the relation

LPQ + 3IRS=0 (13);

and if this is fulfilled, the disturbances of the motion in 6 will have no effect

on the motion in (ft. The teeth of the differential system in gear with the

main shaft and the governor respectively will then correspond to the centres of

percussion and rotation of a simple body, and this relation will be mutual.

In such differential systems a constant force, H, sufficient to keep the

governor in a proper state of efficiency, is applied to the axis tj, and the

motion of this axis is made to work a valve or a break on the main shaft

of the machine. 3 in this case is merely the friction about the axis of ^.

If the moments of inertia of the different parts of the system are so arranged

that M' = 0, then the disturbance produced by a blow or a jerk on the machine

will act instantaneously on the valve, but will not communicate any impulse to

the governor.



[From the Philosophical Magazine, for May, 1868.]

XXXV. " ExperimeTit in Magneto-Electric Induction"

IN A LETTER TO W. R. GROVE, F.R.S.*

8, Palace Gardens Terrace, W.

March 27, 1868.

Dear Sir,

Since our conversation yesterday on your experiment on magneto-

electric inductionf, I have considered it mathematically, and now send you the

result. I have left out of the question the secondary coil, as the peculiar effect

you observed depends essentially on the strength of the current in the primary

coil, and the secondary sparks merely indicate a strong alternating primary

current. The phenomenon depends on the magneto-electric machine, the electro-

magnet, and the condenser.

The machine produces in the primary wire an alternating electromagnetic

force, which we may compare to a mechanical force alternately pushing and

pulling at a body.

The resistance of the primary wire we may compare to the effect of a

viscous fluid in which the body is made to move backwards and forwards.

The electromagnetic coil, on account of its self-induction, resists the starting

and stopping of the current, just as the mass of a large boat resists the efforts

of a man trying to move it backwards and forwards.

The condenser resists the accumulation of electricity on its surface, just as

a railway-buffer resists the motion of a carriage towards a fixed obstacle.

Communicated by Mr W. R. Grove, F.R.S.

t See Phil. Mag. S. 4. March 1868, p. 184.

VOL. II. IS



122 EXPEKIMENT IN MAGNETO-ELECTRIC INDUCTION.

Now let us suppose a boat floating in a viscous fluid, and kept in its

place by buffers fore and aft abutting against fixed obstacles, or by elastic

ropes attached to fixed moorings before and behind. If the buffers were away,

the mass of the boat would not prevent a man from pulling the boat along

with a long-continued pull; but if the man were to push and pull in alter-

nate seconds of time, he would produce very little motion of the boat. The

buffers will effectually prevent the man from mo\ang the boat far from its

position by a steady pull; but if he pushes and pulls alternately, the period

of alternation being not very different from that in which the buffers would

cause the boat to vibrate about its position of equilibrium, then the force which

acts in each vibration is due, partly to the efforts of the man, but chiefly to

the resilience of the buffers, and the man will be able to move the boat much

further from its mean position than he would if he had pushed and pulled at

the same rate at the same boat perfectly free.

Thus, when an alternating force acts on a massive body, the extent of the

displacements may be much greater when the body is attracted towards a

position of equilibrium by a force depending on the displacement than when

the body is perfectly free.

The electricity in the primary coil when it is closed corresponds to a free

body resisted only on account of its motion; and in this case the current

produced by an alternating force is small When the primary coil is interrupted

by a condenser, the electricity is resisted with a force proportional to the

accumulation, and corresponds to a body whose motion is restrained by a spring

;

and in this case the motion produced by a force which alternates with sufficient

rapidity may be much greater than in the former case. I enclose the mathe-

matical theory of the experiment, and remain,

Yours truly,

J. CLERK MAXWELL.

Mathematical Theory of the Experiment.

Let M be the revolving armature of the magneto-electric machine, N, S

the poles of the magnets, x the current led through the coil of the electro-

magnet R, and interrupted by the condenser C. Let the plates of the condenser

be connected by the additional conductor y.
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Let MsinO be the value of the potential of the magnets on the coil of

the armature; then if the armature revolves with the angular velocity n, the

electromotive force due to the machine is 2Li cos nt.

Let R be the resistance of the wire which forms the coil of the armature

M and that of the fixed electromagnet.

Let L be the coefficient of self-induction, or the " electromagnetic mass " of

these two coils taken together.

Let X be the value of the current in this wire at any instant, then Lx

will be its " electromagnetic momentum."

Let C be the capacity of the condenser, ar x P the excess of potential of

the upper plate at any instant, then the quar aty of electricity on the upper

plate is CP.

Let p be the resistance of the additional conductor, and y the current in

it. We shall neglect the self induction of this current.

We have then for this conductor,

P = P'J (!)•

For the charge of the condenser,

.(2).

For the current x,

If we assume

Mn cos nt + Ex + L
dx

dt
P = (3).

we find A' =

x = Acos {nt + a),

3Pn' (1 + CpV)
p= {( 1 - LC?i'Y + H'Cjf}+ 2Bp + I^ + Liv

* +p-LCpn
RCpn + Ln

,1 , ,R + p-LCpn'
C0t~^7^ cot ^

'—
Lpn
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The quantity of the alternating current is determined by A ; and the value

of a only affects the epoch of the maximum current. If we make p = 0, the

effect is that of closing the circuit of x, and we find

^' =R + Un'

This expression shews that the condenser has no effect when the current

is closed.

If we make /a = oo , the effect is that of removing the conductor y, and

thus breaking the circuit. In this case

A' =

^ + (^-^J'
This expression gives a greater value of A than when the circuit is closed,

provided 2CLn^ is greater than unity, which may be ensured by increasing the

capacity of the condenser, the self-induction of the electromagnetic coil, or the

velocity of rotation.

K CDn = l, the expression is reduced to

This is the greatest effect which can be produced with a given velocity, and

is the same as if the current in the coil had no "electromagnetic momentum."

If the electromagnet has a secondary coil outside the primary coil so as

to form an ordinary induction-coil, the intensity of the secondary current will

depend essentially on that of the primary which has just been found. Although

the reaction of the secondary current on the primary coil will introduce a

greater compUcation in the mathematical expressions, the remarkable phenomenon

described by Mr Grove does not require us to enter into this calculation, as

the secondary sparks observed by him are a mere indication of what takes

place in the primary coil.



[From the Philosophical Transactions, Vol. CLViii.]

XXXVI. On a Method of Making a Direct Comparison of Electrostatic with

Electromagnetic Force ; with a Note on tlie Electromagnetic Theory of Light.

Received June 10,—Read June 18, 1868.

There are two distinct and independent methods of measuring electrical

quantities with reference to received standards of length, time, and mass.

The electrostatic method is founded on the attractions and repulsions be-

tween electrified bodies separated by a fluid dielectric medium, such as air;

and the electrical units are determined so that the repulsion between two small

electrified bodies at a considerable distance may be represented numerically by

the product of the quantities of electricity, divided by the square of the distance.

The electromagnetic method is founded on the attractions and repulsions

observed between conductors carrying electric currents, and separated by air;

and the electrical units are determined so that if two equal straight conductors

are placed parallel to each other, and at a very small distance compared with

their length, the attraction between them may be represented numerically by

the product of the currents multiplied by the sum of the lengths of the

conductors, and divided by the distance between them.

These two methods lead to two different units by which the quantity of

electricity is to be measured. The ratio of the two units is an important

physical quantity, which we propose to measure. Let us consider the relation

of these units to those of space, time, and force (that of force being a function

of space, time, and mass).

In the electrostatic system we have a force equal to the product of two

quantities of electricity divided by the square of the distance. The unit of

electricity will therefore vary directly as the unit of length, and as the square

root of the unit of force.
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In the electromagnetic system we have a force equal to the product of two

currents multiplied by the ratio of two lines. The unit of current in this

system therefore varies as the square root of the unit of force ; and the unit

of electrical quantity, which is that which is transmitted by the unit current

in unit of time, varies as the unit of time and as the square root of the unit

of force.

The ratio of the electromagnetic unit to the electrostatic unit is therefore

that of a certain distance to a certain time, or, in other words, this ratio is a

velocity ; and this velocity will be of the same absolute magnitude, whatever

standards of length, time, and mass we adopt.

The electromagnetic value of the resistance of a conductor is also a quantity

of the nature of a velocity, and therefore we may express the ratio of the two

electrical units in terms of the resistance of a known standard coil; and this

expression will be independent of the magnitude of our standards of length,

time and mass.

In the experiments here described no absolute measurements were made,

either of length, time, or mass, the ratios only of these quantities being in-

volved ; and the velocity determined is expressed in terms of the British Asso-

ciation Unit of Resistance, so that whatever corrections may be discovered to

be applicable to the absolute value of that unit must be also applied to the

velocity here determined.

A resistance-coil whose resistance is equal to about 28 "8 B. A' units would

r^resent the velocity derived from the present experiments in a manner inde-

pendent of aU particular standards of measure.

The importance of the determination of this ratio in all cases in which

electrostatic and electromagnetic actions are combined is obvious. Such cases

occur in the ordinary working of aU submarine telegraph-cables, in induction-

coils, and in many other artificial arrangements. But a knowledge of this ratio

is, I think, of still greater scientific importance when we consider that the

velocity of propagation of electromagnetic disturbances through a dielectric medium

depends on this ratio, and, according to my calculations*, is expressed by the

very same number.

The first numerical determination of this quantity is that of Weber and

Kohlrauscht, who measured the capacity of a condenser electrostatically by

* "A Dynamical Theory of the Electroma^etic Field," Philosophical Transactions, 1865.

t Pogg, Ann. Aug. 1856, Bd. xcix. p. 10.
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comparison with the capacity of a sphere of known radius, and electromag-

netically by passing the discharge from the- condenser through a galvanometer.

The Electrical Committee of the British Association have turned their

attention to the means of obtaining an accurate measurement of this velocity,

and for this purpose have devised new forms of condensers and contact-breakers ;

and Sir William Thomuson has obtained numerical values of continually increasing

accuracy by the constant improvement of his own methods.

A velocity which is so great compared with our ordinary units of space

and time is probably most easily measured by steps, and by the use of several

different instruments ; but as it seemed probable that the time occupied in the

construction and improvement of these instruments would be considerable, I

determined to employ a more direct method of comparing electrostatic with

electromagnetic effects.

I should not, however, have been able to do this, had not Mr Gassiot,

with his usual liberality, placed at my disposal his magnificent battery of 2600

cells charged with corrosive sublimate, with the use of his laboratory to work in.

To Mr Willoughby Smith I am indebted for the use of his resistance-

coils, giving a resistance of more than a million B. A. units, and to Messrs

Forde and Fleeming Jenkin for the use of a galvanometer and resistance-coils,

a bridge and a key for double contacts.

Mr C. Hockin, who has greatly assisted me with suggestions since I first

devised the experiment, undertook the whole work of the comparison of the

currents by means of the galvanometer and shunts. He has also tested the

resistances, and in fact done everything except the actual observation of equi-

librium, which I undertook myself.

The electrical balance itself was made for me by Mr Becker.

The electrostatic force observed was that between, two parallel disks, of

which one, six inches diameter, was insulated and maintained at a high

potential, while the other, four inches diameter, was at the same potential as

the case of the instrument.

In order to insure a known quantity of electricity on the surface of this

disk, it was surrounded by the "guard-ring" introduced by Sir W. Thomson,

so that the surface of the disk when in position and that of the guard-ring

were in one plane, at the same potential, and separated by a very narrow

space. In this way the electrical action on the small disk was equal to that

due to a uniform distribution over its front surface, while no electrical action
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could exist at its sides or back, as these were at the same potential with the

surrounding surfaces.

The large disk was mounted on a slide worked by a micrometer-screw.

The small disk was suspended on one arm of a torsion-balance so that in its

position of equilibrium its surface and that of the guard-ring were in one plane.

If ^ is the difference of potential between the two disks in electromag-

netic measure, the attraction between them is

R^l (1),

where a is the radius of the small disk, h its distance from the large one,

and V is the velocity representing the ratio of the electromagnetic to the elec-

trostatic unit of electricity.

The electromagnetic force observed wa3 the repulsion between two circular

coils, of which one was attached to the back of the suspended disk, and the

other was placed behind the large disk, being separated from it by a plate of

glass and a layer of Hooper's compound. A current was made to pass through

these coils in opposite directions, so as to produce a repulsion

=.2nnn'^y^ (2),

where n and n are the number of windings of each coil, y is the current, and

'i=i^«—^(^•-^•wfS ''''

where c=>siny= . -^ l^;,

a, and a, are the mean radii of the coils, and V the mean distance of their

planes, and E, and F, are the complete elUptic functions for modulus c = siny.

2A 2a'

When V is small compared with a\ -g becomes very nearly -p-.

If we take into account the fact that the section of each coil is of sensible

area, this formula would require correction; but in these coils the depth was

made equal to the breadth of the section, whence it foUows, by the differential
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equation of the potential of two coils, given at p. 508 ^^ of my paper on the

Electromagnetic Field,

d'M d'M 1 dM
da'

"^
db' a da

~" ^^''

that the correction is a factor of the form [1-^°'.], where a is the depth

of the coil—a correction which is in this case about 1 — '000926.

Suspended disk and coil.

Counoerpoise disk and coil.

Fixed disk and coil.

K. Double key. g. Graduated glass scale.

C. Electrode of fixed disk.

X. Current through R.

x. Current through G,. x-x. Cun-ent through S.

y. Current through the three coils and G,.

S. Shunt M. Mercury cup.

Primary coil of galvanometer.

Secondary coiL R Great resistance.

Torsion head and tangent screw.

One quarter of the micrometer-box, disks, and coils is cut away to shew the interior. The case of the

instrument is not shewn. The galvanometer and shunts were 10 feet from the Electric Balance.

[Vol. I. p. 591.]

VOL. II. 17
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The suspended coil, besides the repulsion due to the fixed coil, experiences

a couple due to the action of terrestrial magnetism. To balance this couple,

a coil exactly similar was attached to the other arm of the torsion-balance,

and the current in the second coil was made to flow in the opposite direction

to that in the first. When the current was made to flow through both coils,

no efiect of terrestrial magnetism could be obsei-ved.

The torsion-balance consisted of a light brass frame, to which the suspended

coils and disks were attached so that the centre of each coil was about eight

inches from the vertical axis of suspension. This firame was suspended by a

copper wire (No. 20), the upper end of which was attached to the centre of

a torsion head, graduated, and provided with a tangent screw for small angular

adjustments. The torsion head was supported by a hollow pillar, the base of

which was clamped to the lid of the instrument so as to admit of small

adjustments in every direction.

The fixed disk and coil were mounted on a slide worked by a micrometer-

screw, and were protected by a cylindrical brass box, the front of which,

forming the guard-ring, 7 inches in diameter, had a circular aperture 4-26 inches

diameter, within which the suspended disk, 4*13 inches diameter, was free to

move, leaving an interval of "065 of an inch between the disk and the aper-

ture. A glass scale with divisions of xio ^^ ^^ '^^^^ "^^^ attached to the

suspended disk on the side which was not electrified, and this was viewed by

a microscope attached to the side of the instrument and provided with cross

wires at the focus.

The disk worked by the micrometer was carefully adjusted by the maker,

so as to be parallel to the inner surface of the guard-ring, or front face of

the micrometer-box. This front face of the micrometer-box, when in position

in the instrument, was made vertical by means of three adjusting screws.

The suspended disk was then pressed against the fixed disk by means of a

slight spring, and the fixed disk was gradually moved forward by the micro-

meter-screw, while at the same time the graduated scale was observed through

the microscope. In this way the graduations on the scale were compared with

the readings of the micrometer. This was continued till the large disk came

into contact with the guard-ring at one point, when the regularity of the

motion was interrupted. A very small motion was then sufficient to bring the

whole circumference of the disk into contact with the guard-ring, when the

motion ceased altogether. This motion was not much more than one-thousandth

of an inch.
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This disk w<a8 then brought to the position of first contact, and the

microscope was adjusted so that a kno\\Ti division of the glass scale was

bisected by the cross wires. A small piece of silvered glass was fastened to

the outside of the guard-ring, and another to the back of the suspended disk

;

and these were adjusted so as to be in one plane, and to give a continuous

image of reflected objects when the disks were in contact and the surface of

the suspended disk was therefore in the plane of the surface of the guard-

ring. The fixed disk was then screwed back, and the torsion-balance was

adjusted so that the suspended disk when in equilibrium was in precisely the

same position as before. This was tested by observing the coincidence of the

zero division of the glass scale with the cross wires of the microscope, and

by examining the reflections from the two pieces of silvered glass. The torsion-

balance could be moved bodily in any horizontal direction by adjusting the

base of the pillar; it could be raised or lowered by a winch, and it could

be turned about any horizontal axis by sliding weights, and round the vertical

axis by a tangent screw of the torsion head. In this way the position of

equilibrium of the suspended disk could be made to coincide with the plane

of the guard-ring to the thousandth of an inch; and the adjustment when

made continued very good from day to day, soft copper wire, stretched straight,

not having the tendency to untwist gradually which I have observed in steel

wire. The weight of the torsion piece was about 1 lb. 3 oz., and the time of

a double oscillation about fourteen seconds. The oscillations of the suspended

disk, when near its sighted position, were found to subside very rapidly, the

energy of the motion being expended in pumping the air through the narrow

aperture between the guard-plate and the suspended disk.

The electrical arrangements were as follows :

—

One electrode of Mr Gassiot's great battery was connected with a key.

When the key was pressed connexion was made to the fixed disk, and thence,

through Mr Willoughby Smith's resistance-coils, to a point where the current

was divided between the principal coil of the galvanometer and a shunt, S,

consisting of Mr Jenkin's resistance-coils. These partial currents reunited at a

point where they were put in connexion with the other electrode of the battery,

with the case of the instrument, and with the earth.

Another battery was employed to send a current through the coils. One

electrode of this battery was connected with a second contact piece of the

17—2
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key, so that, when the key was pressed, the current went first through the

secondary coil of the galvanometer, consisting of thirty windings of thick wire,

then through the fixed coil, then to the suspension wire, and so through the

two suspended coils to the brass frame of the torsion-balance and the suspended

disk. A stout copper wire, weU amalgamated, hanging from the centre of the

torsion-balance into a cup of mercury, made metallic communication to the case,

to earth, and to the other electrode of the battery.

When these arrangements had been made, the observer at the microscope,

when the suspended disk was stationary at zero, made simultaneous contact

with both batteries by means of the key. If the disk waa attracted, the

great battery was the more powerful, and the micrometer was worked so as

to increase the distance of the disk. If the disk was repelled, the fixed disk

had to be moved nearer to the suspended disk, till a distance was found at

which, when the scale was at rest and at zero, no eflPect was produced by

the simultaneous action of the batteries. With the forces actuaUy employed

the equihbrium of the scale at zero was unstable; so that when the adjust-

ment was nearly perfect the force was always directed from zero, and contacts

had to be made as the scale was approaching zero, in such a way as to

bring it to rest, if possible, at zero.

In the meantime the other observer at the galvanometer was taking

advantage of these contacts to alter the shunt S, till the effects of the two

currents on the galvanometer-needle balanced each other.

When a satisfactory case of equilibrium had been observed simultaneously

at the galvanometer and at the torsion-balance, the micrometer-reading and the

resistance of the shunt were set down as the results of the experiment.

The chief difficulties experienced arose from the want of constancy in the

batteries, the ratio of the currents varying very rapidly after first making

contact. I think that by increasing considerably the resistance of the great

battery-circuit, the current could be made more uniform.

When a sufficient number of experiments on equilibrium had been made,

a current was made to pass through the secondary coil of the galvanometer,

and was then divided between a shunt of 31 units BA and the primary coil

of the galvanometer with a resistance S' added. S' was then varied till the

needle was in equilibrium. In this way the magnetic effects of the two coils

were compared.

The resistance of the galvanometer and of all the coils were tested by
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Mr Hockin, who also made all the observations with the galvanometer and its

adjusting shunts.

To determine v from these experiments, we have first, since the attraction

is equal to the repulsion,

8^^, =2^n^y (6).

If X is the current of the great battery passing through the great resistance

R, and if x' of this passes through the galvanometer whose resistance is G,

and x — x' through the shunt S to earth, then

E=Rx+Gx (7),

and Gx=S{x-x) (8).

Also if Qi is the magnetic effect of the principal coU of the galvanometer,

and gr, that of the secondary coil, then when the needle is in equilibrium

9i^' =9^ (9)-

In the comparison of the coils of the galvanometer, if x, and y^ are the

currents through each, we have

9i^i = 9^i (1<^)-

But y, is divided into two parts, of which x^ passes through the galvan-

ometer G and the shunt S', and the other, y,-x\ passes through the shunt

of 31 Ohms. Hence
x,{G + S')=(y,-x,)31 (11).

From these equations we obtain as the value of v,

1 a I B (RG
^ ^ ^ ^\ 31

an equation containing only known quantities on the right-hand side. Of these,

n and n are the numbers of windings on the two coils, a is the mean of

the radii of the suspended disk and the aperture, h is the distance between

the fixed disk and the suspended disk, -^ is found from a^ and a,, the mean

radii of the coils, and h' their mean distance by equation (3).

R is the great resistance, G that of the galvanometer, S that of the shunt

in the principal experiment, and S' that of the additional resistance in the com-

parison of galvanometer-coils.
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In this expression the only quantities which must be determined in

absolute measure are the resistances. The other quantities which must be

measured are the ratios of the radius of the disk to its distance from the

fixed disk, and the ratio of the radius of the coils to the distance between

them. These ratios and the number of windings in the coils are of course

abstract numbers.

In the experiments,

?i = 144 n' = 121

a = 2-0977 inches. a' =1-934 inch.

To determine a\ the circumference of every layer of the coils was measured

with watch-spring, the thickness of which was '008 inch.

One turn of the micrometer-screw was found by Mr Hockin to be equal

to '0202 inch. If m is the micrometer-reading in terms of the screw,

& = m-12-70, 5' =m + 26-31.

In terms of the micrometer measure we have for a and a',

a= 103-85 turns, a' = 95-75 turns.

The resistances were determined by Mr Hockin as follows :

R=\ 102 000 Ohms.

(t= 46 220 „

The experiments were made for two days, using a small battery charged

with bichromate of potash. The current due to this battery was found to

diminish so rapidly that a set of Grove's cells was used on the third day,

which was found to be more constant than the great battery. A proper com-

bination of the two batteries would perhaps produce a current which would

diminish according to the same law as that of the great battery. Another

difficulty arose from the fact that when the connexions were made, but before

the key was pressed, if the micrometer was touched by the hand the disk was

attracted. This I have not been able satisfactorily to account for, except by

leakage oi electricity from the great battery through the floor. When the

micrometer was not touched, the disk remained at its proper zero. In certain

experiments I kept my hand always on the micrometer in order to be able

to adjust it more accurately. These experiments gave a value of v much too

small, on account of the additional attraction. When I discovered the attraction,
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I took care to make the observations without touching the micrometer, and

took advantage of the attraction to check the oscillations of the disk. The

experiments in which these precautions were taken agree together as well as

I could expect, and lead me to think that, with the experience I have acquired,

still better results might be obtained by the same method. It must be borne

in mind that none of the results were calculated till after the conclusion of all

the experiments, and that the rejected experiments were condemned on account

of errors observed while they were being made.

Any leakage arising from want of insulation of the fixed disk would

introduce no error, as the difference of potentials between the two disks is

measured by the current in the galvanometer, through a known resistance,

independently of any leakage.

All that is essential to accuracy is that the position of equilibrium before

making contact should be at true zero, the same as when there is no electrical

action, and that this equilibrium should not be disturbed when simultaneous

contact is made with both batteries.

Experiments on May 8. *S'=1710 Ohms.

Number of
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Experiments 3, 4, 5, 6, 7 were rejected on account of the micrometer

being touched during the observation of equilibrium. These experiments gave

an average value of v = 27'39.

The value of v derived from these experiments is considerably smaller than

that which was obtained by MM. Weber and Kohlrausch, which was 31-074

Ohms, or 310,740,000 metres per second.

Their method involved the determination of the electrostatic capacity of a

condenser, the electrostatic determination of its potential when charged, and

the electromagnetic determination of the quantity of electricity discharged through

a galvanometer.

The capacity of the condenser was measured by dividing its charge repeat-

edly with a sphere of known radius. Now, since all condensers made with

solid dielectrics exhibit the phenomena of "electric absorption," this method

would give too large a value for the capacity, as the condenser would become

recharged to a certain extent after each discharge, so that the repeated division

of the charge would have too small an effect on the potential. The capacity

being overestimated, the number of electrostatic units in the discharge would

be overestimated, and the value of v would be too great.

In pointing out this as a probable source of error in the experiments of

MM. Weber and Kohlrausch, I mean to indicate that I have such confidence

in the ability and fidelity with which their investigation was conducted, that

I am obliged to attribute the difference of their result from mine to a phe-

nomenon the nature of which is now much better understood than when their

experiments were made.

On the other hand, the result of present experiments depends on the

accuracy of the experiments of the Committee of the British Association on

Electric Eesistance. The B. A. unit is about 8-8 per cent, larger than that

determined by Weber in 1862, and about 1'2 per cent, less than that derived

by Dr Joule from his experiments on the dynamical equivalent of heat by

comparing the heating effects of direct mechanical agitation with those of electric

currents.

I believe that Sir William Thomson's experiments, not yet published, give

a value of v not very different from mine. His method, I believe, also depends

on the value of the B. A. unit.

The lowest estimate of the velocity of light, that of the late M. Foucault, is

298,000,000 metres per second.
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Note on the Electromagnetic Theory of Light.

In a paper on the Electromagnetic Field* some years ago, I laid before

the Royal Society the reasons which led me to believe that light is an elec-

tromagnetic phenomenon, the laws of which can be deduced from those of

electricity and magnetism, on the theory that all these phenomena are affections

of one and the same medium. Two papers appeared in Poggendorff's Aniut-

len, for 1867, bearing on the same subject. The first, by the late eminent

mathematician Bernhardt Riemann, was presented in 1858 to the Royal Society

of Gottingen, but was withdrawn before publication, and remained unknown
till last year. Riemann shews that if for Laplace's equation we substitute

^-a"A'F+a'47r/3 = (13),

V being the electrostatic potential, and a a velocity, the results will agree

with known phenomena in all parts of electrical science. This equation is equi-

valent to a statement that the potential V is propagated through space with

a certain velocity. The author, however, seems to avoid making explicit

mention of any medium through which the propagation takes place, but he

shews that this velocity is nearly, if not absolutely, equal to the knowTi velocity

of light.

The second paper, by M. Lorenz, shews that, on Weber's theory, periodic

electric disturbances would be propagated with a velocity equal to that of light.

The propagation of attraction through space forms part of this hypothesis also,

though the medium is not explicitly recognised.

From the assumptions of both these papers we may draw the conclusions,

first, that action and reaction are not always equal and opposite, and second,

that apparatus may be constructed to generate any amount of work from its

resources.

For let two oppositely electrified bodies A and B travel along the line

joining them with equal velocities in the direction AB, then if either the

potential or the attraction of the bodies at a given time is that due to their

position at some former time (as these authors suppose), B, the foremost body,

will attract A forwards more than A attracts B backwards.

* Philosophical Transactions, 1865, p. 459. [Vol. i. p. 527.]

VOL. U. 18
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Now let A and B be kept asunder bj a rigid rod.

The combined system, if set in motion in the direction AB, will pull in

that direction with a force which may either continually augment the velocity,

or may be used as an inexhaustible source of energy.

I think that these remarkable deductions from the latest developments of

Weber and Neumann's theory can only be avoided by recognizing the action of

a medium in electrical phenomena.

The statement of the electromagnetic theory of light in my former paper

was connected with several other electromagnetic investigations, and was there-

fore not easily understood when taken by itself I propose, therefore, to state

it in what I think the simplest form, deducing it from admitted facts, and

shewing the connexion between the experiments already described and those

which determine the velocity of light.

The connexion of electromagnetic phenomena may be stated in the following

manner.

Theorem A.—If a closed curve be drawn embracing an electric current,

then the integral of the magnetic intensity taken round the closed curve is

equal to the current multiplied by Att.

The integral of the magnetic intensity may be otherwise defined as the

work done on a unit magnetic pole carried completely round the closed curve.

This well-known theorem gives us the means of discovering the. position

and magnitude of electric currents, when we can ascertain the distribution of

magnetic force in the field. It follows directly from the discovery of (Ersted.

Theorem B.—If a conducting circuit embraces a number of lines of mag-

netic force, and if, from any cause whatever, the number of these lines is

diminished, an electromotive force will act round the circuit, the total amount

of which will be equal to the decrement of the number of lines of magnetic

force in unit of time.

The number of lines of magnetic force may be otherwise defined as the

integral of the magnetic intensity resolved perpendicular to a surface, multiplied

by the element of surface, and by the coefficient of magnetic induction, the

integration being extended over any surface bounded by the conducting circuit.

This theorem is due to Faraday, as the discoverer both of the facts and

of this mode of expressing them, which I think the simplest and most com-

prehensive.
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Theorem C.—When a dielectric is acted on by electromotive force it ex-

periences what we may call electric polarization. If the direction of the elec-

tromotive force is called positive, and if we suppose the dielectric bounded by

two conductors, A on the negative, and B on the positive side, then the

surface of the conductor A is positively electrified, and that of B negatively.

If we admit that the energy of the system so electrified resides in the

polarized dielectric, we must also admit that within the dielectric there is a

displacement of electricity in the direction of the electromotive force, the amount

of this displacement being proportional to the electromotive force at each point,

and depending also on the nature of the dielectric.

The energy stored up in any portion of the dielectric is half the product

of the electromotive force and the electric displacement, multiplied by the volume

of that portion.

It may also be shewn that at every point of the dielectric there is a

mechanical tension along the lines of electric force, combined with an equal

pressure in all directions at right angles to these lines, the amount of this

tension on unit of area being equal to the amount of energy in unit of volume.

I think that these statements are an accurate rendering of the ideas of

Faraday, as developed in various parts of his " Experimental Researches."

Theorem D.—When the electric displacement increases or diminishes, the

effect is equivalent to that of an electric current in the positive or negative

direction.

Thus, if the two conductors in the last case are now joined by a wire,

there will be a current in the wire from A to B.

At the same time, since the electric displacement in the dielectric is

diminishing, there will be an action electromagnetically equivalent to that of an

electric current from B to A through the dielectric.

According to this view, the current produced in discharging a condenser

is a complete circuit, and might be traced within the dielectric itself by a

galvanometer properly constructed. I am not aware that this has been done,

so that this part of the theory, though apparently a natural consequence of

the former, has not been verified by direct experiment. The experiment would

certainly be a very delicate and difiicult one.

Let us now apply these four principles to the electromagnetic theory of

light, considered as a disturbance propagated in plane waves.

18—2
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Let the direction of propagation be taken as the axis of z, and let all

the quantities be functions of z and of t the time; that is, let every portion

of any plane perpendicular to z be in the same condition at the same instant.

Let us also suppose that the magnetic force is in the direction of the

axis of y, and let )8 be the magnetic intensity in that direction at any point.

Let the closed curve of Theorem A consist of a parallelogram in the

plane yz, two of whose sides are h along the axis of y, and z along the axis

of z. The integral of the magnetic intensity taken round this parallelogram is

^(y8o-)8), where fi, is the value of /8 at the origin.

Now let _p be the quantity of electric current in the direction of x per

unit of area taken at any pomt, then the whole current through the parallelo-

gram will be

hpdz,
i:

and we have by (A),

h{^,-^) = 4.7rj'hpdz.

If we divide by b and differentiate with respect to z, we find

f.=-'^ (^^)'

Let us next consider a parallelogram in the plane of xz, two of whose

sides are a along the axis of x, and z along the axis of z.

If P is the electromotive force per unit of length in the direction of x,

then the total electromotive force round this parallelogram is a(P-Po).

If /u, is the coefficient of magnetic induction, then the number of lines of

force embraced by this parallelogram will be

I afi^dz,

and since by (B) the total electromotive force is equal to the rate of dimi-

nution of the number of lines in unit of time,

a{P-P,)=-^^j\t.^dz.

Dividing by a and differentiating with respect to z, we find

^=-^f (15).
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Let the nature of the dielectric be such that an electric displacement f
is produced by an electromotive force P,

P=¥- (10).

where k is a quantity depending on the particular dielectric, which may be

called its "electric elasticity."

Finally, let the current p, already considered, be supposed entirely due

to the variation ofy, the electric displacement, then

.(17).

We have now four equations, (14), (15), (16), (17), between the four

quantities /S, p, P, and / If we eliminate p, P, and / we find

df ~
Anfidz'

Awfji
If we put

the well-known solution of this equation is

^ = cf>,{z-Vt) + <f>Az+Vt)

shewing that the disturbance is propagated with the velocity V.

The other quantities p, P, and / can be deduced from /3.

(18).

(19).

(20),

Thus, if /3 = ccos -7-(z- Vt)
A.

C . 277, T-.X

P = c^Fcos^(z-F()
A

(21).

the sameI have in the next place to shew that the velocity V
quantity as that found from the experiments on electricity.

For this purpose let us consider a stratum of air of thickness h bounded

by two parallel plane conducting surfaces of indefinite extent, the difference

of whose potentials is E.
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The electromotive force per unit of length between the surfaces is P—yE.

The electric displacement is /= t -P.

The energy in unit of volume and the tension along the lines of force

per unit of area is ^ Pf.

The attraction X on an area no' of either surface is

X= i7ra^Pf
]

If this area is separated by a smaU interval from the rest of the plane

surface, as in the experiment, and if this interval is small compared with the

radius of the disk, the lines of force belonging to the disk will be separated

from those belonging to the rest of the surface by a surface of revolution,

the section of which, at any sensible distance from the surface, will be a circle

whose radius is a mean between those of the disk and the aperture. This

radius must be taken for a in the equation (22)*

Let us next consider the magnetic force near a long straight conductor

carrying a current y. The magnetic force will be in the direction of a tangent

to a circle whose axis is the current ; and the intensity will be uniform round

this circle. If the radius is h, and the magnetic intensity fi, the integral

round the circle will be 2nhfi = 4tTry by {A).

Hence y8 = 2| (23).

Let a wire carrying a current y' be placed parallel to the first at a

distance 6, and let us consider a portion of this wire of length I. This portion

will be urged across the lines of magnetic force, and the electromagnetic force

Y will be equal to the product of the length of the portion, multiplied by

* [Note added Dec. 28, 1868.—I have since found that if Oj is the radius of the disk, and a, that of

the aperture of the guard-ring, and b the distance from the large fixed disk, then we must substitute for

Tj the more approximate expression -j-^ +9T/T \i 'w^here a is a quantity which cannot exceed ——(a^-a^).

-J. C. M.1
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the current and by the number of lines which it crosses per unit of distance

through which it moves, or, in symbols,

_ o
MJOT I

If the two wires instead of being straight are circular, of radius a, and

if h' the distance between them is very small compared with the radius, the

attraction wUl be the same as if they were straight, and will be

T^ ^ 27ra , ,, .

5 =2/x j^.-yi/ {2d).

When h' is not very small compared with a, we must use the equation

2A
(3) to calculate the value of „ by elliptic integrals.

Making A^= Y and comparing with equation (6), we find

^-^ (-) =

but, by (19), P =^.
Hence i' = /xF (27),

where v is the electromagnetic ratio and V is the velocity of light.

But since all the experiments are made in air, for wliich /x is assauied ecjual

to unity, as the standard medium with which all others are compared, we have

finaUy

v=V (28),

or the number of electrostatic units in one electromagnetic unit of electricity is

numerically equal to the velocity of light.



[Extracted from The Quarterly Journal of Pure and Applied Mathematics, No. 34, 1867.]

XXXVII. On the Cyclide.

In optical treatises, the primary and secondary foci of a small pencil are

sometimes represented by two straight lines cutting the axis of the pencil at

right angles in planes at right angles to each other. Every ray of the pencil

is supposed to pass through these two lines, thus forming what M. Pliiker'""

has called a congruence of the first order.

The system of rays, as thus defined, does not fulfil the essential condi-

tion of all optical pencils, that the rays shall have a common wave-surface,

for no surface can be drawn which shall cut all the rays of such a pencil

at right angles.

Sir W. E. Hamilton has shewn, that the primary and secondary foci are

in general the points of contact of the ray with the surface of centres of

the wave-surface, which forms a double caustic surface. If we select a pencil

of rays corresponding to a given small area on the wave-surface, their points

of contact will lie on two small areas on the two sheets of the caustic

surface. The sections of the pencil by planes perpendicular to its axis wiU

appear, when the pencil is small enough, as two short straight lines in planes

perpendicular to each other.

I propose to determine the form of the wave-surface, when one or both

of the so-called focal lines is really a line, and not merely the projection of

a small area of a curved surface.

Let us first determine the condition that all the normals of a surface

may pass through one fixed curve.

Let i2 be a point on the surface, and RP a normal at P, meeting the

fixed curve at P. Let PT be a tangent to the fixed curve at P, and EPT
a plane through E and PT.

* Philosophical Transactions, 1864.
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Of the two lines of curvature through R, the first touches the plane

RPT, and the second is perpendicular to it. Hence, if the plane RPT turn

about the tangent PT as an axis, it will always be normal to the second

line of curvature. The second line of curvature is therefore a circle, and PT
passes through its centre perpendicular to its plane.

All the normals belonging to the second line of curvature are of equal

length, and equally inclined to PT, so that they may be considered either

as the generating Unes of a right cone whose axis is the tangent to the

fixed curve, or as the radii of a sphere whose centre is at P, and which

touches the surface all along the line of curvature.

The surface may therefore be defined as the envelope of a series of

spheres, whose centres lie on the fixed curve, and whose radii vary according

to any law.

If the normal passes through two fixed curves, the surface must also be

the envelope of a second series of spheres whose centres He on the second

fixed curve, and each of which touches all the spheres of the first series.

If we take any three spheres of the first series, the surface may be

defined as the envelope of all the spheres which touch the three given spheres

in a continuous manner.

This is the definition given by Dupin, in his Applications de Geometne

(p. 200), of the surface of the fourth order called the Cyclide, because both

series of its lines of curvature are circles.

If the three fixed spheres be given, they may either be all on the same

side (inside or outside) of the touching sphere, or any one of the three may

be on the opposite side from the other two. There are thus four difierent

series of spheres which may be described touching the same three spheres,

but we cannot pass continuously from one series to another, and the normals

to the four corresponding cyclides pass through difierent fixed curves.

Let us next consider the nature of the two fixed curves. Since all the

normals pass through both curves, and since all those which pass through a

point P are equally inclined to the tangent at P, the second curve must

lie on a right cone. If now the point P be taken so that its distance from

a point Q in the second curve is a minimum, then PQ will be perpendicular

to PT, and the right cone will become a plane, therefore the second curve is

a plane conic. In the same way we may shew, that the first curv^e is a plane

conic,

VOL. 11. 19
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The two curves are therefore plane conies, such that the cone whose base

is one of the conies, and its vertex any point of the other, is a right cone.

The conies are therefore in planes at right angles to each other, and the foci

of one are the vertices of the transverse axis of the other. "We shall call these

curves the focal conies of the cyclide.

Let the equations to a point on an ellipse be

iK = ccosa, 2/ = (c' - Z)')* sin a, z = (1),

where a is the eccentric angle, and let the equations to a point on the

hyperbola be

x = bsecB, y = 0, 2 = (c' - 6^ tan J5 (2),

where B is an angle, then these two conies fulfil the required conditions. For

uniformity, we shall sometimes make use of the hyperbolic functions

cosAy8 = i(e^ + e-^), and sin/?;8 = |(e^-c-^) (3),

and we shall suppose y8 and B so related, that

cos A/8 = sec -B, whence sin ^)8 = tan 5 1 ,.

sec Ay8 = cos B, tan AyS =smB f

The equations to a point in the hyperbola may then be written

x = hcoskl3, y = 0, 2 = (c^ - 1'')* sin A/3 (5).

Construction of the Cyclide by Points. First MetJiod.

Let P be a point on the ellipse, Q a point on the hyperbola, then

FQ = c sec B — h cos a (6).

Now take on FQ a point R, so that

FE = r-h cos a (7),

or QR = r -c sec B (8),

where r is a constant, then if a and B vary, R will give a system of points

on the cyclide (bcr).

For if F be fixed while Q varies, R will describe a circle, and if Q be

fixed while F varies, R will describe another circle, and these circles cut at

ight angles, and are both at right angles to FQR at their intersection, and
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since P and Q are any points on the conies, the whole system of circles will

form a cyclide.

The circle corresponding to P a fixed point on the ellipse, is in a plane

which cuts that of xz along the line

^=7. y=o (9),

and makes with it an angle

The circle corresponding to Q a fixed point in the hyperbola, is in a

plane which cuts that of xy along the line

and makes with it an angle

a: =
f.

2 = (10).

tan ^

\ Y-,—fTu sin B \ .

Hence the planes of all the circles of either series pass through one of two

fixed lines, which are at right angles to each other, and at a minimum distance

The line of intersection of the planes of the two circles through the point

R will therefore pass through both the fixed lines at points S and T, where

the co-ordinates of S are

cr (c"-.6n*

— T' y--—-

and those of T,

^ = ^, y = i^_:i£ltana, z = (11),

xJ-, 2/
= 0, z=-^^^^^smB (12),

c ^ c

and it is easily shewn that

SR 1-5^^^-

1— cos iJ
c

(13).

Hence, we deduce the following :

19—2
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Second Constimction by Points.

Draw the two fixed lines, and find points S and T given by equations (11)

and (12), then draw ST, and cut it in E, so that the ratio of the segments is

that given by equation (13). It will be a point on the cyclide.

This construction is very convenient for drawing any projection of the

cyclide, as the distances are measured along the projections of the fixed lines,

and the line ST can be divided in the required ratio by means of a ruler

and " sector," without making any marks on the paper, except the position of

the required point H.

In this way I have drawn stereoscopic diagrams of four varieties of the

cyclide, viewed from a position nearly in the line

x = y = z,

shewing the circles corresponding to various values of a and B"\

On the Forms of the Cyclide.

We shall suppose h and c to be given, and trace the eifect of giving

different values to r. Since the cyclides corresponding to negative values of r

differ from those corresponding to equal positive values merely by having the

* iV^'o^e on a Reai-Image Stereoscope. In ordinary stereoscopes the virtual images of two pictures are

superposed, and the observer, looking through two lenses, or prisms, or at two mirrors, sees the figure

apparently behind the optical apparatus. In a stereoscope, which I have had made by Elliott Brothers,

the observer looks at a real image of the pictures, which appears in front of the instrument, and he is not

conscious of using any optical apparatus.

This stereoscope consists of a frame to support the double picture, which may be a common stereoscopic

slide inveited. One foot from this a frame is placed, containing side by side two convex lenses of half a

foot focal length, and having their centres distant one and a quarter inches horizontally. One foot beyond

these is placed a convex lens of two-thirds of a foot focal length and three inches diameter.

The observer stands about two feet from the large lens, so that with the right eye he sees an image of

the left-hand picture, and with the left eye an image of the right>-hand picture.

These images are formed by pencils which pass centrically through the two small lenses respectively,

so that they are free from distortion, and they appear to be nearly at the same distance as the large lens,

so that the observer fixing his eyes on the frame of the large lens sees the combined figures at once.

The figures of the cyclide, though constructed for this stereoscope, may be used with an ordinary

stereoscope, or they may be united by squinting, which is a very effective method.
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positive and negative ends of the axis of x reversed, we need study the positive

values only.

(1) When r lies between zero and h, the section in the plane of the

ellipse consists of two circles, whose centres are the foci, and which intersect at

a point of the ellipse. The section in the plane of the hyperbola consists of

two circles exterior to each other, whose centres are the vertices of the ellipse.

The cyclide itself consists of two lobes exterior to each other, of which the

negative one is the largest, and increases with r, while the positive lobe

decreases. Each lobe terminates in two conical points, where it meets the other

lobe. The cone of contact at these singular points is a right cone, whose axis

is the tangent to the ellipse, and whose semi-vertical angle is

cos ^-

The w^hole figure resembles two pairs of horns, each pair joined together

by their bases, and the two pairs touching at the tips of the horns. Figure I.*

represents a cyclide of this kind. The continuous curves represent the lines

of curvature of both series. The dotted curves represent the ellipse and hyper-

bola through which the normals pass, and the dotted straight lines repre-

sent the axis of x, and the two straight lines through which the planes of

the circles pass.

(2) When r lies between h and c, the cyclide consists of a single sheet

in the form of a ring, the section of which is greatest on the negative side.

Figure II. represents a cyclide of this kind.

(3) When r is greater than c, the cyclide again consists of two sheets,

the one within the other, meeting each other in two conical points which are

situated on the positive branch of the hyperbola. The semi-vertical angle at

these points, is

1 /^-cV

There is also in all forms of the cyclide, a singular tangent plane which

2
touches the cyclide along a circle corresponding to B— ±-. Figure III. repre

[Page 159].
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sents such a cyclide. The outer sheet with its circles of contact and re-entering

conical points, and the inner spindle with its conical points meeting those of

the outer sheet, have a certain resemblance to the outer and inner sheets

of Fresnel's Wave-Surface ; and, if we bear in mind that the wave-surface

has four such singular points while the cycUde has only two, we may find

Figure III, useful in forming an idea of the singular points of the wave-surface.

If we give to r all values from -1- oo to — oo , the cyclide assumes the

forms (3), (2), (1), ( — 1), (
— 2), (

— 3) in succession, and every point of space

is traversed four times by the surface. For when r is infinite, any given

point R is within the spindle or inner sheet of (3). As r diminishes, the

spindle contracts, and when r = c it vanishes ; so that for a certain value, r^,

greater than c, the surface of the spindle passes through the point R.

At this instant the outer sheet of the cyclide is stiU beyond R, but as

r diminishes, the surface contracts, and finally vanishes when r= —b, before

which it must have passed through a value rj, for which the surface passes

through R. At this instant the surface may have the form either of the outer

sheet of (3), or of the ring cyclide of one sheet (2), or of the negative lobe

of (1).

The positive lobe of (1) begins to appear when r becomes less than h, and

increases as r diminishes, till when r= —b it becomes a ring, and when r= —c
it becomes the outer sheet of the cyclide ( — 3).

This surface, therefore, for some value, r^, of r, passes through the point R.

This value r^ is necessarily less than r,.

When r=—c -the interior sheet of ( — 3) is developed, and increases in-

definitely as r diminishes, so that for some value, r^ of r, which is less than

i\, the point 72 is on the surface of this interior sheet. We thus see that the

cyclide may be said to have four sheets, though not more than two can be

real at once. These four sheets touch at three conical points.

The first sheet, corresponding to r^, is the interior lobe of the cyclide (3),

and always touches the second sheet at a conical point on the positive branch

of the hyperbola.

The second sheet, corresponding to r^, has three different forms, being either

the outer sheet of (3), the ring cyclide of one sheet (2), or the negative lobe

of (l). When the first sheet exists, it meets it at a conical point on the

positive hyperbola, and when the third sheet exists, it meets it at a conical

point on the ellipse.
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The third sheet, corresponding to 7'„ has also three different forms. It

may be either the positive lobe of (l), the ring cydide (
— 2), or the outer

sheet of (
— 3). In the first case it has a conical point on the ellipse Nvhere

it meets the second sheet. In the second case it has no conical point, and

in the third it meets the fourth sheet in a conical point on the negative

hyperbola.

The fourth sheet is the interior spindle of the cyclide ( — 3), and always

meets the third sheet at a conical point on the negative hyperbola.

Parabolic Cyclides.

When the values of h, c, r, and x are each increased by the same quan-

tity, and if this quantity is indefinitely increased, the two conies become in

the limit two parabolas in perpendicular planes, the focus of one being the vertex

of the other, and the cyclide becomes what we may call the parabolic cycHde.

When r lies between h and c, the cyclide consists of one infinite sheet,

lying entirely between the planes x = 2h — r and x = 2c — r. The portions of space

on the positive and negative side of the sheet are linked together as the earth

and the air are linked together by a bridge, the earth, of which the bridge

forms part, embracing the air from below, and the air embracing the bridge

from above. In fact the earth and bridge form a ring of which one side is

much larger than the other.

A parabolic ring cyclide in which 2r = h-\-c, is represented in Figure IV.

When r does not lie between h and c, the cyclide consists of a lobe with

two conical points, and an infinite sheet with two conical points meeting those

of the lobe.

Surfaces of Revolution.

When 6 = 0, the cyclide is the surface formed by the revolution of a circle

of radius r about a line in its own plane distant c from the centre. If r is

less than c, the form is that of an anchor ring. If /• is greater than c, the

surface consists of an outer and an inner sheet, meeting in two conical points.

When 6 = c, the cyclide resolves itself into two spheres, which touch externally

if r ifl less than 6, .and internally if r is greater than h. When h = c = 0, tlie

two spheres become one.
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If the origin be transferred to a conical point, and if the dimensions of

the figure be then indefinitely increased, the cyclide becomes ultimately a right

cone, having the same conical angle as the original cyclide. If b = c, the cone

becomes a plane.

If h remains finite, while c, r, and x are each increased by the same

indefinitely great quantity, the cyclide ultimately becomes a right cylinder, whose

radius is r — c.

Inversion of the Cyclide.

Since every sphere, when inverted by means of the reciprocals of the radii

drawn to a fixed point, becomes another sphere, every cydide similarly inverted

becomes another cyclide. There is, however, a certain relation between the

parameters of the one cyclide and those of the other, namely

^^Z^^ = 7^37^ •• (^^)'

«^ 73^«-7^^F ^ ^•

If the point of inversion be taken oh either of the circles

af +f-2— + h' + r'-c' = 0, z = (16),

or a;^ + 2»^2^-6='-r^ + r = 0, y = a... (17),

the cyclide will become a surface of revolution in which 5 = 0, and

r:^^^
(18)

if the point of inversion be on the first circle, or

r'-h'
'(19)C C'-O'

if it be on the second.

"When r is less than c, the first circle is real; and when r is greater

than 6, the second circle is real. In the ring-cycUde r is between h and c,

and the cyclide can be transformed into an anchor ring in two difierent ways.
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If the cyclide has conical points, and if one of them be made the point

of inversion, the cyclide becomes a right cone, whose semi-vertical angle is

' I-——j if 7' is less than b, or cos ' I——j-A if r is greater than h.

If the point of inversion be at any other point of the surface, the cychde

becomes a parabolic cyclide.

he
If the point of inversion be x = —

, y = 0, z= 0, the cyclide is inverse to

itself.

On the Conjugate Isothermal Functions on the Cyclide.

Definition. If on any surface two systems of curves be drawn, each

individual curve being defined by the value of a parameter corresponding to it,

and if the two systems of curves intersect everywhere at right angles, and if

the intercept of a curve of the second system between two consecutive curves

of the first system has the same ratio to the intercept of a curve of the first

system between two consecutive curves of the second, as the difference of the

parameters of the two curves of the first system has to the difference of the

parameters of the two curves of the second system, then the two systems of

curves are called conjugate isothermal lines, and the two parameters conjugate

isothermal functions. If the surface be now supposed to be a uniform con-

ducting lamina placed between non-conducting media, one set of these lines will

be isothermal for heat or equipotential for electricity, and the other set will

be lines of flow. (See Lame on Isothinvnal Functio7is.)

This property of lines on a surface is not changed by inversion.

In the cyclide, we find the intercept tls of a line of curvature of the first

system is

c/^, = JO J
{c'-h-yda (20),

c cos np — cos a

and the intercept ds^ of a line of curvature of the second system is

*.= - 'IpT" (o'-l'N^ (21).
c cos hp — bcosa^ ' ^ '

VOL. II. 20
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If now ^ be a function of a, and
<f)

of (3, sucK that

dSi
~

d<j>

'

then d and
<f>

will be conjugate isothermal functions.

If = k ( p^ and
<i>
= k ( ^^-r^ (22),

j r — 6 cos a ^ jr — ccoshp

the condition will be satisfied. If r is greater than 6, we find

{r^ — hy b — r cos a.

It is more useful to have a expressed in terms of 6, thus :

sm a = ^ ^
'

.

co8a= V ^^) (24).

If 7- is less than 6, we have only to write the hyperbolic functions of

7-^^,.^ instead of the circular functions of T^^ZT^i' ^°^ *° ^^^*® [b'-rY for

(r'-by.

Similarly, we obtain for the relation between ^ and <^, when r is greater

than c,

(^-c?8in;^P^j
tan B = siD.h^= ,

j

r + ccosh j-j jri
(r*

—

c-y

c + r cos A- y^—^1
secB = coshlB= ^

,

'
(25).

r + c cos h —^-

—

When r is less than c we must substitute (c' -?-")* for (?^-c*)* and turn

the hyperbolic functions into circular functions.
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Having found these conjugate isothermal functions we may deduce from

them any number of other pairs, as ^, and <^„ where

^•-^-^^iand^'^-'--^^'^' (26)

On Confocal Cyelides.

A system of cyclides in which the focal ellipse and hyperbola remain the

same, while r has various values, may be called a confocal system. This system

of cyclides and the two systems of right cones which have their vertices in

one conic and pass through the other, form three systems of orthogonal surfaces,

and therefore intersect along their lines of curvature. By inversion we may get

three systems of cyclides intersecting orthogonally.

A system of confocal cyclides may also be considered as a system of wave

surfaces in an isotropic medium, corresponding to a pencil of rays, each ray of

which intersects the two focal conies. Each cyclide corresponds to a certain

value of r, which we may call the length of the ray of that cyclide.

Now let us consider the system of confocal conicoids, whose equation is of

the form

^+^.^-^.=1 (^n

By putting p = c, we get the ellipse

By putting p = h, we get the hyperbola

t-^=''y=' (2^)-

These two conies therefore belong to the system and may be called its focal

conies. If, with any point R for vertex, we draw cones through the ellipse and

hyperbola, these will be confocal cones, whose three axes are normal to the

three conicoids of the system which pass through R. The two cones will inter-

sect at right angles along four generating lines i\, 7\, r„ i\, which are normal

to four cyclides passing through the point R.

20—2
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The normal to the ellipsoid through R will be the real axis of the cone

which passes through the ellipse, and will bisect the angle between r, and r,,

and also that between r, and r^. If the ellipsoid were reflective, a ray incident

in the direction r, would be reflected in the direction of r^ reversed; hence,

by the wave theory, i\-\-r^ is constant for the ellipsoid. At the point of the

ellipsoid (p = constant) where it is cut by the axis of x,

x = p,

r^^x + c,

r^ = x — c.

So that the equation of the ellipsoid (r = constant) may be expressed in terms

of r, and r, thus

:

r, + n = 2/3 (30).

The normal to the ellipsoid also bisects the angle between r, and r^, whence we

deduce another form of the equation of the same ellipsoid

r,+ r,= -2p (31).

Hence, the general relation among the values of r,

r, + r,+ r,+ r, = (32).

The normal to the hyperboloid of one sheet (/u, = constant) bisects the angle

between r^ and r^, and also that between r, and r«, whence we obtain the

equations

ri + r3 = 2ft= -(n + r,) (33).

The normal to the hyperboloid of two sheets (i/ = constant) bisects the angles

between i\ and r,, and between r^ and r^, whence

r, + r, = 1v= -(r^-^r^ (34).

These are the equations to the conicoids in terms of the four rays of the pencil.

The equations to the four cyclides in tei-ms of elliptic co-ordinates are easily

deduced from them

r,= p + ^i-v'

n= p-fi + v

r,= —p + fi + v

r,= -p-fi-v

(35).
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Since the quantities p, c, fi, h, v,

are in descending order of magnitude, it is evident that

''., p, r^, r„ -p, r,

are also in descending order of magnitude.

The general equation to the cyclide in elliptic co-ordinates is

{r - p - p. + v) {r - p + p.-v) {r +p- p.-v) {r -\- p + p.-^v) = Q (36),

which may be expressed in Cartesian co-ordinates thus :

{x' +if-\-z''- rj -2{x-+ r) {b' -he') -2 (if - z') (c'

-

h') + Sbcrx + (c' - bj = ... (37).

When b = c there are two focal points F and F' and the values of the

four rays are

r,= RF+c]
r,= RF-c
r,= -RF +c
r,= -RF-c.

The equation of the ellipsoid

2p = r, + r, = RF+RF' (39)

in this case expresses the property of the prolate spheroid, that the sum of the

distances of any point from the two foci is constant.

In like manner, the equation

r, + r, = 2v = RF'-RF (40)

expresses the property of the hyperboloid of revolution of two sheets, that the

difference of the focal distances is constant.

In order to extend a property analogous to this to the other conicoids, let

us conceive the following mechanical construction :

Suppose the focal ellipse and hyperbola represented by thin smooth wires,

and let an indefinite thin straight rod always rest against the two curves, and

let r be measured along the rod from a point fixed in the rod. Let a string

whose length is b + c be fastened at one end to the negative focus of the ellipse

and at the other to the point (-\-h) of the rod, and let the string slide on the

ellipse at the same point as the rod rests on it. To keep the string always

tight let another equal string pass from the positive focus of the ellipse round
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the curve to the point (-6) of the rod. These strings will determine the point

of the rod which rests on any given point of the ellipse.

Let the rod also rest on the hyperbola, so that either the positive portion

of the rod rests on the positive branch of the hyperbola, or the negative portion

of the rod rests on the negative branch.

Then the point r of the rod lies in the surface of the cyclide whose para-

meter is r, and as the rod is made to shde on the ellipse and hyperbola, the

point r will explore the whole surface of the cyclide.

If we consider any point of space i2, the rod will pass through it in four

different positions corresponding to the four intersections of the cones whose

vertex is R passing through the ellipse and hyperbola.

The first position, r^, corresponds to the first sheet of the cyclide which

passes through R. If we denote the intersection of the rod with the eUipse by

Ey and its intersection with the positive and negative branches of the hyperbola

by -\-H and —H, then the order of the intersections will be in this case

E, +H, R.

The second position, r^, corresponds to the second sheet, and the order of

intersections is either

E, R, +H or -H, E, R.

The third position, r„ corresponds to the third sheet, and the order of the

intersections is either

R, E, +H, or -H, R, E.

The fourth position, r^, corresponds to the fourth sheet, and the order of the

intersections is

R, -H, E,

the letters being always arranged in the order in which r increases.

The complete system of rays is an exa,mple of a linear congruence of the

fourth order.

Now if two rods, each fulfilling the above conditions, intersect at i? in any

two of these four positions, and if a string of sufficient length be fastened to a

sufficiently distant negative point of the first rod, be passed round the point R,

and be fastened to a sufficiently distant negative point of the second rod, and if
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the two rods be then moved always keeping the string tight at the point of

intersection R, then R will trace out a conicoid.

If the rods are in the first and second positions, or in the third and fourth,

the conicoid will be an ellipsoid.

If the rods are in the first and third positions, or in the second and fourth,

the conicoid will be an hyperboloid of one sheet.

If the rods are in the first and fourth positions, or in the second and third,

the conicoid will be an hyperboloid of two sheets.

In the parabolic confocal system, the fourth sheet of the cyclide is a plane,

and i\ is parallel to the axis of x. Hence if rays parallel to the axis of a

paraboloid are reflected by the surface, they will all pass through the two focal

parabolas of the system, and the wave surface after reflexion will be a cyclide,

and if the rays are twice reflected, they will become again parallel to the axis.



[From the Edinburgh Royal Society Proceedings, Vol. vii.]

XXXVIII. On a Bow seen on the Surface of Ice.

On the 26th of January, about noon, I observed the appearance of a

coloured bow on the frozen surface of the ditch which surrounds S. John's

CoUege, Cambridge. Its appearance and position seemed to correspond with those

of an ordinary primary rainbow. I at once made a rough measurement of the

angle on the board of a book which I had with me, and then borrowed from

Dr Parkinson, President of S. John's College, a sextant with which I found

that the angle between the bright red and the shadow of the large mirror

was 41° 50', and that for bright blue 40" 30'. The angle for the extreme red

of the primary bow, as given in Parkinson's Oi^tics, is 42° 20', and that for

violet 40° 32'. The bows formed by ice crystals are seen on the same side as

the sun, and not on the opposite side. I suppose the bow which I saw to be

formed by small drops of water lying on the ice. If the lower part of each

drop were flattened, so as to bring the point at wliich the reflexion takes

place nearer to the points of incidence and emergence, the eflfect would be of

the same kind as that of a diminution of the index of refraction—that is, the

angle of the bow would be increased. How a drop of water can lie upon ice

without wetting it, and losing its shape altogether, I do not profess to explain.

Only a small part of the ice presented this appearance. It was best seen

when the incident and emergent rays were nearly equally inclined to the

horizontal. The ice was very thin, and I was not able to get near enough

to the place where the bow appeared to see if the supposed water drops really

existed.



[From the Transactions of the Royal Society of Edinburgh, Vol. xxvi.]

XXXIX. On Reciprocal Figures, Frames, and Diagrams of Forces.

(Received 17th Dec. 1869; read 7tli Feb. 1870.)

Two figures are reciprocal when the properties of the first relative to the

second are the same as those of the second relative to the first. Several kinds

of reciprocity are known to mathematicians, and the theories of Inverse Figures

and of Polar Reciprocals have been developed at great length, and have led to

remarkable results. I propose to investigate a difierent kind of geometrical

reciprocity, which is also capable of considerable development, nd can be ap-

plied to the solution of mechanical problems.

A Frame may be defined geometrically as a system of straight lines con-

necting a number of points. In actual structures these lines are material pieces,

beams, rods, or wires, and may be straight or curved; but the force by which

each piece resists any alteration of the distance between the points which it joins

acts in the straight line joining those points. Hence, in studying the equilibrium

of a frame, we may consider its different points as mutually acting on each

other with forces whose directions are those of the lines joining each pair of

points. When the forces acting between the two points tend to draw them

together, or to prevent them from separating, the action along the joining line

is called a Tension. When the forces tend to separate the points, or to keep

them apart, the action along the joining line is called a Pressure.

If we divide the piece joining the points by any imaginary section, the

resultant of the whole internal force acting between the parts thus divided will

be mechanically equivalent to the tension or pressure of the piece. Hence, in

order to exhibit the mechanical action of the frame in the most elementary

manner, we may draw it as a skeleton, in which the different points are joined

VOL. II. 21
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by straight lines, and we may indicate by numbers attached to these Hnes the

tensions or pressures in the corresponding pieces of the frame.

The diagram thus formed indicates the state of the frame in a way which

is geometrical as regards the position and direction of the forces, but arith-

metical as regards their magnitude.

But, by assuming that a line of a certain length shall represent a force

of a certain magnitude, we may represent every force completely by a line.

This is done in Elementary Statics, where we are told to draw a line from

the point of application of the force in the direction in which the force acts,

and to cut off as many units of length from the line as there are units of

force in the force, and finally to mark the end of the line with an arrow-

head, to shew that it is a force and not a piece of the frame, and that it

acts in that direction and not the opposite.

By proceeding in this way, we should get a system of arrow-headed forces

superposed on the skeleton of the frame, two equal and opposite arrows for

every piece of the frame.

To test the equilibrium of these forces at any point of concourse, we
should proceed by the construction of the parallelogram of forces, beginning

with two of the forces acting at the point, completing the parallelogram, and

drawing the diagonal, and combining this with the third force in the same way,

till, when all the forces had been combined, the resultant disappeared. We
should thus have to draw three new hnes, one of which is an arrow, in taking

in each force after the first, leaving at last not only a great number of useless

lines, but a number of new arrows, not belonging to the system of forces, and

only confusing to any one wishing to verify the process.

To simplify this process, we are told to construct the Polygon of Forces,

by drawing in succession lines parallel and proportional to the difierent forces,

each line beginning at the extremity of the last. If the forces acting at the

point are in equilibrium, the polygon formed in this way will be a closed one.

Here we have for the first time a true Diagram of Forces, in which every

force is not only represented in magnitude and direction by a straight line,

but the equilibrium of the forces is manifest by inspection, for we have only

to examine whether the polygon is closed or not. To secure this advantage,

however, we have given up the attempt to indicate the position of the force,

for the sides of the polygon do not pass through one point as the forces do.

We must, therefore, give up the plan of representing the frame and its forces
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in one diagram, and draw one diagram of the frame and a sepamte diagram

of the forces. By this method we shall not only avoid confusion, but we shall

greatly simplify mechanical calculations, by reducing them to operations with

the parallel ruler, in which no useless lines are drawn, but every line repre-

sents an actual force.

A Diagram of Forces is a figure, every line of which represents in mag-

nitude and direction the force acting along a piece of the frame.

To express the relation between the diagram of the frame and the dia-

gram of forces, the lines of the frame should each be indicated by a symbol,

and the corresponding lines of the diagram of forces should be indicated by

the same symbol, accented if necessary.

We have supposed the corresponding lines to be parallel, and it is neces-

sary that they should be parallel when the frame is not in one plane; but

if all the pieces of the frame are parallel to one plane, we may turn one of

the diaorams round a right angle, and then every line will be perpendicular

to the corresponding line.

If any number of lines meet at the same point in the frame, the corre-

sponding lines in the diagram of forces form a closed polygon.

It is possible, in certain cases, to draw the diagram of forces so that if

any number of lines meet in a point in the diagram of forces, the corre-

sponding lines in the frame form a closed polygon.

In such cases, the two diagrams are said to be reciprocal in the sense in

which we use it in this paper. If either diagram be taken as representing the

frame, the lines of the other diagram will represent a system of forces which,

if appHed along the corresponding pieces of the frame, wQl keep it in equi-

librium.

The properties of the " triangle " and " polygon " of forces have been long

known, and a "diagram" of forces has been used in the case of the "funi-

cular polygon," but I am not aware of any more general statement of the

method of drawing diagrams of forces before Professor Rankine applied it to

frames, roofs, &c., in his Applied Mechanics, p. 137, &c. The "polyhedron of

forces," or the proposition that forces acting on a point perpendicular and pro-

portional to the areas of the faces of a polyhedron are in equilibrium, has, I

beheve, been enunciated independently at various times, but the application of

this principle to the construction of a diagram of forces in three dimensions

was first made by Professor Rankine in the Philosophical Magazine, Feb. 1864.

21—2



164 RECIPROCAL FIGURES, FRAMES,

In the Philosophical Magazine for April 1864, I stated some of the properties

of reciprocal figures, and the conditions of their existence, and shewed that

any plane rectilinear figure which is a perspective representation of a closed

polyhedron with plane faces has a reciprocal figure. In Sept. 1867, I communi-

cated to the British Association a method of drawing the reciprocal figure,

founded on the theory of reciprocal polars'^".

I liave since foimd that the construction of diagrams of forces in which

each force is represented by one line, had been independently discovered by

Mr W. P. Taylor, and had been used by him as a practical method of deter-

mining the forces acting in frames for several yeai-s before I had taught it in

King's College, or even studied it myself. I understand that he is preparing

a statement of the application of the method to various kinds of structures in

detail, so that it can be made use of by any one who is able to draw one

line parallel to another.

Professor Fleeming Jenkin, in a paper recently published by the Society,

has fully explained the application of the method to the most important cases

occurring in practice,

111 the present paper I propose, first, to consider plane diagrams of frames

and of forces in an elementaiy way, as a practical method of solving questions

about the stresses in actual frameworks, without the use of long calculations.

I shall then discuss the subject in a theoretical point of view, and give a

method of defining reciprocal diagrams analytically, which is applicable to

figures either of two or of three dimensions.

Lastly, I shall extend the method to the Investigation of the state of

stress in a continuous body, and shall point out the nature of the function of

stress first discovered by the Astronomer Royal for stresses in two dimensions,

extending the use of such functions to stresses in three dimensions.

On Reciprocal Plane PectiJincai' Figures.

Definition.—Two plane rectilinear figures are reciprocal when they consist

of an equal number of straight lines, so that corresponding lines in the two

figures are at right angles, and corresponding lines which meet in a point in

the one figure form a closed polygon in the other.

* [See pp. 169 and 1S8].
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2^ote.—It is often convenient to turn one of the figures round in its own

plane 90*. Corresponding lines are then parallel to each other, and this is

sometimes more convenient in comparing the diagrams by the eye.

Since every polygon in the one figure has three or more sides, every

point in the other figure must have three or more lines meeting in it. Since

every line in the one figure has two, and only two, extremities, every line in

the other figure must be a side of two, and only two, polygons. If either of

these fi'^ures be taken to represent the pieces of a frame, the other will repre-

sent a system of forces such that, these forces being applied as tensions or

pressures along the corresponding pieces of the frame, every point of the frame

will be in equilibrium.

The simplest example is that of a triangular frame without weight, ABC,

jointed at the angles, and acted on by three forces, P, Q, R, applied at the

angles. The directions of these three forces must meet in a point, if the frame

is in equilibrium. We shall denote the lines of the figure by capital letters,

and those of the reciprocal figure by the corresponding small letters ; we shall

denote points by the lines which meet in them, and polygons by the lines

which bound them.

Here, then, are three lines. A, B, C, forming a triangle, and three other

lines, Py Q, R, drawn from the angles and meeting in a point. Of these

forces let that along P be given. Draw the first line p of the reciprocal

diagram parallel to P, and of a length representing, on any convenient scale,

the force along P. The forces along P, Q, R are in equilibrium, therefore, if

from one extremity of p we draw q parallel to Q, and from the other

extremity r parallel to R, so as to form a triangle pqr, then q and r will

represent on the same scale the forces along Q and R.

To determine whether these forces are tensions or pressures, make a point

travel along p in the direction in which the force in P acts on the point of
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concourse of PQR, and let the point travel in the same direction round the

polygon pqr. Then, the direction in which the point travels along any side

of the polygon wiU be the direction in which the force acts along the corre-

sponding piece of the frame on the point of concourse. If it acts from the

point of concourse, the force is a tension ; if towards it, it is a pressure.

The other extremity of P meets B and C, and the forces along these

three pieces are in equiUbrium, Hence, if we draw a triangle, having p for

one side and lines parallel to B and C for the others, the sides of this triangle

will represent the three forces.

Such a triangle may be described on either side of p, the two together

would form a parallelogram of forces ; but the theory of reciprocal figures indi-

cates that only one of these triangles forms part of the diagram of forces.

The rule for such cases is as follows :—Of the two extremities of p, one

corresponds to the closed figure PRB, and the other to the closed figure PQC,

these being the polygons of which P is a side in the first figure.

We must, therefore, draw b parallel to B from the intersection of p and r,

and not from the other extremity, and we must draw c parallel to C from

the intersection of p and q.

We have now a second triangle, _2:>Z>c, corresponding to the forces acting at

the point of concourse of P, B, C. To determine whether these forces are

tensions or pressures, we must make a point travel round phc, so that its

course along p is in the opposite direction to its course round pqr, because the

piece P acts on the points PBC and PQR with equal and opposite forces.

If we now consider the equilibrium of the point of concourse of QC and A,

we shall find that we have determined two of these forces by the lines q and c,

and that the third force must be represented by the line a which completes the

triangle qca.

We have now constructed a complete diagram of forces, in which each

force is represented by a single line, and in which the equilibrium of the forces

meeting at any point is expressed visibly by the corresponding lines in the

other figure forming a closed polygon.

There are in this figure six lines, having four points of concourse, and

forming four triangles. To determine the direction of the force along a given

line at any point of concourse, we must make a point travel round the cor-

responding polygon in the other figure in a direction which is positive with

respect to that polygon. For this purpose it is desirable to name the polygons
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in a determinate order of their sides, so arranged that, when we arrive at the

same side in naming the two polygons which it divides, we travel along it in

opposite directions. For instance, if pqr be one of the polygons, the others are

pbc, qca, rah.

Xote.—It may be observed, that after drawing the lines p, q, r, h, c with

the parallel ruler, the line a was drawn by joining the points of concourse of

q, r and h, c; but, since it represents the force in -4, a is parallel to A.

Hence the following geometrical theorem:

—

If the lines PQR, drawn from the angles of the triangle ABC, meet in a

point, then if JW he a triangle with its corresponding sides parallel to P, Q, R,

and if a, 6, c be drawn from its corresponding angles parallel to A, B, C, the

lines a, h, c will meet in a point.

A geometrical proof of this is easHy obtained by finding the centres of the

four circles circumscribing the triangles ABC, AQR, BRP, CPQ, and joining

the four centres thus found by six lines.

These lines meet in the four centres, and are perpendicular to the six

lines, A, B, C; P, Q, R; but by turning them round 90" they become parallel

to the corresponding lines in the original figure.

The diagram formed in this way is definite in size and position, but any

figure similar to it is a reciprocal diagram to the original figure. I have

explained the construction of this, the simplest diagram of forces, more at

length, as I wish to shew how, after the first line is drawn and its extremities

fixed on, every other line is drawn in a perfectly definite position by means of

the parallel ruler.

In any complete diagram of forces, those forces which act at a given point

in the frame form a closed polygon. Hence, there will be as many closed

polygons in the diagram as there are points in the frame. Also, since each

piece of the frame acts with equal and opposite forces on the two points which

form its extremities, the force in the diagram will be a side of two difterent

polygons. These polygons might be drawn in any positions relatively to each

other ; but, in the diagrams here considered, they are placed so that each force

is represented by one line, which forms the boundary between the two polygons

to which it belongs.

If we regard the polygons as surfaces, rather than as mere outlines, every

polygon will be bounded at every point of its outline by other polygons, so
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that the whole assemblage of polygons will form a continuous surface, which

must either be an infinite surface or a closed surface.

The diagram cannot be infinite, because it is made up of a finite number

of finite lines representing finite forces. It must, therefore, be a closed surface

returning on itself, in such a way that every point in the plane of the diagram

either does not belong to the diagram at all, or belongs to an even number

of sheets of the diagram.

Any system of polygons, which are in contact with each other externally,

may be regarded as a sheet of the diagram. When two polygons are on the

same side of the line, which is common to them, that line forms part of the

common boundary of two sheets of the diagram. If we reckon those areas

positive, the boundary of which is traced in the direction of positive rotation

round the area, then all the polygons in each sheet will be of the same sign as

the sheet, but those sheets which have a common boundary will be of opposite

sign. At every point in the diagram there will be the same number of positive

as of negative sheets, and the whole area of the positive sheets will be equal to

that of the negative sheets.

The diagram, therefore, may be considered as a plane projection of a closed

polyhedron, the faces of the polyhedron being surfaces bounded by rectilinear

polygons, which may or may not, as far as we yet know. He each in one plane.

Let us next consider the plane projection of a given closed polyhedron.

If any of the faces of this polyhedron are not plane, we may, by drawing

additional hnes, substitute for that face a system of triangles, each of which is

necessarily in a plane. We may, therefore, consider the polyhedron as bounded

by plane faces. Every angular point of this polyhedron will be defined by its

projection on the plane and its height above it.

Let us now take a fixed point, which we shall call the origin, and draw

from it a perpendicular to the plane. We shall call this line the axis. If we

then draw from the origin a line perpendicular to one of the faces of the poly-

hedron, it will cut the plane at a point which may be said to correspond to the

projection of that face. From this point draw a line perpendicular to the plane,

and take on this line a point whose distance from the plane is equal to that

of the intersection of the axis with the face of the polyhedron produced, but on

the other side of the plane. This point in space will correspond to the face of

the polyhedron. By repeating this process for every face of the polyhedron, we

shall find for every face a corresponding point with its projection on the plane.
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To every edge of the polyhedron will correspond the line which joins the

points corresponding to the two faces which meet in that edge. Each of these

lines is perpendicular to the projection of the other; for the perpendiculars

from the origin to the two faces, lie in a plane perpendicular to the edge in

which they meet, and the projection of the line corresponding to the edge is

the intersection of this plane with the plane of projection. Hence, the edge is

perpendicular to the projection of the corresponding line. The projection of the

edge is therefore perpendicular to the projection of the corresponding line, and

therefore to the corresponding line itself. In this way we may draw a diagram

on the plane of projection, every line of which is perpendicular to the corre-

sponding line in the original figure, and so that lines which meet in a point

in the one figure form a closed polygon in the other.

Ifi in a system of rectangular co-ordinates, we make z = the plane of pro-

jectionj and x = 0, y = 0, z = c the fixed point, then if the equation of a plane be

z =Ax + Bi/+C,

the co-ordinates of the corresponding point will be

^=cA, r) = cB, C=-C,

and we may write the equation

If we suppose ^, rj, ^ given as the co-ordinates of a point, then this equa-

tion, considering x, y, z aa variable, is the equation of a plane corresponding

to the point.

If we suppose x, y, z the co-ordinates of a point, and ^, rj, {as variable,

the equation will be that of a plane corresponding to that point.

Hence, if a plane passes through the point xyz, the point corresponding

to this plane lies in the plane corresponding to the point xyz.

These points and planes are reciprocally polar in the ordinary sense with

respect to the paraboloid of revolution

2cz =zx^ + 'if.

We have thus arrived at a construction for reciprocal diagrams by con-

sidering each as a plane projection of a plane-sided polyhedron, these polyhedra

being reciprocal to one another, in the geometrical sense, with respect to a cer-

tain paraboloid of revolution.

VOL. II. 22
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Each of the diagrams must fulfil the conditions of being a plane projection

of a plane-sided polyhedron, for if any of the sides of the polyhedron of which

it is the projection are not plane, there will be as many points corresponding

to that side as there are different planes passing through three points of the

side, and the other diagram wiU be indefinite.

Relation between the Number of Edges, Summits, and Faces of Polyhedra.

It is manifest that after a closed surface has been divided into separate

faces by hnes drawn upon it, every new line drawn from a point in the system,

either introduces one new point into the system, or divides a face into two

parts, according as it is drawn to an isolated point, or to a point already

connected with the system. Hence the sum of points and faces is increased

by one for every new line. K the closed surface is acycHc, or simply connected^^

like that of a solid body without any passage through it, then, if from any

point we draw a closed curve on the surface, we divide the surface into two

faces. We have here one line, one point, and two faces. Hence, if e be the

number of lines, s the number of points, and f the number of faces, then in

general

e—s —f=

m

* See Riemann, Crelle's Journal, 1857, Lehrsdtze aits der ancdysis situs, for space of two dimen-

sions; also Cayley on the Partitions of a Close, PhU. Mag. 1861; Helmholtz, CreUe's Journal, 1858,

Wirbelbewegung, for the application of the idea of multiple continuity to space of three dimensions;

J. B. Listing, Gottingen Trans., 1861, Der Census Rdumliclier Complexe, a complete treatise on the

subject of Cyclosis and Periphraxy.

On the importance of this subject see Gauss, Werke, v. 605, "Von der Geometria Sittcs die

Leibnitz ahnte und in die nur einem Paar Geometern (Euler nnd Vandermonde) einen schwachen

Blick zu thun vergonnt war, wissen und haben wir nach anderthalbhundert Jahren noch nicht viel

mehr wie nichts."

iTo^e added March 14, 1870,—Since this was written, I have seen Listing's Census. In his

notation, the surface of an n-ly connected body (a body with n -I holes through it) is (2n - 2)

cyclic. If 2n — 2 - Kg expresses the degree of cyclosis, then Listing's general equation is

—

s-{e-K^) + {/-Kg + ^^)-{v-K^ + 7!:^-w) = 0,

where s is the number of points, e the number of lines, K^ the number of endless curves, J" the number
of faces. Kg the number of degrees of cyclosis of the faces, Wj, the number of periphractic or closed

faces, V the number of regions of space, K^ the number of degrees of cyclosis, tT^ their number of

degrees of periphraxy or the number of regions which they completely surround, and w is to be put

= 1 or =0, according as the system does or does not extend to infinity.
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when m remains constant, however many lines be drawn. But in the case of a

simple closed surface

w = - 2.

If the closed surface is doubly connected, like that of a solid body with a

hole through it, then if we draw one closed curve round the hole, and another

closed curve through the hole, and round one side of the body, we shall have

(^ = 2, .9=1, /=1, so that m = 0. If the surface is ?i-ly connected, like that of

a solid with n-l holes through it, then we may draw n closed curves round

the 71-1 holes and the outside of the body, and n-l other closed curves each

through a hole and round the outside of the body.

We shall then have 4(h-1) segments of curves terminating in 2 (n-l)

points and dividing the surface into two faces, so that e = A{n — l), s = 2(n — l),

and /= 2, and
e-s-f=2n-A,

and this is the general relation between the edges, summits, and faces of a

polyhedron whose surface is n-\j connected.

The plane reciprocal diagrams, considered as plane projections of such poly-

hedra, have the same relation between the numbers of their lines, points, and

polygons. It is manifest that since

ei = e„ s,=f„ and/ = 5„

where the suffixes refer to the first and second diagrams respectively

7Zi = n.;,,

or the two diagrams are connected to the same degree.

On the Degrees of Freedom and Constraint of Frames.

To determine the positions of s points in space, with reference to a given

origin and given axes, 35 data are required ; but since the position of the origin

and axes involve 6 data, the number of data required to determine the relative

position of s points is 3s — G.

If, therefore, the lengths of 3s -6 lines joining selected pairs of a system

of s points be given, and if these lengths are all independent of each other, then

the distances between any other pair of points will be determinate, and the

system will be rigidly connected.

22—
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If, however, the lines are so chosen that those which join pairs of points of

a system of s' of the points are more than 3s' — 6 in number, the lengths of

these lines will not be independent of each other, and the lines of this partial

system will only give 3s' — 6 independent data to determine the complete system.

In a system of s points joined by e lines, there will in general be 3s- 6 -e

=p degrees of freedom, provided that in every partial system of s' points joined

by e lines, and having in itself p' degrees of freedom, p' is not negative. If in

any such system p is negative, we may put g= —p, and call q the number of

degrees of constraint, and there will be q equations connecting the lengths of

the lines ; and if the system is a material one, the stress along each piece will

be a function of q independent variables. Such a system may be said to have

q degrees of constraint. K p' is negative in any partial system, then the de-

grees of freedom of the complete system are p—p\ where p and p' are got

from the number of points and lines in the complete and partial systems. If s

points are connected by e lines, so as to form a polyhedron of / faces, enclosing

a space n times connected, and if each of the faces has m sides, then

mf=2e.

We have also e-s-/=2n-4,

and 3s — e=p-\-6,

whence p = 6(l-n) + (2 j
e.

If aU the faces of the polyhedron are triangles, m = 3, and we have

p = 6{l-n).

If n=l, or in the case of a simply connected polyhedron with triangular

faces, p = o, that is to say, such a figure is a rigid system, which would be no

longer rigid if any one of its lines were wanting. In such a figure, if made of

material rods forming a closed web of triangles, the tensions and pressures in

the rods would be completely determined by the external forces appUed to the

figure, and if there were no external force, there would be no stress in the rods.

In a closed surface of any kind, if we cover the surface* with a system

of curves which do not intersect each other, and if we draw another system

* On the Bending of Surfaces, by J. Clerk Maxwell. Cambridge Tramactions, 1856. [Vol. i. p. 80.]
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intersecting these, and a third system passing diagonally through the intersec-

tions of the other two, the whole surface will be covered with small curvilinear

triangles, and if we now substitute for the surface a system of rectilinear

triangles having the same angular points, we shall have a polyhedron with

triangular faces diflfering infinitely little from the surface, and such that the

length of any line on the surface differs infinitely little from that of the corre-

sponding line on the polyhedron. We may, therefore, in all questions about the

transformation of surfaces by bending, substitute for them such polyhedra with

triangular faces.

We thus find with respect to a simply connected closed inextensible surface

—1st, That it is of invariable form*; 2nd, That the stresses in the surface

depend entirely on the external appUed forcesf ; 3rd, That if there is no external

force, there is no stress in the surface.

In the limiting case of the curved surface, however, a kind of deformation

is possible, which is not possible in the case of the polyhedron. Let us suppose

that in some way a dimple has been formed on a convexo-convex part of the

surface, so that the edge of the dimple is a plane closed curve, and the

dimpled part is the reflexion in this plane of the original form of the surface.

Then the length of any line drawn on the surface will remain unchanged.

Now let the dimple be gradually enlarged, so that its edge continually

changes its position. Every line on the surface will still remain of the same

length during the whole process, so that the process is possible in the case of

an inextensible surface. In this way such a surface may be gradually turned

outside in, and since the dimple may be formed from a mere point, a pressure

applied at a single point on the outside of an inextensible surface will not be

resisted, but will form a dimple which will increase till one part of the surface

comes in contact with another.

In the case of closed surfaces doubly connected, p= ^6, that is, such sur-

faces are not only rigid, but are capable of internal stress, independent of

external forces, and the expression of this stress depends on six independent

variables.

This has been shewn by Professor Jellett, Trans. R.I. A., Vol. xxii. p. 377.

t On the Equilibrium of a Spherical Envelope, by J. C. Maxwell. Quarterly Journal of Mathe-

matics, 1867. [Vol. II. p. 86.]
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In a polyliedron with triangular faces, if a number of the edges be taken

away so as to form a hole with e^ sides, the number of degrees of freedom is

Hence, in order to make an n-\j connected polyhedron simply rigid without

stress, we may cut out the edges till we have formed a hole having 6n-3

edges. The system will then be free from stress, but if any more edges be

removed, the system will no longer be rigid.

Since in the limiting case of the inextensible surface, the smallest hole

may be regarded as having an infinite number of sides, the smallest hole made

in a closed inextensible surface connected to any degree will destroy its rigidity.

Its flexibility, however, may be confined within very narrow limits.

In the case of a plane frame of s points, we have 2s data required to

determine the points with reference to a given origin and axes ; but since 3

arbitrary data are involved in the choice of origin and axis, the number of

data required to determine the relative position of s points in a plane is 25-3.

If we know the lengths of e lines joining certain pairs of these points,

then in general the number of degrees of freedom of the frame will be

p = 2s-e-.S.

If, however, in any partial system of s points connected by e lines, the

quantity p' = 2s'-e-S be negative, or in other words, if a part of the frame

be self-strained, this partial system will contribute only 2s -S equations inde-

pendent of each other to the complete system, and the whole frame will have

p—p' degrees of freedom.

In a plane frame, consisting of a single sheet, every element of which is

triangular, and in which the pieces form three systems of continuous lines, as

at p. 173, if the frame contains e pieces connecting s points, s of which are

on the circumference of the frame and s^ in the interior, then

3s-s' = e + 3.

Hence _p = - (s - s') = - s^,

a negative quantity, or such a frame is necessarily stiff"; and if any of the

points are in the interior of the frame, the frame has as many degrees of

constraint as there are interior points—that is, the stresses in each piece will be
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functions of s^ variables, and 5, pieces may be removed from the frame without

rendering it loose.

If there are n holes in the frame, so that s' points lie on the circum-

ference of the frame or on those of the holes, and 5, points lie in the interior,

the degree of stiffness will be

—p = s^ + 3n.

If a plane frame be a projection of a polyhedron of / faces, each of m sides,

and enclosing a space n times connected, then

e-5-/=2n-4,

2s-e=p-{-3,

whence p = 5 -4)1 + 1

1

je.

If all the faces are quadrilaterals m = 4 and p = 5-in, or a plane frame which

is the projection of a closed polyhedron with quadrilateral faces, has one degree

of freedom if the polyhedron is simply connected, as in the case of the pro-

jection of the solid bounded by six quadrilaterals, but if the polyhedron be

doubly connected, the frame formed by its plane projection will have three

degrees of stiffness. (See Diagram II.)

Theorem.—If every one of a system of points in a plane is in equiUbrium

under the action of tensions and pressures acting along the lines joining the

points, then if we substitute for each point a small smooth ring through which

smooth thin rods of indefinite length corresponding to the lines are compelled

to pass, then, if to each rod be applied a couple in the plane, whose moment

is equal to the product of the length of the rod between the points multiplied

by the tension or pressure in the former case, and tends to turn the rod m

the positive or the negative direction, according as the force was a tension or

a pressure, then every one of the system of rings will be in equilibrium. For

each ring is acted on by a system of forces equal to the tensions and pres-

sures in the former case, each to each, the whole system being turned round

a right angle, and therefore the equilibrium of each point is undisturbed.

Theorem.—In any system of points in equilibrium in a plane under the

action of repulsions and attractions, the sum of the products of each attraction
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multiplied by the distance of the points between which it acts, is equal to

the sum of the products of the repulsions multiplied each by the distance of

the points between which it acts.

For since each point is in equilibrium under the action of a system of

attractions, and repulsions in one plane, it will remain in equilibrium if the

system of forces is turned through a right angle in the positive direction. If

this operation is performed on the systems of forces acting on all the points,

then at the extremities of each line joining two points we have two equal

forces at right angles to that line and acting in opposite directions, forming

a couple whose magnitude is the product of the force between the points and

their distance, and whose direction is positive if the force be repulsive, and

negative if it be attractive. Now since every point is in equilibrium these two

systems of couples are in equilibrium, or the sum of the positive couples is

equal to that of the negative couples, which proves the theorem.

In a plane frame, loaded with weights in any manner, and supported by

vertical thrusts, each weight must be regarded as attracted towards a horizontal

base Une, and each support of the frame as repelled from that Hne. Hence

the following rule

:

Multiply each load by the height of the point at which it acts, and each

tension by the length of the piece on which it acts, and add all these

products together.

Then multiply the vertical pressures on the supports of the frame each by

the height at which it acts, and each pressure by the length of the piece on

which it acts, and add the products together. This sum will be equal to the

former sum.

If the thrusts which support the frame are not vertical, their horizontal

components must be treated as tensions or pressures borne by the foundations

of the structure, or by the earth itself.

The importance of this theorem to the engineer arises from the circum-

stance that the strength of a piece is in general proportional to its section, so

that if the strength of each piece is proportional to the stress which it has

to bear, its weight will be proportional to the product of the stress multipHed

by the length of the piece. Hence these sums of products give an estimate of

the total quantity of material which must be used in sustaining tension and

pressure respectively.
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The following method of demonstrating this theorem does not require the

consideration of couples, and is applicable to frames in three dimensions.

Let the system of points be caused to contract, always remaining similar

to its original form, and with its pieces similarly situated, and let the same

forces continue to act upon it during this operation, so that every point is

always in equilibrium under the same system of forces, and therefore no work

is done by the system of forces as a whole.

Let the contraction proceed till the system is reduced to a point. Then

the work done by each tension is equal to the product of that tension by the

distance through which it has acted, namely, the original distance between the

points. Also the work spent in overcoming each pressure is the product of

that pressure by the original distance of the points between which it acts; and

since no work is gained or lost on the whole, the sum of the first set of

products must be equal to the sum of the second set. In this demonstration

it is not necessary to suppose the points all in one plane. This demonstration

is mathematically equivalent to the following algebraical proof:

—

Let the co-ordinates of the n different points of the system be x^.z^,

x^^„ Xpi/pZp, &c., and let the force between any two points p, q, be P^,,

and their distance r^, and let it be reckoned positive when it is a pressure,

and negative when it is a tension, then the equation of equilibrium of any

point p with respect to forces parallel to a: is

{Xp-x:)^ + (Xp-x.:)^ + &c. + (Xp-x,)^ + &c.=0,

or generally, giving t all values from 1 to n,

2;{(^p-x,)^j=o.

Multiply this equation by Xp. There are n such equations, so that if each is

multiplied by its proper co-ordinate and the sum taken, we get

Ill ^Pt)

and adding the corresponding equations in y and z, we get

tptt(P^,r,,) =
1 1

'

which is the algebraic expression of the theorem.

VOL. II. 23
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General Theory of Diagrams of Stress in Three Dimensions.

First Method of Representing Stress in a Body.

Definition. A diagram of stress is a figure having such a relation to a

body under the action of internal forces, that if a surface A, limited by a

closed curve, is drawn in the body, and if the corresponding limited surface a

be drawn in the diagram of stress, then the resultant of the actual internal

forces on the positive side of the surface A in the body is equal and parallel

to the resultant of a uniform normal pressure j> acting on the positive side of

the surface a in the diagram of stress.

Let X, y, z be the co-ordinates of any point in the body, f, t], ^ those of

the corresponding point in the diagram of stress, then ^, ly, ^ are ftmctions of

X, y, 2, the nature of which we have to ascertain, so that the internal forces

in the body may be in equiUbrium. For the present we suppose no external

forces, such as gravity, to act on the particles of the body. We shall consider

such forces afterwards.

Theorem 1.—If any closed surface is described in the body, and if the stress

on any element of that surface is equal and parallel to the pressure on the

corresponding element of surface in the diagram of stress, then the resultant stress

on the whole closed surface will vanish ; for the corresponding surface in the

diagram of stress is a closed surface, and the resultant of a uniform normal

pressure p on every element of a closed surface is zero by hydrostatics.

It does not, however, foUow that the portion of the body within the

closed surface is in equilibrium, for the stress on its surface may have a re-

sultant moment.

Theorem 2.—To ensure equilibrium of every part of the body, it is neces-

sary and sufficient that

^_dF _dF dF
^~dx' '^~dy' ^~ dz*

where F is any function of x, y, and z.

Let us consider the elementary area in the body dydz. The stress acting

on this area will be a force equal and parallel to the resultant of a pressure p
acting on the corresponding element of area in the diagram of stress. Eesolving
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this pressure in the directions of the co-ordinate axes, we find the three com-

ponents of stress on dydz, which we may call p^dydz, p^ydijdz, and pxzdijdz,

each equal to j^ multiplied by the area of the projection of the corresponding

element of the diagram of stress on the three co-ordinate planes. Now, the

projection on the plane yz, is

dr) dt, dr) dt,

7ly dz dz dy^
dydz.

Hence we find for the component of stress in the direction of x

drj dl, dr} dt,

^''~^\dydz dzdyj'

which we may write for brevity at present

Similarly,

I>xy=pJ(l ^; y, z), p„=pJ{i, rf, y, z).

In the same way, we may find the components of stress on the areas

dzdx and dxdy—
Py,=pJ{v, C; Z, ^), Pyy =pJ{l ^; ^' 4 Pyz=pJ{l V '> ^> ^l

Pzx=pJ{% i'y ^. y)' Pzy=pJ{'^' t' ^' y)> Pzz=vJ{^' V' ^' y)-

Now, consider the equilibrium of the parallelopiped dxdydz, with respect

to the moment of the tangential stresses about its axes.

The moments of the forces tending to turn this elementary parallelopiped

about the axis of x are

dzdxpy^ . dy — dxdyp.y . dz.

To ensure equilibrium as respects rotation about the axis of x, we must have

Pyz = Pzr

Similarly, for the moments about the axes of y and z, we obtain the equa-

tions

Pzx=Pzz and Pxy=iV
Now, let us assume for the present

23—2
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Then the equation 2'^y^^P^y becomes

'{dz dx dxdz) ^ \dx dy dy dxj

or (A -Q (B,-Q-A, (B, +Q = (B,+Q (B,+Q - A, (B, - Q,
=AA +^A+ B,C^

Similarly, from the two other equations of equilibrium we should find

=AA + ^iC,-hB,C„

= A,C, + B,C, + B,C,.

From these three equations it foUows that

C, = 0, a = 0, (73 = 0.

dT)_dC d^_dl dl_dri^
^^^^® dz'dy' dx~dz' dy'dx*

and ^dx + rjdy-^-Cdz is a complete differential of some function, F, of x, y and z,

whence it follows that

dF _dF dF
^~dx' "^'dy' ^ dz'

F may be called the function of stress, because when it is known, the diagram

of stress may be formed, and the components of stress calculated. The form

of the function F is limited only by the conditions to be fulfilled at the

bounding surface of the body.

The six components of stress expressed in terms of F are

(d'Fd'F fd'FV} U'Fd'F /d'FV\ ^ (d'FdF^ /^'-^M

f d'F d'F d'F d'F\ _ (d'F d'F d'F d'F\
P^'P [dzdx dxdy daf dydz) '

-^^ ^ \dxdy dydz df dzdxj

'

/ d'F d'F _ d'F d'F \

^^ ~^ [dydz dzdx dz' dxdy)
'

If -^-z, F becomes Airy's function of stress in two dimensions, and we have
dz ''

d'F d'F d'F
P^=P:^' Pyy=Pd^' P^=-Pd^y'

The system of stress in three dimensions deduced in this way from any

function, F, satisfies the equations of equilibrium of internal stress. It is not,
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however, a general solution of these equations, as may be easily seen by taking

the case in which p„ and p^, are both zero at all points. In this case, since

there is no tangential action in planes parallel to xy, the stresses y:>„, jj^ and

p^ in each stratum must separately fulfil the conditions of equilibrium,

d d o ^ .
^ f^

The complete solution of these equations is, as we have seen,

_d^ dy _df
^'^'df "^^^~ dxdy' ^^ dj?'

where / is any function of x and y, the form of which may be different for

every different value of z, so that we may regard / as a perfectly general

function of x, y, and z.

Again, if we consider a cylindrical portion of the body with its generating

lines parallel to z, we shall see that there is no tangential action parallel to z

between this cylinder and the rest of the body. Hence the longitudinal stress

in this cylinder must be constant throughout its length, and is independent of

the stress in any other part of the body.

Hence P« = <^(^, !/).•

where ^ is a function of x and y only, but may be any such function. But

expressing the stresses in terms of F under the conditions Pzz = 0, Py, = 0, we

find that if -F is a perfectly general function of x and y

-J—^ = 0, and -7—j- = 0.
docdz dydz

whence it follows that -j- and -j- are functions of x and y only, and that
ax ay

dF
-7- is a function of z only. Hence

F=G+ Z,

when (x is a function of x and y only, and Z a function of z only, and the

components of stress are

d'Gd'Z d'Gd^Z _ UWd'G ( d'G X]
P-=Pdfdz^' P'^=Pd^d7' p--p\d^^ dj-\dxdnly

d'G d:Z

P^ = 0, p^ = 0, P^=-Pdxdydz^-
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Here the function / which determines the stress in the strata parallel to xy is

Now, this function is not sufficiently general, for instead of being any

function of x, y, and z, it is the product of a function of x and y multiplied

by a function of z.

Besides this, though the value of p^^ is, as it ought to be, a function of x

and y only, it is not of the most general form, for it depends on G, the

function which determines the stresses p^, p^, and 'Pyy,
whereas the value of

jL)„ may be entirely independent of the values of these stresses. In fact, the

equations give

iz'l'dz'

This method, therefore, of representing stress in a body of three dimen-

sions is a restricted solution of the equations of equilibrium.

On Reciprocal Diagrams in Three Dimensions.

Let us consider figures in two portions of space, which we shall call respec-

tively the first and the second diagrams. Let the co-ordinates of any point in

the first diagram be denoted by x, y, z, and those of the corresponding point in

the second by ^, -q, ^, measured in directions parallel to x, y, z respectively.

Let i^ be a quantity varying from point to point of the first figure in any

continuous manner; that is to say, \£ A, B are two points, and F^, F^ the

values of F at those points ; then, if B approaches A without limit, the value

of F._ approaches that of F^ without limit. Let the co-ordinates (^, -q, Q of a

point in the second diagram be determined from x, y, z, those of the corre-

sponding point in the first by the equations

^ dF dF , dF ,,.

^=^' '^ =^' ^=^ ^^^'

This is equivalent to the statement, that the vector (p) of any point in the

second diagram represents in direction and magnitude the rate of variation of F
at the corresponding point of the first diagram.
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Next, let us determine another function, </>, from the equation

xi+7jr} + zC=F+cf> (2).

<f>,
as thus determined, will be a function of x, y, and z, since ^, 77, i are

known in terms of these quantities. But, for the same reason, <^ is a function

of i, V> ^- Differentiate
<f>

with respect to $, considering x, y, and z functions

of i, V, i

d(f>_ ^dx dy ^ dz dF
d~i~'^'^ ^ Ti'^'^ di"^ ^ di~ d^

-

Substituting the values of ^, t], ^ from (l)

d^_ dFdx dFdy dFd^_dF
d^'^'^dxdi'^ dy d^'^ dz d^ d^

dF_dF
'"^^d^ di
= x.

Differentiating
<f>

with respect to rj and C, we get the three equations

d^ d^ d^

""-dr ^~dr)' '-c/4 ^ ^'

or the vector (r) of any point in the first diagram represents in direction and

magnitude the rate of increase of
<f>

at the corresponding point of the second

diagram.

Hence the first diagram may be determined from the second by the same

process that the second was determined from the first, and the two diagrams,

each with its own function, are reciprocal to each other.

The relation (2) between the functions expresses that the sum of the func-

tions for two corresponding points is equal to the product of the distances of

these points from the origin multiplied by the cosine of the angle between the

directions of these distances.

Both these functions must be of two dimensions in space. Let i*^ be a

linear function of xyz, which has the same value and rate of variation as F
has at the point x^y^^

/- = F. + (x-x.)f+ (y-,.)^ + (.-z.)f- (4).

The value of F' at the origin is found by putting x, y, and 2 =

F = F,-x,^-y,r)-zX=-<f> (5),
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or the value of F* at the origin is equal and opposite to the value of ^ at

the point ^, t?, t,.

If the rate of variation of F is nowhere infinite, the co-ordinates ^, r), {,

of the second diagram must be everywhere finite, and vice versa. Beyond the

limits of the second diagram the values of x, y, z, in terms of ^, iq, t„ must

be impossible, and therefore the value of <^ is also impossible. Within the

limits of the second diagram, the function ^ has an even number of values at

every point, corresponding to an even number of points in the first diagram,

which correspond to a single point in the second.

To find these points in the first diagram, let p be the vector of a given

point in the second diagram, and let surfaces be drawn in the first diagram

for which F is constant, and let points be found in each of these surfaces at

which the tangent plane is perpendicular to p, these points will form one or

more curves, which must be either closed or infinite, and the points on these

curves correspond to the points in the second diagram which lie in the

direction of the vector p. If p be the perpendicular from a point in the first

diagram on a plane through the origin perpendicular to p, then all those points

on these curves at which -r- = p correspond to the given point in the second

diagram. Now, since this point is within the second diagram, there are values

fJF
of p both greater and less than the given one ; and therefore -r— is neither an

absolute maximum nor an absolute minimum value. Hence there are in general

an even number of points on the curve or curves which correspond to the

given point. Some of these points may coincide, but at least two of them

must be different, unless the given point is at the limit of the second diagram.

Let us now consider the two reciprocal diagrams with their functions, and

ascertain in what the geometrical nature of their reciprocity consists.

(1) Let the first diagram be simply the point Pj, (x^, y^, z^), at which

F=Fi, then in the other diagram

<f>
= ^r^+y^l+^X-F^ (6),

or a point in one diagram is reciprocal to a space in the other, in which the

function <^ is a linear function of the co-ordinates.



AND DIAGRAMS OF FORCES. 185

(2) Let the first diagram contain a second point Pj, (jc^, y^, z.), at which

F=F„, then we must combine equation (G) with

<i>
= x,^+y.j) + zX-F, (7),

whence eliminating <^,

{x,-x:^^-\-{y,-y.)'n + {z,-zH = F.-F,.

If r,„ is the length of the line drawn from the first point P, to the second

P,; and if li^m^.n^^ are its direction cosines, this equation becomes

F -F
'13

or the reciprocal of the two points P, and P„ is a plane, perpendicular to the

line joining them, and such that the perpendicular from the origin on the plane

multiplied by the length of the line P^P^ is equal to the excess of P. over P,.

(3) Let there be a third point P, in the first diagram, whose co-ordinates

are a;,, y„ z, and for which F=F^', then we must combine with equations (6)

and (7)

4>=^.^+y.-n+^-Ji-F^ (8).

The reciprocal of the three points Pj, P^, P^ is a straight line perpen-

dicular to the plane of the three points, and such that the perpendicular on

this line from the origin represents, in direction and magnitude, the rate of

most rapid increase of F in the plane P^P^P^, F being a linear function of the

co-ordinates whose values at the three points are those given.

(4) Let there be a fourth point P^ for which F=F^.

The reciprocal of the four points is a single point, and the line drawn

from the origin to this point represents, in direction and magnitude, the rate

of greatest increase of F, supposing F such a linear function of xyz that its

values at the four points are those given. The value of ^ at this point is

that of F at the origin.

Let us next suppose that the value of F is continuous, that is, that F
does not vary by a finite quantity when the co-ordinates vary by infinitesimal

quantities, but that the form of the function
(f>

is discontinuous, being a different

linear function of xyz in different parts of space, bounded by definite surfaces.

VOL. II. 24
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The bounding surfaces of these parts of space must be composed of planes.

For let the linear functions of xyz in contiguous portions of space be

then at the bounding surface, where F^ = F,

(a,-a,)aj+(A-A)r+(y.-r.)2=<^x-<A, (9),

and this is the equation of a plane.

Hence the portion of space in which any particular form of the value of F
holds good must be a polyhedron or cell bounded by plane faces, and therefore

having straight edges meeting in a number of points or summits.

Every face is the boimdary of two cells, every edge belongs to three or

more cells, and to two faces of each cell.

Every summit belongs to at least four cells, to at least three faces of each

cell, and to two edges of each face.

The whole space occupied by the diagram is divided into cells in two

different ways, so that every point in it belongs to two different cells, and

has two values of F and its derivatives.

The reciprocal diagram is made up of cells in the same way, and the

reciprocity of the two diagrams may be thus stated :

—

1. Every summit in one diagram corresponds to a cell in the other.

The radius vector of the summit represents the rate of increase of the

function within the cell, both in direction and magnitude.

The value of the function at the summit is equal and opposite to the

value which the function in the cell would have if it were continued under the

same algebraical form to the origin.

2. Every edge in the one diagram corresponds to a plane fexje in the

other, which is the face of contact of the two cells corresponding to the two

extremities of the edge.

The edge in the one diagram is perpendicular to the face in the other.

The distance of the plane from the origin represents the rate of increase

of the function along the edge.
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3. Every face in the one diagram corresponds to an edge in which as

many cells meet as there are angles in the face, that is, at least three. Every

face must belong to two, and only two cells, because the edge to which it

corresponds has two, and only two extremities.

4. Every cell in the one diagram corresponds to a summit in the other.

Every face of the cell corresponds and is perpendicular to an edge having an

extremity in the summit. Since every cell must have four or more faces, every

summit must have four or more edges meeting there.

Every edge of the cell corresponds to a face having an angle in the summit.

Since every cell has at least six edges, every summit must be the point of

concourse of at least six faces, which are the boundaries of cells.

Every summit of the cell corresponds to a ceU having a solid angle at

the summit. Since every cell has at least four summits, every summit must be

the meeting place of at least four cells.

Mechanical Reciprocity of the Diagrams.

If along each of the edges meeting in a summit forces are applied pro-

portional to the areas of the corresponding faces of the cell in the reciprocal

diagram, and in a direction which is always inward with respect to the cell,

then these forces will be in equilibrium at the summit.

This is the "Polyhedron of Forces," and may be proved by hydrostatics.

If the faces of the cell form a single closed surface which does not inter-

sect itself, it is easy to understand what is meant by the inside and outside

of the cell ; but if the surface intersects itself, it is better to speak of the

positive and negative sides of the surface. A cell, or portion of a cell, bounded

by a closed surface, of which the positive side is inward, may be called a

positive cell. If the surface intersects itself, and encloses another portion of

space with its negative side inward, that portion of space forms a negative cell.

If any portion of space is surrounded by n sheets of the surface of the same

cell with their positive side inward, and by m sheets with their negative side

inward, the space enclosed in this way must be reckoned n — m times.

In passing to a contiguous cell, we must suppose that its face in contact

with the first cell has its positive surface on the opposite side from that of

24 2
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the first cell. In this way, by making the positive side of the surface con-

tinuous throughout each cell, and by changing it when we pass to the next

cell, we may settle the positive and negative side of every face of every cell,

the sign of every face depending on which of the two cells it is considered

for the moment to belong to.

If we now suppose forces of tension or pressure applied along every edge of

the first diagram, so that the force on each extremity of the edge is in the

direction of the positive normal to the corresponding face of the cell corre-

sponding to that extremity, and proportional to the area of the face, then these

pressures and tensions along the edges will keep every point of the diagram

in equilibrium.

Another way of determining the nature of the force along any edge of

the first diagram, is as follows :

—

Round any edge of the first diagram draw a closed curve, embracing it

and no other edge. However small the curve is, it will enter each of the

cells which meet in the edge. Hence the reciprocal of this closed curve will

be a plane polygon whose angles are the points reciprocal to these cells taken

in order. The area of this polygon represents, both in direction and magnitude,

the whole force acting through the closed curve, that is, in this case the stress

along the edge. If, therefore, in going round the angles of the polygon, we

travel in the same direction of rotation in space as in going round the closed

curve, the stress along the edge will be a pressure; but if the direction is

opposite, the stress will be a tension.

This method of expressing stresses in three dimensions comprehends all

cases in which Rankine's reciprocal figures are possible, and is applicable to

certain cases of continuous stress. That it is not applicable to all such cases

is easily seen by the example of p (189).

On Reciprocal Diagrams in two Dimensions.

If we make F a function of x and y only, all the properties already

deduced for figures in three dimensions will be true in two; but we may form

a more distinct geometrical conception of the theory by substituting cz for F
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and cC for
(f>.

We have then for the equations of relation Vjetween the two

diagrams

.(10).

i=
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a finite portion of a surface; in the second, it will correspond to several points,

so that the lines, which correspond to the edges of such a polygon, will termi-

nate in several points, and not in one, as is necessary for reciprocity.

Second Method of representing Stress in a Body.

Let a, h be any two consecutive points in the first diagram, distant 5,

and a, /8 the corresponding points in the second, distant cr, then if the direc-

tion cosines of the line ah are I, m, n and those of a/3, X, ^, v

dx
d_l

dy

dp
dz

a-fJi.-

di)
^

dr} dr)

V" + sm -r-+sn -j^
dx dy dz

, dl dC dt,
av= si -J- -^ sm -y- -^ sn ^j-

dx dy dz

(12).

Hence

cr

^(a.,„,.«.)=4^..|.«.|+..(|.|).«.(i4f)

\dy dx^
(13).

If we put ZX+ m/x-f 7ij/ = cos6, where e is the angle between s and cr, and if

we take three sets of values of I, m, n, corresponding to three directions at

right angles to each other, we find

Hence this quantity depends only on the position of the point, and not

on the directions of s„ s^, s^ or of x, y, z, let us call it A'i^.

Now, let us take an element of area perpendicular to s, and let us sup-

pose that the stress on this element is compounded of a normal pressure =^A--F,

and a tension parallel to a and equal to p -
.
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By the rules for the composition of stress, we have for the components

of the force on this element, in terms of the six components of stress,

(T
V -

Hence,

X = Zp„ + mp^ + np^ =p i lA'F- X

^^= b^xy + mp^ + np^, =p Im^'F-fi

Z = lp„-h mp^ + npa =p I nAT

f..iP di\ / ,^ d^F\ (d'F d'F\^

[d'F d'F\ Id'F d'F\ Id'F d'F\

(15).

d'F d'F
Pxy=-P

d'F

dxdy

.(16).

(17).

By substituting these values in the equations of equilibrium

^ +^ +^ = 0, &c
ax ay dz

it is manifest that they are fulfilled for any value of F.

The most general solution of these equations of equilibrium is contained

in the values

d'B d'C d'C d'A
^^~

dz" ^ df ' ^^~ ^-^
"•

da? ^ dz'
'

d'A
P^~ dydz

d'B
^«~ dzdx'

d'A ^1

dC
^'^~ dxdy

(18).

By making A = B = C=pF we get a case which, though restricted in its

generahty, has remarkable properties with respect to diagrams of stress. We
have seen that a distribution of stress according to the definition above (16),

is consistent with itself, and will keep a body in equilibrium. Since the

stresses are linear functions of F, any two systems of stress can be compounded

by adding their respective functions, a process not applicable to the first method

of representation by areas.

Let us ascertain what kind of stress is represented in this way in the

case of the system of cells already considered.
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Since F in each cell is a linear function of x, y, z, there can be no stress

at any point within it. Let us take a and h two contiguous points in different

cells, then a and ^ will be the points at a finite distance to which these cells

are reciprocal, and A'i^=-^, which becomes infinite when ah vanishes.

If a and h are in the surface bounding the cells, a and fi coincide. Hence

there is a stress in this surface, uniform in all directions in the plane of the

surface, and such that the stress across unit of length drawn on the surface is

proportional to the distance between the points which are reciprocal to the two

cells bounded by the surface, and this stress is a tension or a pressure according

as the two points are similarly or oppositely situated to the two cells.

The kind of equilibrium corresponding to this case is therefore that of a

system of liquid films, each having a tension like that of a soap bubble,

depending on the nature of the fluid of which it is composed. If all the films

are composed of the same fluid, their tensions must be equal, and all the edges

of the reciprocal diagram must be equal.

On Airy's Function of Stress.

Mr Airy, in a paper " On the Strains in the Interior of Beams*," was, I

believe, the first to point out that, in any body in equilibrium under the action

of internal stress m two dimensions, the three components of the stress in any

two rectangular directions are the three second derivatives, with respect to these

directions, of a certain function of the position of a point in the body.

This important simplification of the theory of the equilibrium of stress in

two dimensions does not depend on any theory of elasticity, or on the mode

in which stress arises in the body, but solely on the two conditions of equi-

librium of an element of a body acted on only by internal stress

^i'»+|;P« = 0, and |^^^+|-p„ = (19),

whence it follows that

d'F d'F , d'F ,^..
Px.= ^., P^=-J^y^ ^^^ ^-=S (^^^'

* PhU. Trans. 1863.
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where F is a function of x and y, the form of which is (as far as these

equations are concerned) perfectly arbitrary, and the value of which at any

point is independent of the choice of axes of co-ordinates. Since the stresses

depend on the second derivatives of F, any linear function of x and y may be

added to F without affecting the value of the stresses deduced from F. Also,

since the stresses are linear functions of F, any two systems of stress may be

mechanically compounded by adding the corresponding values of F.

The importance of Airy's function in the theory of stress becomes even

more manifest when we deduce from it the diagram of stress, the co-ordinates

of whose points are

f=f -^"-f (^»-

For if s be the length of any curve in the original figure, and <r that of the

corresponding curve in the diagram of stress, and if Xds, Yds are the com-

ponents of the whole stress acting on the element ds towards the right hand

of the curve s

dx , d'F dx J dyidxj dr) , I

and 5*=-;p„gjrf.= -3^.3j<i* = 5^3j& = ^rf^J

Hence the stress on the right hand side of the element cb of the original

curve is represented, both in direction and magnitude, by the corresponding

element da of the curve in the diagram of stress, and, by composition, the

resultant stress on any finite arc of the first curve s is represented in direction

and magnitude by the straight line drawn from the beginning to the end of

the corresponding curve a.

If P„ P, are the principal stresses at any point, and if P, is inclined a

to the axis of x, then the component stresses are

p„= P, cos' a + P, sin' a -

p^=(P,-P,)sinaco8a (23).

Pj^ = P, sin' a + P, cos'a

.

VOL. II.
25
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Hence tan 2a = Pry

i>«

dxdy
d^_d^
dar' df

d'F d'F
(24).

P. + P.- P^+Pyy = :^+-^-

PP- _ ,_^'-Pd'P /d'F\
r,i-,-p^Pyy p^ - ^^ ^^ \dxdyl

Consider the area bounded by a closed curve s, and let us determine the sur-

face integral of the sum of the principal stresses over the area within the curve.

The integral is

\\(P. + P,)d.dy=^\\(^^ + ''^dxdy (25).

By a well-known theorem, corresponding in two dimensions to that of Green in

three dimensions, the latter expression becomes, when once integrated.

/(

dFdx_dFdy\,
dy ds dx dsj

(26),

(27).

These line integrals are to be taken round the closed curve s. If we take

a point in the curve s as origin in the original body, and the corresponding

point in <r as origin in the diagram of stress, then ^ and ly are the compo-

nents of the whole stress on the right hand of the curve from the origin to

a given point. If p denote the line joining the origin with the point ^, then

p will represent in direction and magnitude the whole stress on the arc o-.

The line integral may now be interpreted as the work done on a point

which travels once round the closed curve s, and Is everywhere acted on by a

force represented in direction and magnitude by p. We may express this

quantity in terms of the stress at every point of the curve, instead of the

resultant stress on the whole arc, as follows

:

For integrating (27) by parts it becomes,

(28),
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or if Rds is the actual stress on ds, and r is the radius vector of ds, and

if R makes with r an angle c, we obtain the result

\\{P,^P,)dxdy= -IRr cos €.ds (29).

This line integral, therefore, which depends only on the stress acting on

the closed curve s, is equal to the surface integral of the sum of the principal

stresses taken over the whole area witliin the curve.

If there is no stress on the curve s acting from without, then the surface

integral vanishes. This is the extension to the case of continuous stress of the

theorem, given at p. 176, that the algebraic sum of all the tensions multiphed

each by the length of the piece in which it acts is zero for a system in

equilibrium. In the case of a frame, the stress in each piece is longitudinal,

and the whole pressure or tension of the piece is equal to the longitudinal

stress multiphed by the section, so that the integral l\{P,-\-Pi)dxdy for each

piece is Jts tension multiplied by its length.

If the closed cui-ve s is a small circle, the corresponding curve cr will be

an ellipse, and the stress on any diameter of the circle will be represented in

direction and magnitude by the corresponding diameter of the ellipse. Hence,

the principal axes of the ellipse represent in direction and magnitude the prin-

cipal stresses at the centre of the circle.

Let us next consider the surface integral of the product of the principal

stresses at every point taken over the area within the closed curve s.

//..P,...=//(-f-3)..., (30),

_(((dldr}_didri\
-}]\dxdy dydx)'^'''^^'

or by transformation of variables

=mdr].

Hence the surface integral of the product of the principal stresses within

the curve is equal to the area of the corresponding curve a in the diagram of

stress, and therefore depends entirely on the external stress on the curve s.

This is seen from the construction of the curve a- in the diagram of stress.

since each element d<r represents the stress on the corresponding element ds of

the original curve.

25—2



196 RECIPROCAL FIGURES, FRAMES,

If p represents in direction and magnitude the resultant of the stress on

the curve s from the origin to a point which moves round the curve, then the

area traced out by p is equal to the surface-integral required. If Xds and Yds

are the components of the stress on the element ds, and I the whole length of

the closed curve s, then the surface integral is equal to either of the quantities

r Y {'Xds.ds, or - Tx r Yds.ds.

In a frame the stress in each piece is entirely longitudinal, so that the

product of the principal stresses is zero, and therefore nothing is contributed to

the surface-integral except at the points where the pieces meet or cross each

other. To find the value of the integral for any one of these points, draw a

closed curve surrounding it and no other point, and therefore cutting all the

pieces which meet in that point in order. The corresponding figure in the

diagram of stress will be a polygon, whose sides represent in magnitude and

direction the tensions in the several pieces taken in order. The area of this

polygon, therefore, represents the value of jjP^P^dxdy for the point of concourse,

and is to be considered positive or negative, according as the tracing point

travels round it in the positive or the negative cyclical direction.

Hence the following theorem, which is applicable to all plane frames, whether

a diagram of forces can be drawn or not.

For each point of concourse or of intersection construct a polygon, by

drawing in succession lines parallel and proportional to the forces acting on the

point in the several pieces which meet in that point, taking the pieces in

cyclical order round the point. The area of this polygon is to be taken positive

or negative, according as it lies on the left or the right of the tracing point.

If, then, a closed curve be drawn surrounding the entire frame, and a

polygon be drawn by drawing in succession lines parallel and proportional to

all the external forces which act on the frame in the order in which their

lines of direction meet the closed curve, then the area of this polygon is equal

to the algebraic sum of the areas of the polygons corresponding to the various

points of the frame.

In this theorem a polygon is to be drawn for every point, whether the

lines of the frame meet or intersect, whether they are really jointed together.
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or whether two pieces simply cross each other without mechanical connection.

In the latter case the polygon is a parallelogram, whose sides are parallel and

proportional to the stresses in the two pieces, and it is positive or negative

according as these stresses are of the same or of opposite signs.

If three or more pieces intersect, it is manifestly the same whether they

intersect at one point or not, so that we have the following theorem :

—

The area of a polygon of an even number of sides, whose opposite sides

are equal and parallel, is equal to the sum of the areas of all the different

parallelograms which can be formed with their sides parallel and equal to those

of the polygon.

This is easily shewn by dividing the polygon into the different parallelo-

grams.

On the Equilibrium of Stress in a Solid Body.

Let PQR be the longitudinal, and STU the tangential components of

stress, as indicated in the following table of stresses and strains, taken from

Thomson and Tait's Natural Philosophy, p. 511, § 669:

—

Components of the
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Then the equations of equilibrium of an element of the body are, by § 697

of that work,

dP . dU . dT
dx dy dz

dx dy dz

dx dy dz

(!)•

If we assume three functions A, B, C, such that

d'A rr, d'B .. d'C

and put X

dydz'

dV
dx '

r=
dzdx

^_dV
dy'

z=

dxdy

dV
dz

(2).

then a sufficiently general solution of the equations of equilibrium is given by

putting

p_d^,d^ y^~ dz'^ df ^

d^^d^_^
daf dz^

^^^Jd^_y
dif dctf

(3).

I am not aware of any method of finding other relations between the com-

ponents of stress without making further assumptions. The most natural assump-

tion to make is that the stress arises from elasticity in the body. I shall

confine myself to the case of an isotropic body, such that it can be deprived

of all stress and strain by a removal of the applied forces. In this case, if

a, y8, y are the components of displacement, and n the coefficient of rigidity,

the equations of tangential elasticity are, by equation (6), §§ 670 and 694 of

Thomson and Tait,

^^dfi dy^l^^ 1 d'A

dz dy n n dydz
•(4).
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with similar equations for b and c. A sufficiently general solution of these

equations is given by putting

(5).

The equations of longitudinal elasticity are of the form given in § 693,

-p=(*+f");7^+(i-i«) dy dz
•(6).

where k is the co-efficient of cubical elasticity, with similar equations for Q
and R Substitutmg for P, a, fi and y in equation (6) their values from (3)

and (5),

„ /d'B d'C ^, ,, . . [d'A d'B d'CX

+ 1^-3^)
[dy^ dy' dy"

"^
dz' dz' d^l

'

If we put

d'A d'B . d'C d' . c^

d^ • d^^-d^'^P^ ^^^ 5^ + 5^ + 5^' = ^'

.(7).

this equation becomes

()t-}--|n) (L'A-^L'B-\-L'C)-{h + \n)1p-2nV = 2n^'A....

"We have also two other equations differing from this only in having B
and C instead of A on the right hand side. Hence equating the three expres-

sions on the right hand side we find

A'A=A'B = A'C=D', say, (8),

{3k + n)2p = (3k-^2n)dD'-6nV (9),

9kD'-2V_^j^p-3V
and P+Q+R= 6k (10).

2 3it-l-n dk + 2n

These equations are useful when we wish to determine the stress rather

than the strain in a body. For instance, if the co-efficients of elasticity, k
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and n, are increased in the same ratio to any extent, the displacements of

the body are proportionally diminished, but the stresses remain the same, and,

though their distribution depends essentially on the elasticity of the various

parts of the body, the values of the internal forces do not contain the co-

efficients of elasticity as factors.

There are two cases in which the functions may be treated as functions of

two variables.

The first is when there is no stress, or a constant pressure in the direction

of z, as in the case of a stratum originally of uniform thickness, in the direc-

tion of z, the thickness being small compared with the other dimensions of

the body, and with the rate of variation of strain.

The second is when there is no strain, or a uniform longitudinal strain in

the direction of z, as in the case of a prismatic body whose length in the

direction of z is very great, the forces on the sides being functions of x

and y only.

In both of these cases 5=0 and T=0, so that we may write

This method of expressing the stresses in two dimensions was first given

by the Astronomer Royal, in the Philosophical Transactions for 1863. We shall

write F instead of C, and call it Airy's Function of Stress in Two Dimensions.

Let us assume two functions, G and H, such that

j^^
d'G ^^ v=^^ (12)
dxdy * dxdy ^ ''

then by Thomson pnd Tait, § 694, if a is the displacement in the direction of x

2n(<T+l)^ = P-<r(Q + R) (13).

Case I.—If 72= this becomes

Integrating with respect to a; we find the following equation for a

—
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where F Is a function of y only. Similarly for the displacement fi in the

direction of y,

where X is a function of x only. Now the shearing stress U depends on the

shearing strain and the rigidity, or

^="(|-S (^«)-

Multiplying both sides of this equation by 2((r+l) and substituting from (11),

(14), and (15),

(|..-3'..g.f=(i-.)(|..|.) m
an equation which must be fulfilled by G when the body is originally without

strain.

Case II.—In the second case, in which there is no strain in the direction

of 2, we have

^=i2-o-(P + g) = (19).

Substituting for R In (13), and dividing by cr+1,

with a similar equation for /S. Proceeding as in the former case, we find

W + dfj^^li + 'd^-i^Ad^'^'dy')^ ^ '

This equation is identical with that of the first case, with the exception of

the coefiicient of the part due to H, which depends on the density of the

body, and the value of tr, the ratio of lateral expansion to longitudinal com-

pression.

Hence, if the external forces are given in the two cases of no stress and

no strain in the direction of z, and if the density of the body or the intensity

VOL. II. 26
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of the force acting on its substance is in the ratio of a- to (l-o-)' in the

two cases, the internal forces will be the same in every part, and will be

independent of the actual values of the coefficients of elasticity, provided the

strains are small. The solutions of the cases treated by Mr Airy, as given in

his paper, do not exactly fulfil the conditions deduced from the theory of

elasticity. In fact, the consideration of elastic strain is not explicitly introduced

into the investigation. Nevertheless, his results are statically possible, and

exceedingly near to the truth in the cases of ordinary beams.

As an illustration of the theory of Airy's Function, let us take the case of

F=-^r^co32p0 (22).

In this case we have for the co-ordinates of the point in the diagram corre-

ponding to (xy)

and for the components of stress

7'*-^ sin (2^9-1)^ (23),

_dr) d^

Txy^ dxdy
.(2p-l)r^-'am{2p-2)0

(24).

If we make

then

P

(^-^)e

and H= - t'' sin p0

.

p
' dGr\

/^ ,v „ dG dG
I

.(25),

(26).

Hence the curves for which G and H respectively are constant will be lines' of

principal stress, and the stress at any point will be inversely as the square of

the distance between the consecutive curves G or H.

If we make

then we must have

If we put q for

^=pcos<j> and T7 =psin^ "I

1)0}'

1 1

2p

p = 7^-' and
<f>
= (2p

^ then - + - = 2 and {2p-l) (2q-l) = l,

(27).
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80 that if f, g, h in the diagram of stress correspond to F, G, H in the

original figure, we have

f=--p^cos2q<\>, g = - p'' cos q(f),
h = - p"^ sm q<l> (28).

Cctse of a Uniform Horizontal Beam.

As an example of the application of the condition that the stresses must

be such as are consistent with an initial condition of no strain, let ua take the

case of a uniform rectangular beam of indefinite length placed horizontally with

a load = ^ per unit of length placed on its upper surface, the weight of the

beam being k per unit of length. Let us suppose the beam to be supported

by vertical forces and couples in a vertical plane applied at the ends ; but

let us consider only the middle portion of the beam, where the conditions

applicable to the ends have no sensible effect. Let the horizontal distance x

be reckoned from the vertical plane where there is no shearing force, and let

the planes where there is no moment of bending be at distances ±a, from

the origin. Let y be reckoned from the lower edge of the beam, and let h

d-F
be the depth of the beam. Then, if £/"= - j—j- is the shearing stress, the total

vertical shearing force through a vertical section at distance x is

j!^''^=©,..-©.-/
and this must be equal and opposite to the weight of the beam and load

from to X, which is evidently (h + ^x.

Hence, '^= -{h + k)x<j>{y), where <f>(h)-<f>{0) = l (29).

From this we find the vertical stress

^=rfl'+55'=-(A+i)'#'{y)+fy-

The vertical stress is therefore a function of y only. It must vanish at

the lower side of the beam, where y = 0, and it must be — ^ on the upper side

of the beam, where y = b. The shearing stress U must vanish at both sides

of the beam, or <f>'{y)
= 0, when y = 0, and when y = h. •

26—2
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The simplest form of <l>{y) which will satisfy these conditions is

Hence we find the following expression for the function of stress by integrating

(29) with respect to x,

P='^{»'-^){3hf-W+r (30),

where a is a constant introduced in integration, and depends on the manner
in which the beam is supported. From this we obtain the values of the

vertical, horizontal, and shearing stresses,

«= ^l'+f^ =t2'-T^W-22^) (31).

^=f=«'-F-'("'-^)(*-2^)+f (32).

^=-Say = ^-^^(^-2') (33)-

The values of Q and of U, the vertical and the shearing stresses, as

given by these equations, are perfectly definite in terms of h and Jc, the load

and the weight of the beam per unit of length. The value of F, the hori-

zontal stress, however, contains an arbitrary function Y, which we propose to

find from the condition that the beam was originally unstrained. We therefore

determine a and /S, the horizontal and vertical displacement of any point {x, y),

by the method indicated by equations (13), (14), (15)

1n(,7+\)a ^{(3a'x-x')(6-2j,)-,Tx(35y-22/')}-<7ja^+x^+r (34),

2«(o-+l)y8=-^{(5y-i/) + 3o-(a'-af)(62/-3f')}+j|y-<r^+X' (35),

where X' is a function of x only, and Y' of y only. Deducing from these

displacements the shearing strain, and comparing it with the value of the shearing

stress, U, we find the equation

*+^{6a'x-2af+12x(6y-2^)}+,.|x=x^ + ^' + ^' (36).

Hence ^= 12 ^i [hy-f) (37),

^ = 2^-+^ (3a'. - 2^) + <.|x, ^' =0 (38).
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If the total longitudinal stress across any vertical section of the beam is zero,

the value of -7- must be the same when y = and when y = h. From this

condition we find the value of P by equation (32)

^ = -5^{3K-^) + 2y'-2?>y-6'}(6-2y) (39).

The moment of bending at any vertical section of the beam is

f.
Pydy = (h+ k){i(af-a^) + ih^) (40).

This becomes zero when x= ia, where

ao' =a'-F (41)-

If we wish to compare this case with that of a beam of finite length sup-

ported at both ends and loaded uniformly, we must make the moment of

bending zero at the supports, and the length of the beam between the supports

must therefore be 2ao- Substituting a^ for a in the value of P, we find

P =^(3a:-Zx^ + 2y'-2hy + ih"-){b-2y) (42).

If we suppose the beam to be cut off just beyond the supports, and sup-

ported by an intense pressure over a small area, we introduce conditions into

the problem which are not fulfilled by this solution, and the investigation of

which requires the use of Fourier's series. In order that our result may be

true, we must suppose the beam to extend to a considerable distance beyond

the supports on either side, and the vertical forces to be applied by means

of frames clamped to the ends of the beam, as in Diagram Va, so that the

stresses arising from the discontinuity at the extremities are insensible in the

part of the beam between the supports.

This expression differs from that given by Mr Airy only in the terms in

the longitudinal stress P depending on the function Y, which was introduced

in order to fulfil the condition that, when no force is applied, the beam is

unstrained. The effect of these terms is a maximum when ?/= '127886, and is

then equal to (h + k) 'Sli, or less than a third of the pressure of the beam

and its load on a flat horizontal surface when laid upon it so as to produce a

uniform vertical pressure ^4-^
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EXPLANATION OF THE DIAGRAMS (Plates I. II. III.).

Diagrams I a. and 1 6. illustrate the necessity of the condition of the possibility of reciprocal

diagi-ams, that each line must be a side of two, and only two, polygons. Diagram I a. is a skeleton of

a frame such, that if the force along any one piece be given, the force along any other piece may be

determined. But the piece N forms a side of four triangles, NFH, NGI, NJL, and NKM, so that if

there could be a reciprocal diagram, the line corresponding to N would have four extremities, which it

impossible. In this case we can draw a diagram of forces in which the forces H, I, J, and K are each

represented by two parallel lines.

Diagrams II a. and 116. illustrate the case of a frame consisting of thirty-two pieces, meeting four

and four in sixteen points, and forming sixteen quadrilaterals. Diagram II a. may be considered as a plane

projection of a polyhedron of double continuity, which we may describe as a quadrilateral frame consisting

of four quadrilatei-al rods, of which the ends are bevelled so as to fit exactly. The projection of this

frame, considered as a plane frame, has three degrees of stiffness, so that three of the forces may be

arbitrarily assumed.

In the reciprocal diagram 116. the lines are drawn by the method given at p. 168, so that each line

is perpendicular to the corresponding line in the other figiire. To make the corresponding lines parallel

we have only to turn one of the figures round a right angle.

Diagrams III a. and III 6. illustrate the principle as applied to a bridge designed by Professor F.

Jenkin. The loads Q^ Q^, &c., are placed on the upper series of joints, and B^ Ji^, «fec., on the lower

series. The diagiam III 6. gives the stresses due to both sets of loads, the vertical lines of loads being

different for the two series.

Diagrams IV a. and IV 6. illustrate the application of Airy's Function to the construction of

diagrams of continuous stress.

IV a. represents a cylinder exposed to pressure in a vertical and horizontal direction, and to

tension in directions inclined 45* to these. The lines marked a, b, c, <fec., are lines of pressure, and

those marked o, p, q, are lines of tension. In this case the lines of pressure and tension are rectangular

hyperbolas, the pressure is always equal to the tension, and varies inversely as the square of the

distance between consecutive curves, or, what is the same thing, directly as the square of the distance

from the centre.

IV 6. represents the reciprocal diagram corresponding to the upper quadi-ant of the former one. The

stress on any line in the first diagram is represented in magnitude and direction by the corresponding line

in the second diagram, the correspondence being ascertained by that of the corresponding systems of lines

o, 6, c, tfcc. , and o, p, q, ifec.

We may also consider IV 6. as a sector of a cylinder of 270°, exposed to pressure along the lines

a, 6, c, and to tension along o, p, q, the magnitude of the stress being in this case r'K The upper

quadrant of IV a. is in this case the reciprocal figure. This figure illustrates the tendency of any

strained body to be ruptured at a re-entering angle, for it is plain that at the angle the stress becomes

indefinitely gi'eat.
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In diagram IV a. :

—

In diagram IV 6.:

—

/= Jp^ cos 5 .^, 9= fp' C08 I <^, h = Ip^ sin § <^

Diagrams V a. and V b. illustrate Airy's theory of stress in beams.

V o. is the beam supported at G and D by means of bent pieces clamped to the ends of the beam

at A and B, at such a distance from C and D, that the part of the beam between C and D is free from

the local effecta of the pressures of the clamps at A and B. The beam is divided into six strata by

horizontal dotted lines, marked 1, 2, 3, 4, 5, 6, and into sixteen vertical slices by vertical lines marked

o, b, c, «kc.

The corresponding lines in the diagram V b. are marked with corresponding figures and letters. The

stress across any line joining any two points in V a. is represented in magnitude by the line in V 6., joining

corresponding points, and is perpendicular to it in direction.

These illustrations of the application of the graphic method to cases of continuous stress, are

intended rather to show the mathematical meaning of the method, than as practical aids to the engineer.

In calculating the stresses in frames, the graphic method is really useful, and is less liable to accidental

errors than the method of trigonometrical calculation. In cases of continuous stress, however, the

symbolical method of calculation is still the best, although, as I have endeavoured to show in this

paper, analytical methods may be explained, illustrated, and extended by considerations derived from

the graphic method.



[From the London Mathematical Society's Proceedings. Vol. in.]

XL. On the Displacement in a Case of Fluid Motion.

In most investigations of fluid motion, we consider the velocity at any

point of the fluid as defined by its magnitude and direction, as a function of

the coordinates of the point and of the time. We are supposed to be able to

take a momentary glance at the system at any time, and to observe the velo-

cities; but are not required to be able to keep our eye on a particular molecule

during its motion. This method, therefore, properly belongs to the theory of a

continuous fluid alike in all its parts, in which we measure the velocity by the

volume which passes through unit of area rather than by the distance travelled

by a molecule in unit of time. It is also the only method appUcable to the

case of a fluid, the motions of the individual molecules of which are not expres-

sible as functions of their position, as in the motions due to heat and diffiision.

When similar equations occur in the theory of the conduction of heat or elec-

tricity, we are constrained to use this method, for we cannot even define what is

meant by the continued identity of a portion of heat or electricity.

The molecular theory, as it supposes each molecule to preserve its identity,

requires for its perfection a determination of the position of each molecule at

any assigned time. As it is only in certain cases that our present mathematical

resources can effect this, I propose to point out a very simple case, with the

results.

Let a cylinder of infinite length and of radius a move with its axis parallel

to z, and always passing through the axis of x, with a velocity V, uniform or

variable, in the direction of x, through an infinite, homogeneous, incompressible,

perfect fluid. Let r be the distance of any point in the fluid from the axis
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of the cylinder; then it is easy to shew that, if x, is the value of x for the

axis of the cylinder, and x that of the point, and

<f>
= ^{^-^o), and rp = (l-yjy,

V<f> will satisfy the conditions of the velocity-potential, and F»/» that of the

stream function* ; and, since the expression for i// does not contain the time,

its value will remain constant for a molecule during the whole of its motion.

If we consider the position of a particle as determined by the values of

z, r, and x}/, then z and t/» will remain constant during the motion, and we have

only to find r in terms of the time. For this purpose we observe that, if we

put xp in polar coordinates, it becomes

'/' = (l-^)^'sisin^,

Expressing cos in terms of r and i/>, this becomes

If we make y(4cr + V/^)
+ i// = 2/3, and ^, = c,

then /8 will be the value of y when the axis of the cylinder is abreast of the

particle, and

and if we now use instead of r a new angular variable x ^^^^ *^^*

^ r 2r

* The velocity-potential is a quantity such that its rate of variation along any line is equal to

the velocity of the fluid resolved in the same direction. Whenever the motion of the fluid is irro-

tational, there is a velocity-potential.

The stream function exists in every case of the motion of an incompressible fluid in two dimen-

sions, and is such that the total instantaneous flow across any curve, referred to unit of time, is

equal to the difi*erence of the values of the stream function at the extremities of the cun.-e.

VOL. II. 27
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then we can express jVdt or x^ in terms of elliptic functions of the first and

second kinds,

where the position of the axis of the cylinder is expressed in terms of the

position of a molecule with respect to it.

Now let us take a molecule originally on the axis of y, at a distance rj

from the origin, and let the cylinder begin to move from an infinite distance

on the negative side of the axis of x; then

a"
^ = 7), and 2/3 = y(4a' + ry')+7y, and Qi = c',

and when the cylinder has passed from negative infinity to positive infinity in

the direction of x, then the coordinates of the molecule will be

2a, rf 7^\ J a(l-c)

It appears from this expression, that after the passage of the cylinder every

particle is at the same distance as at first from the plane of xz, but that it

is carried forward in the direction of the motion of the cylinder by a quantity

which is infinite when y = 0, but finite for all other values of y.

The motion of a particle at any instant is always inclined to the axis of

X at double the inclination of the line drawn to the axis of the cylinder.

Hence it is in the forward direction till the inclination of this line is 45",

backward from 45° to 135", and forward again afterwards. The forward motion

is slower than the backward motion, but lasts for a longer time, and it appears

that the final displacement of every particle is in the forward direction. It

follows from this that the condition fulfilled by the fluid at an infinite distance

is not that of being contained in a fixed vessel; for in that case there would

have been, on the whole, a displacement backwards equal to that of the cylinder

forwards. The problem actually solved difiers from this only by the application

of an infinitely small forward velocity to the infinite mass of fluid such as to

generate a finite momentum.

In drawing the accompanying figures, I began by tracing the stream-lines

in Fig. 1, p. 211, by means of the intersections of a system of straight lines equi-

distant and parallel to the axis, with a system of circles touching the axis at



THE DISPLACEMENT IN A CASE OF FLUID MOTION. 211

Fig. 1.

Fluid flowing past a fixed cylinder.

27—2
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the origin and having their radii as the reciprocals of the natural numbers.

(See Prof. Rankine's Papers on Stream-Lines in the Phil. Trans.)

The cylinder is | inch radius, and the stream-lines are originally -^ inch

apart.

I then calculated the coordinates, x and y, of the final form of a transverse

straight line from the values of the complete elliptic functions for values of c

corresponding to every 5". The result is given in the continuous curve on the

left of Fig. 2, p. 213.

I then traced the path of a particle in contact with the cylinder from the

equation

tan^^=e "
,

where cc = cCo + a cos ^ and y = a9>md.

The form of the path is the curve nearest the axis in Fig. 3. The dots

indicate the positions at equal intervals of time.

The paths of particles not in contact with the cylinder might be calculated

from Legendre's tables for incomplete functions, which I have not got.

I have therefore drawn them by eye so as to fulfil the following con-

ditions :

—

The radius of curvature is -l- -r-.^—-.
, which, when y is large compared

^ a'siii'0+ y'

with a, becomes nearly -—
.

•^ 2y

The paths of particles at a great distance from the axis are therefore very

nearly circles.

To draw the paths of intermediate particles, I observed that their two

extremities must lie at the same distance from the axis of a; as the asymptote

of a certain stream-line, and the middle point of the path at a distance equal

to that of the same stream-line when abreast of the cylinder; and, finally, that

the distance between the extremities is the same as that given in Fig. 2.

In this way I drew the paths of different particles in Fig. 3. I then

transferred these to Fig. 2, to shew the paths of a series of particles, originally

in a straight line, and finally in the curve already described.
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I then laid Fig. 1 on Fig. 2, and drew, through the intersections of the

stream-lines and the paths of the corresponding particles in the fluid originally

Fig. 2.

Paths of particles of the fluid when a cylinder moves through it

OO'

Fio. 3.

Paths of particles at different distances from the cylinder: radius of cylinder, f inch. At (jreat

difltances
{fi) the jath is a circle of radius ^, and in this circle tan

yt cylii

6 vt

/3
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at rest, the lines which shew the form taken by a Ime of particles originally

straight as it flows past the cylinder. This method, however, does not give

the point where the line crosses the axis of x. I therefore calculated this

from the equation

a; = r +^log^,

calculating r for values of x differing by ^ inch.

The curves thus drawn appear to be as near the truth as I could get

without a much greater amount of labour.

If a maker of " marbled " paper were to rule the surface of his bath with

straight lines of paint at right angles, and then to draw a cylindrical ruler

through the bath up to the middle, and apply the painted lines to his paper,

he would produce the design of Fig. 1, p. 211.



[From the British Association Report, Vol. XL.]

XLI. Address to the Mathematical and Physical Sections of the British

Association.

[Liverpool, SepUmber 15, 1870.]

At several of the recent l^Ieetings of the British Association the varied

and important business of the IVIathematical and Physical Section has been

introduced by an Address, the subject of which has been left to the selection

of the President for the time being. The perplexing duty of choosing a subject

has not, however, fallen to me.

Professor Sylvester, the President of Section A at the Exeter Meeting,

ga\e us a noble vindication of pure mathematics by laying laare, as it were,

the very working of the mathematical mind, and setting before us, not the

array of symbols and brackets which form the armoury of the mathematician,

or the dry results which are only the monuments of his conquests, but the

mathematician himself, with all his human faculties directed by his professional

sagacity to the pursuit, apprehension, and exhibition of that ideal harmony

which he feels to be the root of all knowledge, the fountain of all pleasure,

and the condition of all action. The mathematician has, above all things, an

eye for synmietry; and Professor Sylvester has not only recognized the sym-

metry formed by the combination of his own subject with those of the former

Presidents, but has pointed out the duties of hia successor in the following

characteristic note :

—

" Mr Spottiswoode favoured the Section, in his opening Address, with a com-

bined history of the progress of Mathematics and Physics ; Dr. Tyndall's address

was virtually on the limits of Physical Philosophy ; the one here in print," says

Prof Sylvester, " is an attempted faint adumbration of the nature of Mathe-

matical Science in the abstract. What is wanting (like a fourth sphere resting
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on three others in contact) to build up the Ideal Pyramid is a discourse on

the Relation of the two branches (Mathematics and Physics) to, their action

and reaction upon, one another, a magnificent theme, with which it is to be

hoped that some future President of Section A will crown the edifice and make

the Tetralogy (symbolizable by A + A\ A, A\ AA') complete."

The theme thus distinctly laid down for his successor by our late President

is indeed a magnificent one, far too magnificent for any eflforts of mine to

realize. I have endeavoured to follow Mr Spottiswoode, aa with far-reaching

vision he distinguishes the systems of science into which phenomena, our know-

ledge of which is still in the nebulous stage, are growing. I have been carried

by the penetrating insight and forcible expression of Dr Tyndall into that

sanctuary of minuteness and of power where molecules obey the laws of their

existence, clash together in fierce collision, or grapple in yet more fierce embrace,

building up in secret the forms of visible things. I have been guided by Prof.

Sylvester towards those serene heights

"Where never creeps a cloud, or moves a wind.

Nor ever falls the least white star of snow.

Nor ever lowest roll of thunder moans,

Nor sound of human sorrow mounts to mar

Their sacred everlasting calm."

But who will lead me into that still more hidden and dimmer region where

Thought weds Fact, where the mental operation of the mathematician and the

physical action 'of the molecules are seen in their true relation? Does not the

way to it pass through the very den of the metaphysician, strewed with the

remains of former explorers, and abhorred by every man of science? It would

indeed be a foolhardy adventure for me to take up the valuable time of the

Section by leading you into those speculations which require, as we know,

thousands of years even to shape themselves intelligibly.

But we are met as cultivators of mathematics and physics. In our daily

work we are led up to questions the same in kind with those of metaphysics;

and we approach them, not trusting to the native penetrating power of our

own minds, but trained by a long- continued adjustment of our modes of thought

to the facts of external nature.

As mathematicians, we perform certain mental operations on the symbols of

number or of quantity, and, by proceeding step by step from more simple to

more complex operations, we are enabled to express the same thing in many
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different forms. The equivalence of these different forms, though a necessary

consequence of self-evident axioms, is not always, to our minds, self-evident

;

but the mathematician, who by long practice has acquired a familiarity with

many of these forms, and "has become expert in the processes which lea^I from

one to another, can often transform a perplexing expression into another \^hich

explains its meaning in more intelligible language.

As students of Physics we observe phenomena under varied circumstances,

and endeavour to deduce the laws of their relations. Every natural phenomenon

is, to our minds, the result of an infinitely complex S3''stem of conditions.

What we set ourselves to do is to unravel these conditions, and by viewing

the phenomenon in a way which is in itself partial and imperfect, to piece

out its features one by one, beginning with that which strikes us first, and
thus gradually learning how to look at the whole phenomenon so as to obtain

a continually greater degree of clearness and distinctness. In this process, the

feature which presents itself most forcibly to the untrained inquirer may not be

that which is considered most fundamental by the experienced man of science

;

for the success of any physical investigation depends on the judicious selection

of what is to be observed as of primary importance, combined with a voluntary

abstraction of the mind from those features which, however attractive they

appear, we are not yet sujSiciently advanced in science to investigate with profit.

Intellectual processes of this kind have been going on since the first for-

mation of language, and are going on still. No doubt the feature which strikes

us first and most forcibly in any phenomenon, is the pleasure or the pain

which accompanies it, and the agreeable or disagreeable results which follow

after it. A theory of nature from this point of view is embodied in many of

our words and phrases, and is by no means extinct even in our deliberate

opinions.

It was a great step in science when men became convinced that, in order

to understand the nature of things, they must begin by asking, not whether

a thing is good or bad, noxious or beneficial, but of what kind is it ? and

how much is there of it ? Quality and Quantity were then first recognized as

the primary features to be observed in scientific inquiry.

As science has been developed, the domain of quantity has everywhere

encroached on that of quality, till the process of scientific inquiry seems to have

become simply the measurement and registration of quantities, combined with

a mathematical discussion of the numbers thus obtained. It is this scientific

VOL. II. 28
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method of directing our attention to those features of phenomena which may-

be regai'ded as quantities which brings physical research under the influence of

mathematical reasoning. In the work of the Section we shall have abundant

examples of the successful application of this method to the most recent con-

quests of science; but I wish at present to direct your attention to some of

the reciprocal effects of the progress of science on those elementary conceptions

which are sometimes thought to be beyond the reach of change.

If the skill of the mathematician has enabled the experimentaHst to see

that the quantities which he has measured are connected by necessary relations,

the discoveries of physics have revealed to the mathematician new forms of

quantities which he could never have imagined for himself.

Of the methods by which the mathematician may make his labours most

useful to the student of nature, that which I think is at present most im-

portant is the systematic classification of quantities.

The quantities which we study in mathematics and physics may be classified

in two different ways.

The student who wishes to master any particular science must make himself

familiar with the various kinds of quantities which belong to that science. When

he understands all the relations between these quantities, he regards them as

forming a connected system, and he classes the whole system of quantities together

as belonging to that particular science. This classification is the most natural

from a physical point of view, and it is generally the first in order of time.

But when the student has become acquainted with several different sciences,

he finds that the mathematical processes and trains of reasoning in one science

resemble those in another so much that his knowledge of the one science may

be made a most useful help in the study of the other.

When he examines into the reason of this, he finds that in the two

sciences he has been dealing with systems of quantities, m which the mathe-

matical forms of the relations of the quantities are the same in both systems,

though the physical nature of the quantities may be utterly different.

He is thus led to recognize a classification of quantities on a new principle,

according to which the physical nature of the quantity is subordinated to its

mathematical form. This is the point of view which is characteristic of the

mathematician; but it stands second to the physical aspect in order of time,

because the human mind, in order to conceive of different kinds of quantities,

must have them presented to it by nature.
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I do not here refer to the fact that all quantities, as such, are subject

to the rules of arithmetic and algebra, and are therefore capable of being sub-

mitted to those dry calculations which represent, to so many minds, their only

idea of mathematics.

The human mind is seldom satisfied, and is certainly never exercising its

highest functions, when it is doing the work of a calculating machine. What

the man of science, whether he is a mathematician or a physical inquirer,

aims at is, to acquire and develope clear ideas of the things he deals with.

For this purpose he is willing to enter on long calcidations, and to be for a

season a calculating machine, if he can only at last make his ideas clearer.

But if he finds that clear ideas are not to be obtained by means of pro-

cesses the steps of which he is sure to forget before he has reached the

conclusion, it is much better that he should turn to another method, and try

to understand the subject by means of well-chosen illustrations derived from

subjects with which he is more familiar.

We all know how much more popular the illustrative method of exposition

is found, than that in which bare processes of reasoning and calculation form

the principal subject of discourse.

Now a truly scientific illustration is a method to enable the mind to grasp

some conception or law in one branch of science, by placing before it a con-

ception or a law in a different branch of science, and directing the mind to

lay hold of that mathematical form which is common to the corresponding ideas

in the two sciences, leaving out of account for the present the difference

between the physical nature of the real phenomena.

The correctness of such an illustration depends on whether the two systems

of ideas which are compared together are really analogous in form, or whether,

in other words, the corresponding physical quantities really belong to the same

mathematical class. When this condition is fulfilled, the illustration is not only

convenient for teaching science in a pleasant and easy manner, but the recog-

nition of the formal analogy between the two systems of ideas leads to a

knowledge of both, more profound than could be obtained by studying each

system separately.

There are men who, when any relation or law, however complex, is put

before them in a symbolical form, can grasp its full meaning as a relation

among abstract quantities. Such men sometimes treat with indifference the

further statement that quantities actually exist in nature which fulfil this
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relation. The mental image of the concrete reality seems rather to disturb

than to assist their contemplations.

But the great majority of mankind are utterly unable, without long

training, to retain in their minds the unembodied symbols of the pure mathe-

matician, so that, if science is ever to become popular, and yet remain scientific,

it must be by a profound study and a copious application of those principles

of the mathematical classification of quantities which, as we have seen, lie at

the root of every truly scientific illustration.

There are, as I have said, some minds which can go on contemplating with

satisfaction pure quantities presented to the eye by symbols, and to the mind
in a form which none but mathematicians can conceive.

There are others who feel more enjoyment in following geometrical forms,

which they draw on paper, or build up in the empty space before them.

Others, again, are not content unless they can project their whole physical

energies into the scene which they conjure up. They learn at what a rate the

planets rush through space, and they experience a delightful feeling of exhila-

ration. They calculate the forces with which the heavenly bodies pull at one

another, and they feel their own muscles straining with the effort.

To such men momentum, energy, ma^s are not mere abstract expressions

of the results of scientific inquiry. They are words of power, which stir their

souls like the memories of childhood.

For the sake of persons of these different types, scientific truth should be

presented in different forms, and should be regarded as equally scientific, whether

it appears in the robust form and the vivid colouring of a physical illustration,

or in the tenuity and paleness of a symbolical expression.

Time would fail me if I were to attempt to illustrate by examples the

scientific value of the classification of quantities. I shall only mention the name

of that important class of magnitudes having direction in space which Hamilton

has called vectors, and which form the subject-matter of the Calculus of Qua-

ternions, a branch of mathematics which, when it shall have been thoroughly

understood by men of the illustrative type, and clothed by them with physical

imagery, will become, perhaps under some new name, a most powerful method

of communicating truly scientific knowledge to persons apparently devoid of the

calculating spirit.

The mutual action and reaction between the different departments of human
thought is so interesting to the student of scientific progress, that, at the risk
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of still further encroaching on the valuable time of the Section, I shall say a

few words on a branch of physics which not very long ago would have been

considered rather a branch of metaphysics. I mean the atomic theory, or, as

it is now called, the molecular theory of the constitution of bodies.

Not many years ago if we had been asked in what regions of physical

science the advance of discovery was least apparent, we should have pointed

to the hopelessly distant fixed stars on the one hand, and to the inscrutable

delicacy of the texture of material bodies on the other.

Indeed, if we are to regard Comte as in any degree representing the

scientific opinion of his time, the research into what takes place beyond our

own solar system seemed then to be exceedingly unpromising, if not altogether

illusory.

The opinion that the bodies which we see and handle, which we can set

in motion or leave at rest, which we can break in pieces and destroy, are

composed of smaller bodies which we cannot see or handle, which are always

in motion, and which can neither be stopped nor broken in pieces, nor in any

way destroyed or deprived of the least of their properties, was known by the

name of the Atomic theory. It was associated with the names of Democritus,

Epicurus, and Lucretius, and was commonly supposed to admit the existence

only of atoms and void, to the exclusion of any other basis of things from the

universe.

In many physical reasonings and mathematical calculations we are accustomed

to argue as if such substances as air, water, or metal, which appear to our

senses uniform and continuous, were strictly and mathematically uniform and

continuous.

We know that we can divide a pint of water into many millions of

portions, each of which is as fully endowed with all the properties of water

as the whole pint was; and it seems only natural to conclude that we might

go on subdividing the water for ever, just as we can never come to a limit

in subdividing the space in which it is contained. We have heard how Faraday

divided a gi'ain of gold into an inconceivable number of separate particles, and

we may see Dr Tyndall produce from a mere suspicion of nitrite of butyle

an immense cloud, the minute visible portion of which is still cloud, and there-

fore must contain many molecules of nitrite of butyle.

But evidence from different and independent sources is now crowding in upon

us which compels us to admit that if we could push the process of subdivision
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still further we should come to a limit, because each portion would then contain

only one molecule, an individual body, one and indivisible, unalterable by any

power in nature.

Even in our ordinary experiments on very finely divided matter we find

that the substance is beginning to lose the properties which it exhibits when

in a large mass, and that efiects depending on the individual action of mole-

cules are beginning to become prominent.

The study of these phenomena is at present the path which leads to the

development of molecular science.

That superficial tension of liquids which is called capillary attraction is one

of these phenomena. Another important class of phenomena are those which

are due to that motion of agitation by which the molecules of a liquid or gas

are continually working their way from one place to another, and continually

changing their course, like people hustled in a crowd.

On this depends the rate of diffusion of gases and liquids through each

other, to the study of which, as one of the keys of molecular science, that

unwearied inquirer into nature's secrets, the late Prof. Graham, devoted such

arduous labour.

The rate of electrolytic conduction is, according to Wiedemann's theorj^

influenced by the same cause ; and the conduction of heat in fluids depends

probably on the same kind of action. In the case of gases, a molecular theory

has been developed by Clausius and others, capable of mathematical treatment,

and subjected to experimental investigation; and by this theory nearly every

known mechanical property of gases has been explained on dynamical principles

;

so that the properties of individual gaseous molecules are in a fair way to

become objects of scientific research.

Now Mr Stoney has pointed out""' that the numerical results of experiments

on gases render it probable that the mean distance of their particles at the

ordinary temperature and pressure is a quantity of the same order of magnitude

as a millionth of a millimetre, and Sir William Thomson has sincef shewn, by

several independent lines of argument, drawn from phenomena so different in

themselves as the electrification of metals by contact, the tension of soap-

bubbles, and the friction of air, that in ordinary solids and liquids the average

distance between contiguous molecules is less than the hundred-millionth, and

greater than the two-thousand-millionth of a centimetre.

* PhU. Mag. Aug. 1868. t Nature, March 31, 1870.
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These, of course, are exceedingly rough estimates, for they are derived from

measurements some of which are still confessedly very rough; but if, at the

present time, we can form even a rough plan for arriving at results of this

kind, we may hope that, as our means of experimental inquiry become more

accurate and more varied, our conception of a molecule will become more definite,

so that we may be able at no distant period to estimate its weight with a

greater degree of precision.

A theory, which Sir W. Thomson has founded on Helmholtz's splendid

hydrodynamical theorems, seeks for the properties of molecules in the nng-

vortices of a uniform, frictionless, incompressible fluid. Such whirling rings may

be seen when an experienced smoker sends out a dexterous puff of smoke into

the still air, but a more evanescent phenomenon it is difficult to conceive.

This evanescence is owing to the viscosity of the air; but Helmholtz has shewn

that in a perfect fluid such a whirling ring, if once generated, would go on

whirling for ever, would always consist of the very same portion of the fluid

which was first set whirling, and could never be cut in two by any natural

cause. The generation of a ring-vortex is of course equally beyond the power

of natural causes, but once generated, it has the properties of individuality,

permanence in quantity, and indestructibility. It is also the recipient of impulse

and of energy, which is all we can affirm of matter; and these ring-vortices

are capable of such varied connexions and knotted self-involutions, that the

properties of differently knotted vortices must be as different as those of diffe-

rent kinds of molecules can be.

If a theory of this kind should be found, after conquering the enormous

mathematical difficulties of the subject, to represent in any degree the actual

properties of molecules, it will stand in a very different scientific position from

those theories of molecular action which are formed by investing the molecule

with an arbitrary system of central forces invented expressly to account for the

observed phenomena.

In the vortex theory we have nothing arbitrary, no central forces or occult

properties of any other kind. We have nothing but matter and motion, and when

the vortex is once started its properties are all determined from the original

impetus, and no further assumptions are possible.

Even in the present undeveloped state of the theory, the contemplation

of the individuality and indestructibility of a ring-vortex in a perfect fluid
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cannot fail to disturb the commonly received opinion that a molecule, in order

to be permanent, must be a very hard body.

In fact one of the first conditions which a molecule must fulfil is, ap-

parently, inconsistent with its being a single hard body. We know from those

spectroscopic researches which have thrown so much light on difierent branches

of science, that a molecule can be set into a state of internal vibration, in

which it gives off to the surrounding medium light of definite refrangibility

—

light, that is, of definite wave-length and definite period of vibration. The

fact that all the molecules (say, of hydrogen) which we can procure for our

experiments, when agitated by heat or by the passage of an electric spark,

vibrate precisely in the same periodic time, or, to speak more accurately, that

their vibrations are composed of a system of simple vibrations having always

the same periods, is a very remarkable fact.

I must leave it to others to describe the progress of that splendid series

of spectroscopic discoveries by which the chemistry of the heavenly bodies has

been brought within the range of human inquiry. I wish rather to direct

your attention to the fact that, not only has every molecule of terrestrial

hydrogen the same system of periods of free vibration, but that the spectro-

scopic examination of the light of the sun and stars shews that, in regions

the distance of which we can only feebly imagine, there are molecules vibrating

in as exact unison with the molecules of terrestrial hydrogen as two tuning-

forks tuned to concert pitch, or two watches regulated to solar time.

Now this absolute equality in the magnitude of quantities, occurring in all

parts of the universe, is worth our consideration.

The dimensions of individual natural bodies are either quite indeterminate,

as in the case of planets, stones, trees, &c., or they vary within moderate

Ihnits, as in the case of seeds, eggs, &c. ; but even in these cases small quanti-

tative differences are met with which do not interfere with the essential

properties of the body.

Even crystals, Avhich are so definite in geometrical form, are variable with

respect to their absolute dimensions.

Among the works of man we sometimes find a certain degree of uniformity.

There is a uniformity among the different bullets which are cast in the

same mould, and the different copies of a book printed from the same type.

If we examine the coins, or the weights and measures, of a civilized

country, we find a uniformity, which is produced by careful adjustment to
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standards made and provided by the state. The degree of uniformity of these

national standards is a measure of that spirit of justice in the nation which

has enacted laws to regulate them and appointed oflBcers to test them.

This subject is one in which we, as a scientific body, take a warm

interest; and you are all aware of the vast amount of scientific work which

has been expended, and profitably expended, in providing weights and measures

for commercial and scientific purposes.

The earth has been measured as a basis for a permanent standard of

length, and every property of metals has been investigated to guard against

any alteration of the material standards when made. To weigh or measure any

thing with modern accuracy, requires a course of experiment and calculation

in which almost every branch of physics and mathematics is brought into

requisition.

Yet, after all, the dimensions of our earth and its time of rotation, though,

relatively to our present means of comparison, very permanent, are not so by

any physical necessity. The earth might contract by cooling, or it might be

enlarged by a layer of meteorites falling on it, or its rate of revolution might

slowly slacken, and yet it would continue to be as much a planet as before.

But a molecule, say of hydrogen, if either its mass or its time of vibration

were to be altered in the least, would no longer be a molecule of hydrogen.

If, then, we wish to obtain standards of length, time, and mass which

shall be absolutely permanent, we must seek them not in the dimensions, or

the motion, or the mass of our planet, but in the w^ave-length, the period of

vibration, and the absolute mass of these imperishable and unalterable and

perfectly similar molecules.

When we find that here, and in the starry heavens, there are innumerable

multitudes of little bodies of exactly the same mass, so many, and no more,

to the grain, and vibrating in exactly the same time, so many times, and no more,

in a second, and when we reflect that no power in nature can now alter in

the least either the mass or the period of any one of them, we seem to have

advanced along the path of natural knowledge to one of those points at which

we must accept the guidance of that faith by which we understand that

" that which is seen was not made of things which do appear."

One of the most remarkable results of the progress of molecular science

is the light it has thrown on the nature of irreversible processes—processes,

that is, which always tend towards and never away from a certain limiting
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state. Thus, if two gases be put into the same vessel, they become mixed,

and the mixture tends continually to become more uniform. If two unequally

heated portions of the same gas are put into the vessel, something of the

kind takes place, and the whole tends to become of the same temperature.

If two unequally heated solid bodies be placed in contact, a continual approxi-

mation of both to an intermediate temperature takes place.

In the case of the two gases, a separation may be effected by chemical means

;

but in the other two cases the former state of things cannot be restored by

any natural process.

In the case of the conduction or diffusion of heat the process is not only

in-eversible, but it involves the irreversible diminution of that part of the whole

stock of thermal energy which is capable of being converted into mechanical work.

This is Thomson's theory of the irreversible dissipation of energy, and it is

equivalent to the doctrine of Clausius concerning the growth of what he calls

Entropy.

The irreversible character of this process is strikingly embodied in Fourier's

theory of the conduction of heat, where the formulae themselves indicate, for

all positive values of the time, a possible solution which continually tends to

the form of a uniform diffusion of heat.

But if we attempt to ascend the stream of time by giving to its symbol

continually diminishing values, we are led up to a state of things in which

the formula has what is called a critical value ; and if we inquire into the

state of things the instant before, we find that the formula becomes absurd.

We thus arrive at the conception of a state of things which cannot be

conceived as the physical result of a previous state of things, and we find

that this critical condition actually existed at an epoch not in the utmost

depths of a past eternity, but separated from the present time by a finite interval.

This idea of a beginning is one which the physical researches of recent

times have brought home to us, more than any observer of the course of

scientific thought in former times would have had reason to expect.

But the mind of man is not, like Fourier's heated body, continually settling

down into an ultimate state of quiet uniformity, the character of which we

can already predict; it is rather like a tree, shooting out branches which adapt

themselves to the new aspects of the sky towards which they climb, and roots

which contort themselves among the strange strata of the earth into which they

delve. To us who breathe only the spirit of our own age, and know only the
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characteristics of contemporary thought, it is as impossible to predict the general

tone of the science of the future as it is to anticipate the particular discoveries

which it will make.

Physical research is continually revealing to us new features of natural

processes, and we are thus compelled to search for new forms of thought

appropriate to these features. Hence the importance of a careful study of those

relations between Mathematics and Physics which determine the conditions under

which the ideas derived from one department of physics may be safely used in

forming ideas to be employed in a new department.

The figure of speech or of thought by which we transfer the language and

ideas of a familiar science to one with which we are less acquainted may be

called Scientific Metaphor.

Thus the words Velocity, Momentum, Force, &c. have acquired certain precise

meanings in Elementary Dynamics. They are also employed in the Dynamics

of a Connected System in a sense which, though perfectly analogous to the

elementary sense, is wider and more general.

These generalized forms of elementary ideas may be called metaphorical

terms in the sense in which every abstract term is metaphorical. The charac-

teristic of a truly scientific system of metaphors is that each term in its

metaphorical use retains all the formal relations to the other terms of the

system which it had in its original use. The method is then truly scientific

—

that is, not only a legitimate product of science, but capable of generating

science in its turn.

There are certain electrical phenomena, again, which are connected together

by relations of the same form as those which connect dynamical phenomena.

To apply to these the phrases of d}Tiamic8 with proper distinctions and pro-

visional reservations is an example of a metaphor of a bolder kind; but it is

a legitimate metaphor if it conveys a true idea of the electrical relations to

those who have been already trained in dynamics.

Suppose, then, that we have successfully introduced certain ideas belonging

to an elementary science by applying them metaphorically to some new class

of phenomena. It becomes an important philosophical question to determine in

what degree the applicability of the old ideas to the new subject may be

taken as evidence that the new phenomena are physically similar to the old.

The best instances for the determination of (this question are those in

which two different explanations have been given of the same thing.
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The most celebrated case of this kind is that of the corpuscular and the

undulatory theories of light. Up to a certain point the phenomena of light

are equally well explained by both ; beyond this point, one of them fails.

To understand the true relation of these theories in that part of the field

where they seem equally applicable we must look at them in the light which

Hamilton has thrown upon them by his discovery that to every brachistochrone

problem there corresponds a problem of free motion, involving different velocities

and times, but resulting in the same geometrical path. Professor Tait has

\\'ritten a very interesting paper on this subject.

According to a theory of electricity which is making great progress in

Germany, two electrical particles act on one another directly at a distance,

but with a force which, according to Weber, depends on their relative velocity,

and according to a theory hinted at by Gauss, and developed by Riemann,

Lorenz, and Neumann, acts not instantaneously, but after a time depending

on the distance. The power with which this theory, in the hands of these

eminent men, explains every kind of electrical phenomena must be studied in

order to be appreciated.

Another theory of electricity, which I prefer, denies action at a distance

and attributes electric action to tensions and pressures in an all-pervading medium,

these stresses being the same in kind with those familiar to engineers, and the

medium being identical with that in which light is supposed to be propagated.

Both these theories are found to explain not only the phenomena by the

aid of which they were originally constructed, but other phenomena, which

were not thought of or perhaps not known at the time; and both have inde-

pendently arrived at the same numerical result, which gives the absolute

velocity of light in terms of electrical quantities.

That theories apparently so fundamentally opposed should have so large

a field of truth common to both is a fact the philosophical importance of which

we cannot fully appreciate till we have reached a scientific altitude from which

the true relation between hypotheses so different can be seen.

I shall only make one more remark on the relation between Mathematics

and Physics. In themselves, one is an operation of the mind, the other is a

dance of molecules. The molecules have laws of their own, some of which we

select as most intelligible to us and most amenable to our calculation. We
form a theory from these partial data, and we ascribe any deviation of the

actual phenomena from this theory to disturbing causes. At the same time we
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confess that what we call disturbing causes are simply those parts of the true

circumstances which we do not know or have neglected, and we endeavour in

future to take account of them. We thus acknowledge that the so-called dis-

turbance is a mere figment of the mind, not a fact of nature, and that in

natural action there is no disturbance.

But this is not the only way in which the harmony of the material with

the mental operation may be disturbed. The mind of the mathematician is

subject to many disturbing causes, such as fatigue, loss of memory, and hasty

conclusions; and it is found that, from these and other causes, mathematicians

make mistakes.

I am not prepared to deny that, to some mind of a higher order than

ours, each of these errors might be traced to the regular operation of the laws

of actual thinking; in fact we ourselves often do detect, not only errors of

calculation, but the causes of these errors. This, however, by no means alters

our conviction that they are errors, and that one process of thought is right

and another process wrong.

One of the most profound mathematicians and thinkers of our time, the

late George Boole, when reflecting on the precise and almost mathematical

character of the laws of right thinking as compared with the exceedingly per-

plexing though perhaps equally determinate laws of actual and fallible thinking,

was led to another of those points of view from which Science seems to look

out into a region beyond her own domain.

" We must admit," he says, " that there exist laws " (of thought) " which

even the rigour of their mathematical forms does not preserve from violation.

We must ascribe to them an authority, the essence of which does not consist

in power, a supremacy which the analogy of the inviolable order of the natural

world in no way assists us to comprehend."



[From the Beport of the British Association, 1870.]

XLII. On Colour-vision at different points of the Retina.

It has long been known that near that point of the retina where it is

intersected by the axis of the eye there is a yellowish spot, the existence of

which can be shewn not only by the ophthalmoscope, but by its effect on

vision. At the Cheltenham Meeting in 1856 the author pointed out a method

of seeing this spot by looking at that part of a very narrow spectrum which

lies near the line F. Since that time the spot has been described by Helmholtz

and others ; and the author has made a number of experiments, not yet pub-

lished, in order to determine its effects on colour-vision.

One of the simplest methods of seeing the spot was suggested to the

author by Prof Stokes. It consists in looking at a white surface, such as that

of a white cloud, through a solution of chloride of chromium made so weak that

it appears of a bluish-green colour. If the observer directs his attention to

what he sees before him before his eyes have got accustomed to the new tone of

colour, he sees a pinkish spot like a wafer on a bluish-green ground; and this

spot is always at the place he is looking at. The solution transmits the red

end of the spectnim, and also a portion of bluish-green light near the line F.

The latter portion is partially absorbed by the spot, so that the red light has

the preponderance.

Experiments of a more accurate kind were made with an instrument the

original conception of which is due to Sir Isaac Nevrton, and is described in

his Lectiones Opticce, though it does not appear to have been actually constructed

till the author set it up in 1862, with a solid frame and careful adjustments.

It consists of two parts, side by side. In the first part, white light is dis-

persed by a prism so as to form a spectram. Certain portions of this spectrum

are selected by being allowed to pass through slits in a screen. These selected

portions are made to converge on a second prism, which unites them into a
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single beam of light, in which state they enter the eye. The second part of

the instrument consists of an arrangement by which a beam of light from the

very same source is weakened by two reflections from glass surfaces, and enters

the eye alongside of the beam of compound colours.

The instrument is formed of three rectangular wooden tubes, the whole

length being about nine feet. It contains two prisms, two mirrors, and six

lenses, which are so adjusted that, in spite of the very different treatment to

which the two portions of a beam of light are subjected, they shall enter the

eye so as to form exactly equal and coincident images of the source of light.

In fact, by looking through the instrument a man's face may be distinctly

seen by means of the red, the green, or the blue light which it emits, or by

any combination of these at pleasure.

The arrangement of the three slits is made by means of six brass slides,

which can be worked with screws outside the instrument ; and the breadth of

the slits can be read off with a gauge very accurately.

In each observation three colours of the spectrum are mixed and so adjusted

that their mixture is so exactly equivalent to the white light beside it, that

the line which divides the two can no longer be seen.

It is found that in certain cases, when this adjustment is made so as to

satisfy one person, a second will find the mixed colour of a green hue, while

to a third it will appear of a reddish colour, compared with the white beam.

I

But, besides this, it is found that the mixed colour may be so adjusted

that, if we look directly at it, it appears red, while if we direct the eye away

from it, and cast a sidelong glance at it, we see it green. The cause of this

is the yellow spot, w^hich acts somewhat as a piece of yellow glass would do,

absorbing certain kinds of light more than others; and the difference between

different persons arises from different intensities of the absorbing spot. It is

found in persona of every nation, but generally stronger in those of dark com-

plexion. The degree of intensity does not seem to depend so much on tlie
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colour of the hair or the iris of the individual, as to run through families

independent of outward complexion.

The same difference is found between different colour-blind persons; so that

in the comparison of their vision with that of the normal eye, persons should

be selected for comparison who have the yellow spot of nearly the same intensity.

In my own eye the part of the spectrum from ^ to £' is seen decidedly

better by the central part of the retina than by the surrounding parts. Near F
this is reversed, and the central part gives a sensation of about half the

intensity of the rest. Beyond G the central part is again the most sensitive,

and it is decidedly so near H.

Before I conclude I wish to direct the attention of those who wish to

study colour to the exceedingly simple and beautiful series of experiments

described by Mr W. Benson in his works on colour. By looking through a prism

at the black and white diagrams in his book, any one can see more of the

true relations of colour than can be got from the most elaborately coloiured

theoretical arrangements of tints.



[From the Philosophical Magazine for December, 1870.]

XLIII. On Hills and Dales.

To the Editors of the Philosophical Magazine and Journal.

Gentlemen,

I FIND that in the greater part of the substance of the following

paper I have been anticipated by Professor Cayley, in a memoir " On Contour

and Slope Lines," published in the Philosophical Magazine in 1859 (S. 4. Vol.

xvin. p. 264). An exact knowledge of the first elements of physical geography,

however, is so important, and loose notions on the subject are so prevalent,

that I have no hesitation in sending you what you, I hope, will have no

scruple in rejecting if you think it superfluous after what has been done by

Professor Cayley.

I am. Gentlemen,

Your obedient Servant,

J. CLERK MAXWELL.
Glenlair, Dalbeattie,

Octoher 12, 1870.

1. On Contouiulines and Measurement of Heights.

The results of the survey of the surface of a country are most conveniently

exhibited by means of a map on which are traced contour-lines, each contour-line

representing the intersection of a level surface with the surface of the earth,

and being distinguished by a numeral which indicates the level surface to

which it belongs.

When the extent of country surveyed is smaU, the contour-hnes are defined
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with sufficient accuracy by the number of feet above the mean level of the

sea; but when the survey is so extensive that the variation of the force of

gravity must be taken into account, we must adopt a new definition of the

height of a place in order to be mathematically accurate. If we could deter-

mine the exact form of the surface of equilibrium of the sea, so as to know

its position in the interior of a continent, we might draw a normal to this

surface from the top of a mountain, and call this the height of the mountain.

This would be perfectly definite in the case when the surface of equilibrium

is everywhere convex; but the lines of equal height would not be level

surfaces.

Level surfaces are surfaces of equilibrium, and they are not equidistant.

The only thing which is constant is the amount of work required to rise from

one to another. Hence the only consistent definition of a level surface is

obtained by assuming a standard station, say, at the mean level of the sea

at a particular place, and defining every other level surface by the work

required to raise unit of mass from the standard station to that level surface.

This work must, of course, be expressed in absolute measure, not in local foot-

pounds.

At every step, therefore, in ascertaining the difference of level of two

places, the surveyor should ascertain the force of gravity, and multiply the

linear difference of level observed by the numerical value of the force of gi'avity.

The height of a place, according to this system, will be defined by a

number which represents, not a lineal quantity, but the half square of the

velocity which an unresisted body would acquire in sliding along any path from

that place to the standard station. This is the only definition of the height

of a place consistent with the condition that places of equal height should be

on the same level. If by any means we can ascertain the mean value of

gravity along the line of force drawn from the place to the standard level

surface, then, if we divide the number already found by this mean value, we

shall obtain the length of this line of force, which may be called the linear

height of the place.

On the Forms of Contour-lines.

Let us begin with a level surface entirely wdthin the solid part of the

earth, and let us suppose it to ascend till it reaches the bottom of the deepest
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sea. At that point it will touch the surface of the earth; and if it continues

to ascend, a contour-line will be formed surrounding this bottom (or Immit, as

it is called by Professor Cayley) and enclosing a region of depression. As the

level surface continues to ascend, it will reach the next deepest bottom of the

sea; and as it ascends it will form another contour-line, surrounding this point,

and enclosing another region of depression below the level surface. As the level

surface rises these regions of depression will continually expand, and new ones

will be formed corresponding to the different lowest points of the earth's

surface.

At fii-st there is but one region of depression, the whole of the rest of

the earth's surface forming a region of elevation surrounding it. The number

of regions of elevation and depression can be altered in two ways.

1st. Two regions of depression may expand till they meet and so run

into one. If a contour-line be drawn through the point where they meet, it

forms a closed curve having a double point at this place. This contour-line

encloses two regions of depression. We shall call the point where these two

regions meet a Bar.

It may happen that more than two regions run into each other at once.

Such cases are singular, and we shall reserve them for separate consideration.

2ndly. A region of depression may thrust out arms, which may meet each

other and thus cut off a region of elevation in the midst of the region of

depression, which thus becomes a cyclic region, while a new region of elevation

is introduced. The contour-line through the point of meeting cuts off two

regions of elevation from one region of depression, and the point itself is called

a Pass. There may be in singular cases passes between more than two regions

of elevation.

3rdly. As the level surface rises, the regions of elevation contract and at

last are reduced to points. These points are called Summits or Tops.

Relation between the Nuinher of Summits and Passes.

At first the whole earth is a region of elevation. For every new region

of elevation there is a Pass, and for every region of elevation reduced to a

point there is a Summit. And at last the whole surface of the earth is a
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region of depression. Hence the number of Summits is one more than the

number of Passes. If S is the number of Summits and P the number of passes,

S=P + l.

Relation between the Number of BottoTus and Bars.

For every new region of depression there is a Bottom, and for every

diminution of the number of these regions there is a Bar. Hence the number

of Bottoms is one more than the number of Bars. If / is the number of

Bottoms or Immits and B the number of Bars, then

1 =B+1.

From this it is plain that if, in the singular cases of passes and bars, we

reckon a pass as single, double, or w-ple, according as two, three, or n+l
regions of elevation meet at that point, and a bar as single, double, or n-ple,

as two, three, or n+l regions of depression meet at that point, then the

census may be taken as before, giving each singular point its proper number.

If one region of depression meets another in several places at once, one of

these must be taken as a bar and the rest as passes.

The whole of this theory applies to the case of the maxima and minima

of a function of two variables which is everywhere finite, determinate, and

continuous. The summits correspond to maxima and the bottoms to minima.

If there are p maxima and q minima, there must be p + q — 2 cases of stationary

values which are neither maxima nor minima. If we regard those points in

themselves, we cannot make any distinction among them ; but if we consider

the regions cut off by the curves of constant value of the function, we may

call p — 1 of them false maxima and ^ — 1 of them false minima.

On Functions of Three Variables.

If we suppose the three variables to be the three co-ordinates of a point,

and the regions where the function is greater or less than a given value to be

called the positive and the negative regions, then, as the given value increases,

for every negative region formed there will be a minimum, and the positive

region will have an increase of its periphraxy. For every junction of two dif-

ferent negative regions there will be a false minimum, and the positive region
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\sill have a diminution of its peripLraxy. Hence if there are q true minima

there will \)e q — \ false minima.

There are different orders of these stationary points according to the number

of regions which meet In tliem. The first order is when two negative regions

meet surrounded by a positive region, the second order when tliree negative

regions meet, and so on. Points of the second order count for two, those of

the third for three, and so on, in this relation between the true minima and

the false ones.

In like manner, when a negative region expands round a hollow part and

at last surrounds it, thus cutting off a new positive region, the negative region

acquires perlphraxy, a new positive region is formed, and at the point of contact

there is a false maximum.

When any positive region is reduced to a point and vanishes, the negative

region loses perlphraxy and there Is a true maximum. Hence if there are p
maxima there are p — \ false maxima.

But these are not the only forma of stationary points ; for a negative

region may thrust out arms which may meet in a stationary point. The negative

and the positive region both become cyclic. Again, a cyclic region may close

in so as to become acyclic, forming another kind of stationary point where the

ring first fills up. If there are r points at which cyclosis is gained and r

points at which it is lost, then we know that

r = r
;

but we cannot determine any relation between the number of these points and

that of either the true or the false maxima and minima.

If the function of three variables is a potential function, the true maxima

are points of stable equilibrium, the true minima points of equilibrium unstable

in every direction, and at the other stationary points the equilibrium is stable

in some directions and unstable in others.

On Line's of Slojoe.

Lines drawn so as to be everywhere at right angles to the contour-lines

are called lines of slope. At every point of such a line there is an upward

and a downward direction. If we follow the upward direction we shall in

general reach a summit, and if we follow the downward direction we shall in

general reach a bottom. In particular cases, however, we may reach a pass or

a bar.
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On Hills and Dales.

Hence each point of the earth's surface has a line of slope, which begins

at a certain summit and ends in a certain bottom. Districts whose lines of

slope run to the same bottom are called Basins or Dales. Those whose lines

of slope come from the same summit may be called, for want of a better name,

HiUs.

Hence the whole earth may be naturally divided into Basins or Dales, and

also, by an independent division, into hills, each point of the surface belonging

to a certain dale and also to a certain hill.

On Watersheds and Watercourses.

Dales are divided from each other by Watersheds, and Hills by Watercourses.

To draw these lines, begin at a pass or a bar. Here the ground is level,

so that we cannot begin to draw a line of slope ; but if we draw a very small

closed curve round this point, it will have highest and lowest points, the

number of maxima being equal to the number of minima, and each one more

than the index number of the pass or bar. From each maximum point draw

a line of slope upwards till it reaches a summit. This will be a line of Water-

shed. From each minimum point draw a line of slope downwards till it reaches

a bottom. This will be a line of Watercourse. Lines of Watershed are the

only lines of slope which do not reach a bottom, and lines of Watercourse

are the only lines of slope which do not reach a summit. All other lines of

slope diverge from some summit and converge to some bottom, remaining

throughout their course in the district belonging to that summit and that

bottom, which is bounded by two watersheds and two watercourses.

In the pure theory of surfaces there is no method of determining a line

of watershed or of watercourse, except by first finding a pass or a bar and

drawing the line of slope from that point. In nature, water actually trickles

down the lines of slope, which generally converge towards the mathematical

watercourses, though they do not actually join them ; but when the streams

increase in quantity, they join and excavate courses for themselves ; and these

actually run into the main watercourse which bounds the district, and so cut

out a river-bed, which, whether full or empty, forms a visible mark on the
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earth's surface. No such action takes place at a watershed, which therefore

generally remains invisible..

There is another difficulty in the application of the mathematical theory,

on account of the principal regions of depression being covered with water, so

that very little is known about the positions of the singular points from which

the lines of watershed must be drawn to the summits of hills near the coast.

A complete divi'^'on of the dry land into districts, therefore, requires some

knowledge of the form of the bottom of the sea and of lakes.

On the Number of Natural Distiicts.

Let pi be the number of single passes, jh that of double passes, and so on.

Let Z>„ Z>2, &c. be the numbers of single, double, &c. bars. Then the number

of summits will be, by what we have proved,

and the number of bottoms will be

The number of watersheds will be

W= 2 {h, -\-2\) + 3 {k +}),) + &c.

The number of watercourses will be the same.

Now, to find the number of faces, we have by Listing's rule

where P is the number of points, L that of lines, F that of faces, and E
that of regions, there being in this case no instance of cyclosis or periphraxy.

Here 72 = 2, viz. the earth and the surrounding space ; hence

F=L-P+2.

If we put L equal to the number of watersheds, and P equal to that of

summits, passes, and bars, then F is the number of Dales, which is evidently

equal to the number of bottoms.

If we put L for the number of watercourses, and P for the number of

passes, bars, and bottoms, then F is the number of *Hills, which is evidently

equal to the number of summits.
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If we put L equal to the whole number of lines, and P equal to the

whole number of points, we find that F, the number of natural districts

named from a hill and a dale together, is equal to W, the number of water-

sheds or watercourses, or to the whole number of summits, bottoms, passes,

and bars diminished by 2.

Chart of an Inland Basin.

/,, 7^, /j, /,. Lowest points, Bottoms or Immits.

/S',, S^, S^, S^. Highest points, Tops or Summits.

B^, B^, B^. Bars between regions of depression.

7, B^ 7j, he. Lines of Watercourse.

aS', Pj S^ (fee. Lines of Watershed.

Dotted line. Contour-lines.



XLIV. Introductory Lecture on Experimental Physics.

The University of Cambridge, in accordance with that law of ita evolution,

by which, while maintaining the strictest continuity between the successive

phases of its history, it adapts itself with more or less promptness to the

requirements of the times, has lately instituted a course of Experimental

Physics. This course of study, while it requires us to maintain in action all

those powers of attention and analysis which have been so long cultivated in

the University, calls on us to exercise our senses in observation, and our hands

in manipulation. The familiar apparatus of pen, ink, and paper will no longer be

sufficient for us, and we shall require more room than that afforded by a seat at

a desk, and a wider area than that of the black board. We owe it to the

munificence of our Chancellor, that, whatever be the character in other respects

of the experiments w^hich we hope hereafter to conduct, the material facilities

for their full development will be upon a scale which has not hitherto been

surpassed.

The main feature, therefore, of Experimental Physics at Cambridge is the

Devonshire Physical Laboratory, and I think it desirable that on the present

occasion, before we enter on the details of any special study, we should con-

sider by what means we, the University of Cambridge, may, as a living body,

appropriate and vitalise this new organ, the outward shell of which we expect

soon to rise before us. The course of study at this University has always

included Natural Philosophy, as well as Pure Mathematics. To diffuse a sound

knowledge of Physics, and to imbue the minds of our students with correct

dynamical principles, have been long regarded as among our highest functions,

and very few of us can now place ourselves in the mental condition in which

even such philosophers as the great Descartes were involved in the days before

Newton had announced the true laws of the motion of bodies. Indeed the

cultivation and diffusion of sound dynamical ideas has already effected a great

change in the language and thoughts even of those who make no pretensions

VOL. II. 31



242 INTRODUCTORY LECtURE ON EXPERIMENTAL PHYSICS.

to science, and we are daily receiving fresh proofs that the popularisation of

scientific doctrines is producing as great an alteration in the mental state of

society as the material applications of science are effecting in its outward life.

Such indeed is the respect paid to science, that the most absurd opinions may

become current, provided they are expressed in language, the sound of which

recals some well-known scientific phrase. If society is thus prepared to receive

all kinds of scientific doctrines, it is our part to provide for the diffusion and

cultivation, not only of true scientific principles, but of a spirit of sound

criticism, founded on an examination of the evidences on which statements

apparently scientific depend.

"When we shall be able to employ in scientific education, not only the

trained attention of the student, and his familiarity with symbols, but the

keenness of his eye, the quickness of his ear, the delicacy of his touch, and

the adroitness of his fingers, we shall not only extend our influence over a

class of men who are not fond of cold abstractions, but, by opening at once

all the gateways of knowledge, we shall ensure the association of the doctrines

of science with those elementary sensations which form the obscure background

of all our conscious thoughts, and which lend a vividness and relief to ideas,

which, when presented as mere abstract terms, are apt to fade entirely from

the memory.

In a course of Experimental Physics we may consider either the Physics

or the Experiments as the leading feature. We may either employ the experi-

ments to illustrate the phenomena of a particular branch of Physics, or we

may make some physical research in order to exemplify a particular experimental

method. In the order of time, we should begin, in the Lecture Room, with

a course of lectures on some branch of Physics aided by experiments of illus-

tration, and conclude, in the Laboratory, with a course of experiments of research.

Let me say a few words on these two classes of experiments,—Experiments

of Illustration and Experiments of Research. The aim of an experiment of

illustration is to throw light upon some scientific idea so that the student may

be enabled to grasp it. The circumstances of the experiment are so arranged

that the phenomenon which we wish to observe or to exhibit is brought into

prominence, instead of being obscured and entangled among other phenomena, as

it is when it occurs in the ordinary course of nature. To exhibit illustrative

experiments, to encourage others to make them, and to cultivate in every

way the ideas on which they throw light, forms an important part of our duty.
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The simpler the materials of an illustrative experiment, and the more familiar

they are to the student, the more thoroughly is he likely to acquire the idea

which it is meant to illustrate. The educational value of such experiments is

often inversely proportional to the complexity of the apparatus. The student

who uses home-made apparatus, which is always going wrong, often learnS more

than one who has the use of carefully adjusted instruments, to which he is apt

to trust, and which he dares not take to pieces.

It is very necessary that those who are trying to learn from books the

flicts of physical science should be enabled by the help of a few illustrative

experiments to recognise these facts when they meet with them out of doors.

Science appears to us with a very different aspect after we have found out

that it is not in lecture rooms only, and by means of the electric light pro-

jected on a screen, that we may witness physical phenomena, but that we may

find illustrations of the highest doctrines of science in games and gymnastics,

in travelling by land and by water, in storms of the air and of the sea, and

wherever there is matter in motion.

This habit of recognising principles amid the endless variety of their action

can never degrade our sense of the sublimity of nature, or mar our enjoyment

of its beauty. On the contrary, it tends to rescue our scientific ideas from

that vague condition in which we too often leave them, buried among the

other products of a lazy credulity, and to raise them into their proper position

among the doctrines in which our faith is so assured, that we are ready at all

times to act on them.

Experiments of illustration may be of very difierent kinds. Some may be

adaptations of the commonest operations of ordinary life, others may be carefully

arranged exhibitions of some phenomenon which occurs only under peculiar

conditions. They all, however, agree in this, that their aim is to present some

phenomenon to the senses of the student in such a way that he may associate

with it the appropriate scientific idea. When he has grasped this idea, the

experiment which illustrates it has served its purpose.

In an experiment of research, on the other hand, this is not the principal

aim. It is true that an experiment, in which the principal aim is to see what

happens under certain conditions, may be regarded as an experiment of research

by those who are not yet familiar with the result, but in experimental

researches, strictly so called, the ultimate object is to measure something which

we have already seen—to obtain a numerical estimate of some magnitude.
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Experiments of this class—those in which measurement of some kind is

involved, are the proper work of a Physical Laboratory. In every experiment

we have first to make our senses famihar with the phenomenon, but we must

not stop here, we must find out which of its features are capable of measure-

ment, and what measurements are required in order to make a complete

specification of the phenomenon. We must then make these measurements,

and deduce from them the result which we require to find.

This characteristic of modem experiments—that they consist principally of

measurements,—is so prominent, that the opinion seems to have got abroad,

that in a few years all the great physical constants will have been approxi-

mately estimated, and that the only occupation which will then be left to men

of science will be to carry on these measurements to another place of decimals.

If this is really the state of things to which we are approaching, our

Laboratory may perhaps become celebrated as a place of conscientious labour

and consummate skill, but it will be out of place in the University, and ought

rather to be classed with the other great workshops of our country, where equal

ability is directed to more useful ends.

But we have no right to think thus of the unsearchable riches of creation,

or of the untried fertility of those fi:esh minds into which these riches will

continue to be poured. It may possibly be true that, in some of those fields

of discovery which He open to such rough observations as can be made without

artificial methods, the great explorers of former times have appropriated most

of what is valuable, and that the gleanings which remain are sought after,

rather for their abstruseness, than for their intrinsic worth. But the history

of science shews that even during that phase of her progress in which she

devotes herself to improving the accuracy of the numerical measurement of

quantities with which she has long been familiar, she is preparing the materials

for the subjugation of new regions, which would have remained unknown if

she had been contented with the rough methods of her early pioneers. I might

bring forward instances gathered from every branch of science, shewing how

the labour of careful measurement has been rewarded by the discovery of new

fields of research, and by the development of new scientific ideas. But the

history of the science of terrestrial magnetism affords us a sufficient example

of what may be done by Experiments in Concert, such as we hope some day

to perform in our Laboratory.

That celebrated traveller, Humboldt, was profoundly impressed with the
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scientific value of a combined effort to be made by the observers of all nations,

to obtain accurate measurements of the magnetism of the earth ; and we owe

it mainly to his enthusiasm for science, his great reputation and his wide-

spread influence, that not only private men of science, but the governments of

most of the civilised nations, our own among the number, were induced to

take part in the enterprise. But the actual working out of the scheme, and

the arrangements by which the labours of the observers were so directed as to

obtain the best results, we owe to the great mathematician Gauss, working along

with Weber, the future founder of the science of electro-magnetic measurement,

in the magnetic observatory of Gottingen, and aided by the skill of the

instrument-maker Leyser. These men, however, did not work alone. Numbers

of scientific men joined the Magnetic Union, learned the use of the new instru-

ments and the new methods of reducing the observations; and in every city

of Europe you might see them, at certain stated times, sitting, each in his

cold wooden shed, with his eye fixed at the telescope, his ear attentive to the

clock, and his pencil recording in his note-book the instantaneous position of

the suspended magnet.

Bacon's conception of " Experiments in concert " was thus realised, the

scattered forces of science were converted into a regular army, and emulation

and jealousy became out of place, for the results obtained by any one observer

were of no value till they were combined with those of the others.

The increase in the accuracy and completeness of magnetic observ^ations

which was obtained by the new method, opened up fields of research which

were hardly suspected to exist by those whose observations of the magnetic

needle had been conducted in a more primitive manner. We must reserve for

its proper place in our course any detailed description of the distui'bances to

which the magnetism of our planet is found to be subject. Some of these

disturbances are periodic, following the regular courses of the sun and moon.

Others are sudden, and are called magnetic storms, but, like the storms of

the atmosphere, they have their known seasons of frequency. The last and

the most mysterious of these magnetic changes is that secular variation by

which the whole character of the earth, as a great magnet, is being slowly

modified, while the magnetic poles creep on, from century to century, along

their winding track in the polar regions.

We have thus learned that the interior of the earth is subject to the

influences of the heavenly bodies, but that besides this there is a constantly
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progressive change going on, the cause of which is entirely unknown. In each

of the magnetic observatories throughout the world an arrangement is at work,

by means of which a suspended magnet directs a ray of light on a prepared

sheet of paper moved by clockwork. On that paper the never-resting heart of

the earth is now tracing, in telegraphic symbols which will one day be inter-

preted, a record of its pulsations and its flutterings, as well as of that slow

but mighty working which warns us that we must not suppose that the inner

history of our planet is ended.

But this great experimental research on Terrestrial Magnetism produced

lasting effects on the progress of science in general. I need only mention one

or two instances. The new methods of measuring forces were successfully applied

by Weber to the numerical determination of all the phenomena of electricity,

and very soon afterw^ards the electric telegraph, by conferring a commercial

value on exact numerical measurements, contributed largely to the advancement,

as well as to the diffusion of scientific knowledge.

But it is not in these more modern branches of science alone that this

influence is felt. It is to Gauss, to the Magnetic Union, and to magnetic

observers in general, that we owe our deliverance from that absurd method of

estimating forces by a variable standard which prevailed so long even among

men of science. It w^as Gauss who first based the practical measurement of

magnetic force (and therefore of every other force) on those long established

principles, w^hich, though they are embodied in every dynamical equation, have

been so generally set aside, that these very equations, though correctly given

in our Cambridge textbooks, are usually explained there by assuming, in addition

to the variable standard of force, a variable, and therefore illegal, standard of

mass.

Such, then, were some of the scientific results which followed in this case

from bringing together mathematical power, experimental sagacity, and manipu

lative skill, to direct and assist the labours of a body of zealous observers. If

therefore we desire, for our own advantage and for the honour of our University,

that the Devonshire Laboratory should be successful, we must endeavour to

maintain it in living union with the other organs and faculties of our learned

body. We shall therefore first consider the relation in which we stand to

those mathematical studies which have so long flourished among us, which deal

with our own subjects, and which difler from our experunental studies only in

the mode in which they are presented to the mind.
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There is no more powerful method for introducing knowledge into the

mind than that of presenting it in as many different ways as we can. When

tlie ideas, after entering through different gateways, effect a junction in the

citadel of the mind, the position they occupy becomes impregnable. Opticians

tell us that the mental combination of the views of an object which we obtain

from stations no further apart than our two eyes is sufficient to produce in

our minds an impression of the solidity of the object seen ; and we find that

this impression is produced even when we are aware that we are really looking

at two flat pictures placed in a stereoscope. It is therefore natural to expect that

the knowledge of physical science obtained by the combined use of mathematical

analysis and experimental research will be of a more solid, available, and enduring

kind than that possessed by the mere mathematician or the mere experimenter.

But \vhat will be the effect on the University, if men pursuing that course

of readino- which has produced so many distinguished Wranglers, turn aside to

work experiments? Will not their attendance at the Laboratory count not

merely as time withdrawn from their more legitimate studies, but as the intro-

duction of a disturbing element, tainting their mathematical conceptions with

material imagery, and sapping their faith in the formulae of the textbooks'?

Besides this, we have already heard complaints of the undue extension of our

studies, and of the strain put upon our questionists by the weight of learning

which they try to carry with them into the Senate-House. If we now ask

them to get up their subjects not only by books and writing, but at the same

time by observation and manipulation, will they not break down altogether?

The Physical Laboratory, we are told, may perhaps be useful to those who

are going out in Natural Science, and who do not take in Mathematics, but to

attempt to combine both kinds of study during the time of residence at the

University is more than one mind can bear.

No doubt there is some reason for this feeling. Many of us have already

overcome the initial difficulties of mathematical training. When we now go on

with our study, we feel that it requires exertion and involves fatigue, but we

are confident that if we only work hard our progress will be certain.

Some of us, on the other hand, may have had some experience of the

routine of experimental work. As soon as we can read scales, observe times,

focus telescopes, and so on, this kind of work ceases to require any great

mental effort. We may perhaps tire our eyes and weary our backs, but we do

not greatly fatigue our minds.
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It is not till we attempt to bring the theoretical part of our training into

contact with the practical that we begin to experience the full effect of what
Faraday has called "mental inertia"—not only the difficulty of recognising,

among the concrete objects before us, the abstract relation which we have

learned from books, but the distracting pain of wrenching the mind away from

the symbols to the objects, and from the objects back to the symbols. This

however is the price we have to pay for new ideas.

But when we have overcome these difficulties, and successfully bridged over

the gulph between the abstract and the concrete, it is not a mere piece of

knowledge that we have obtained: we have acquired the rudiment of a perma-

nent mental endowment. When, by a repetition of efforts of this kind, we have

more fully developed the scientific faculty, the exercise of this faculty in detecting

scientific principles in nature, and in directing practice by theory, is no longer

irksome, but becomes an unfailing source of enjoyment, to which we return so

often, that at last even our careless thoughts begin to run in a scientific

channel.

I quite admit that our mental energy is limited in quantity, and I know
that many zealous students try to do more than is good for them. But the

question about the introduction of experimental study is not entirely one of

quantity. It is to a great extent a question of distribution of energy. Some
distributions of energy, we know, are more useful than others, because they are

more available for those purposes which we desire to accomplish.

Now in the case of study, a great part of our fatigue often arises, not

from those mental efforts by which we obtain the mastery of the subject, but

from those which are spent in recalling our wandering thoughts ; and these

efforts of attention would be much less fatiguing if the disturbing force of

mental distraction could be removed.

This is the reason why a man whose soul is in his work always makes

more progress than one whose aim is something not immediately connected with

his occupation. In the latter case the very motive of which he makes use to

stimulate his flagging powers becomes the means of distracting his mind from

the work before him.

There may be some mathematicians who pursue their studies entirely for

their own sake. Most men, however, think that the chief use of mathematics

is found in the interpretation of nature. Now a man who studies a piece of

mathematics in order to understand some natural phenomenon which he has
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seen, or to calculate the best arrangement of some experiment which he means

to make, is likely to meet with far less distraction of mind tlian if his sole

aim had been to sharpen his mind for the successful practice of the Law, or to

obtain a high place in the Mathematical Tripos.

I have known men, who when they were at school, never could see the

good of mathematics, but who, when in after life they made this discovery,

not only became eminent as scientific engineers, but made considerable progress

in the study of abstract mathematics. If our experimental course should help

any of you to see the good of mathematics, it will relieve us of much anxiety,

for it will not only ensure the success of your future studies, but it will make

it much less likely that they will prove injurious to your health.

But why should we labour to prove the advantage of practical science to

the University ? Let us rather speak of the help which the University may
give to science, when men well trained in mathematics and enjoying the advan-

tages of a well-appointed Laboratory, shall unite their eflforts to carry out some

experimental research which no solitary worker could attempt.

At first it is probable that our principal experimental work must be the

illustration of particular branches of science, but as we go on we must add to

this the study of scientific methods, the same method being sometimes illustrated

by its application to researches belonging to difierent branches of science.

We might even imagine a course of experimental study the arrangement of

which should be founded on a classification of methods, and not on that of the

objects of investigation. A combination of the two plans seems to me better

than either, and while we take every opportunity of studying methods, we shall

take care not to dissociate the method from the scientific research to which it

is applied, and to which it owes its value.

We shall therefore arrange our lectures according to the classification of the

principal natural phenomena, such as heat, electricity, magnetism and so on.

In the laboratory, on the other hand, the place of the difierent instruments

will be determined by a classification according to methods, such as weighing

and measuring, observations of time, optical and electrical methods of observa-

tion, and so on.

The determination of the experiments to be performed at a particular time

must often depend upon the means we have at command, and in the case of

the more elaborate experiments, this may imply a long time of preparation, during
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which the instruments, the methods, and the observers themselves, are being

gradually fitted for their work. When we have thus brought together the

requisites, both material and intellectual, for a particular experiment, it may

sometimes be desirable that before the instruments are dismounted and the

observers dispersed, we should make some other experiment, requiring the same

method, but deahng perhaps with an entirely different class of physical phe-

nomena.

Our principal work, however, in the Laboratory must be to acquaint our-

selves with all kinds of scientific methods, to compare them, and to estimate

their value. It vnll, I think, be a result worthy of our University, and more

likely to be accomplished here than in any private laboratory, if, by the free

and full discussion of the relative value of different scientific procedures, we

succeed in forming a school of scientific criticism, and in assisting the develop-

ment of the doctrine of method.

But admitting that a practical acquaintance with the methods of Physical

Science is an essential part of a mathematical and scientific education, we may

be asked whether we are not attributing too much importance to science alto-

gether as part of a liberal education.

Fortunately, there is no question here whether the University should con-

tinue to be a place of liberal education, or should devote itself to preparing

young men for particular professions. Hence though some of us may, I hope,

see reason to make the pursuit of science the main business of our lives, it

must be one of our most constant aims to maintain a living connexion between

our work and the other liberal studies of Cambridge, whether literary, philological,

historical or philosophical.

There is a narrow professional spirit which may grow up among men of

science, just as it does among men who practise any other special business.

But surely a University is the very place where we should be able to over-

come this tendency of men to become, as it were, granulated into small worlds,

which are all the more worldly for their very smallness. We lose the ad-

vantage of having men of varied pui'suits collected into one body, if we do not

endeavour to imbibe some of the spirit even of those whose special branch of

learning is different from our own.

It is not so long ago since any man who devoted himself to geometry,

or to any science requiring continued application, was looked upon as necessarily

a misanthrope, who must have abandoned all human interests, and betaken
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himself to abstractions so far removed from the world of life and action that

he has become insensible alike to the attractions of pleasure and to the claims

of duty.

In the present day, men of science are not looked upon with the same

awe or with the same suspicion. They are supposed to be in league with the

material spirit of the age, and to form a kind of advanced Radical party among

men of learning.

We are not here to defend literary and historical studies. We admit that

the proper study of mankind is man. But is the student of science to be

withdrawn from the study of man, or cut off from every noble feeling, so long

as he Hves in intellectual feUowship with men who have devoted their lives to

the discovery of truth, and the results of whose enquiries have impressed them-

selves on the ordinary speech and way of thinking of men who never heard

their names? Or is the student of history and of man to omit from his con-

sideration the history of the origin and diffusion of those ideas which have

produced so great a difference between one age of the world and another?

It is true that the history of science is very different from the science of

history. We are not studying or attempting to study the working of those

blind forces which, we are told, are operating on crowds of obscure people,

shaking principaUties and powers, and compelling reasonable men to bring events

to pass in an order laid down by philosophers.

The men whose names are found in the history of science are not mere

hypothetical constituents of a crowd, to be reasoned upon only in masses. We

recognise them as men like ourselves, and their actions and thoughts, being

more free from the influence of passion, and recorded more accurately than those

of other men, are aU the better materials for the study of the calmer parts

of human nature.

But the history of science is not restricted to the enumeration of success-

ful investigations. It has to tell of unsuccessful inquiries, and to explain why

some of the ablest men have failed to find the key of knowledge, and how

the reputation of others has only given a firmer footing to the errors into

which they fell.

The history of the development, whether normal or abnormal, of ideas is

of all subjects that in which we, as thinking men, take the deepest interest.

But when the action of the mind passes out of the intellectual stage, in which

truth and error are the alternatives, into the more violently emotional states of
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anger and passion, malice and envy, fiiry and madness; the student of science,

though he is obliged to recognise the powerful influence which these wild forces

have exercised on mankind, is perhaps in some measure disqualified from pursuing

the study of this part of human nature.

But then how few of us are capable of deriving profit from such studies.

We cannot enter into full sympathy with these lower phases of our nature

without losing some of that antipathy to them which is our surest safeguard

against a reversion to a meaner type, and we gladly return to the company of

those illustrious men who by aspiring to noble ends, whether intellectual or

practical, have risen above the region of storms into a clearer atmosphere, where

there is no misrepresentation of opinion, nor ambiguity of expressiwi, but where

one mind comes into closest contact with another at the point where both

approach nearest to the truth.

I propose to lecture during this term on Heat, and, as our facilities for

experimental work are not yet fully developed, I shall endeavour to place before

you the relative position and scientific connexion of the different branches of the

science, rather than to discuss the details of experimental methods.

We shall begin with Thermometry, or the registration of temperatures, and

Calorimetry, or the measurement of quantities of heat. We shall then go on

to Thermodynamics, which investigates the relations between the thermal pro-

perties of bodies and their other dynamical properties, in so far as these relations

may be traced without any assumption as to the particular constitution of these

bodies.

The principles of Thermodynamics throw great light on all the phenomena

of nature, and it is probable that many valuable applications of these principles

have yet to be made ; but we shall have to point out the limits of this

science, and to shew that many problems in nature, especially those in which

the Dissipation of Energy comes into play, are not capable of solution by the

principles of Thermodynamics alone, but that in order to understand them, we

are obliged to form some more definite theory of the constitution of bodies.

Two theories of the constitution of bodies have struggled for victory with

various fortunes since the earliest ages of speculation : one is the theory of a

universal plenum, the other is that of atoms and void.

The theory of the plenum is associated with the doctrine of mathe-

matical continuity, and its mathematical methods are those of the Difierential
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Calculus, which is the appropriate expression of the relations of continuous

quantity.

The theory of atoms and void leads us to attach more importance to the

doctrines of integral numbers and definite proportions ; but, in applying dynamical

principles to the motion of immense numbers of atoms, the limitation of our

faculties forces us to abandon the attempt to express the exact history of each

atom, and to be content with estimating the average condition of a group of

atoms large enough to be visible. This method of dealing with groups of atoms,

which I may call the statistical method, and which in the present state of our

knowledge is the only available method of studying the properties of real bodies,

involves an abandonment of strict dynamical principles, and an adoption of the

mathematical methods belonging to the theory of probability. It is probable

that important results will be obtained by the application of this method, which

is as yet little known and is not familiar to our minds. If the actual history

of Science had been different, and if the scientific doctrines most familiar to

us had been those which must be expressed in this way, it is possible that

we might have considered the existence of a certain kind of contingency a self-

evident truth, and treated the doctrine of philosophical necessity as a mere

sophism.

About the beginning of this century, the properties of bodies were investi-

gated by several distinguished French mathematicians on the hypothesis that

they are systems of molecules in equilibrium. The somewhat unsatisfactory nature

of the results of these investigations produced, especially in this country, a

reaction in favour of the opposite method of treating bodies as if they were,

so far at least as our experiments are concerned, truly continuous. This method,

in the hands of Green, Stokes, and others, has led to results, the value of which

does not at all depend on what theory we adopt as to the ultimate constitution

of bodies.

One very important result of the investigation of the properties of bodies

on the hypothesis that they are truly continuous is that it furnishes us with

a test by which we can ascertain, by experiments on a real body, to what

degree of tenuity it must be reduced before it begins to give evidence that its

properties are no longer the same as those of the body in mass. Investigations

of this kind, combined with a study of various phenomena of diffusion and of

dissipation of energy, have recently added greatly to the evidence in favour of

the hypothesis that bodies are systems of molecules in motion.
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I hope to be able to lay before you in the course of the term some of

the evidence for the existence of molecules, considered as individual bodies

having definite properties. The molecule, as it is presented to the scientific

imagination, is a very different body firom any of those with which experience

has hitherto made us acquainted.

In the first place its mass, and the other constants which define its

properties, are absolutely invariable; the individual molecule can neither grow

nor decay, but remains unchanged amid all the changes of the bodies of which

it may form a constituent.

In the second place it is not the only molecule of its kind, for there are

innumerable other molecules, whose constants are not approximately, but abso-

lutely identical with those of the first molecule, and this whether they are

found on the earth, in the sun, or in the fixed stars.

By what process of evolution the philosophers of the future will attempt

to account for this identity in the properties of such a multitude of bodies,

each of them unchangeable in magnitude, and some of them separated from

others by distances which Astronomy attempts in vain to measure, I cannot

conjecture. My mind is limited in its power of speculation, and I am forced

to believe that these molecules must have been made as they are from the

beginning of their existence.

I also conclude that since none of the processes of nature, during their

varied action on different individual molecules, have produced, in the course of

ages, the slightest difference between the properties of one molecule and those

of another, the history of whose combinations has been different, we cannot

ascribe either their existence or the identity of their properties to the operation

of any of those causes which we call natural.

Is it true then that our scientific speculations have really penetrated

beneath the visible appearance of things, which seem to be subject to gene-

ration and corruption, and reached the entrance of that world of order and per-

fection, which continues this day as it was created, perfect in number and

measure and weight "?

We may be mistaken. No one has as yet seen or handled an individual

molecule, and our molecular hypothesis may, in its turn, be supplanted by some

new theory of the constitution of matter; but the idea of the existence of

unnumbered individual things, all alike and all unchangeable, is one which cannot

enter the human mind and remain without fruit.
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But what if these molecules, indestructible as they are, turn out to be not

substances themselves, but mere affections of some other substance ?

According to Sir W. Thomson's theory of Vortex Atoms, the substance of

which the molecule consists is a uniformly dense plenum, the properties of which

are those of a perfect fluid, the molecule itself being nothing but a certain

motion impressed on a portion of this fluid, and this motion is shewn, by a

theorem due to Helmholtz, to be as indestructible as we believe a portion of

matter to be.

If a theory of this kind is true, or even if it is conceivable, our idea of

matter may have been introduced into our minds through our experience of those

systems of vortices which we call bodies, but which are not substances, but

motions of a substance; and yet the idea which we have thus axxjuired of

matter, as a substance possessing inertia, may be truly applicable to that fluid

of which the vortices are the motion, but of whose existence, apart from the

vortical motion of some of its parts, our experience gives us no evidence

whatever.

It has been asserted that metaphysical speculation is a thing of the past,

and that physical science has extirpated it. The discussion of the categories of

existence, however, does not appear to be in danger of coming to an end m
our time, and the exercise of speculation continues as fascinating to every fresh

mind as it was in the days of Thales.



[From the Proceedings of the Cambridge Philosophical Society^ Vol. ii.]

XLV. On the Solution of Electrical Problems hy the Transformation

of Conjugate Functions'^.

The general problem in electricity is to determine a function which shall

have given values at the various surfaces which bound a region of space, and

which shall satisfy Laplace's partial differential equation at every point within

this region. The solution of this problem, when the conditions are arbitrarily

given, is beyond the power of any known method, but it is easy to find any

number of functions which satisfy Laplace's equation, and from any one of these

we may find the form of a system of conductors for which the function is a

solution of the problem.

The only known method for transforming one electrical problem into another

is that of Electric Inversion, invented by Sir William Thomson; but in problems

involving only two dimensions, any problem of which we know the solution

may be made to furnish an inexhaustible supply of problems which we can solve.

The condition that two functions a and ^ of x and y may be conjugate is

a + J~^l3 =F(x+ J~^y).

This condition may be expressed in the form of the two equations

dx dy ' dy dx~ '

If a denotes the "potential function," /8 is the " function of induction."

As examples of the method, the theory of Thomson's Guard Ring and that

of a wire grating, used as an electric screen, were illustrated by drawings of

the lines of force and equipotential surfaces.

* [The author's treatment of this subject and a full explanation of the examples mentioned in

the text will be found in the chapter on Conjugate Functions in his treatise on Electricity and

Magnetism.]



[From the Proceedings of the London Mathematical Society, Vol. in. No. 34.]

XLVL On the Mathematical Classijication of Physical Quantities.

The first part of the growth of a physical science consists in the discovery

of a system of quantities on which its phenomena may be conceived to depend.

The next stage is the discovery of the mathematical form of the relations

between these quantities. After this, the science may be treated as a mathe-

matical science, and the verification of the laws is efiected by a theoretical

investigation of the conditions under which certain quantities can be most

accurately measured, followed by an experimental realisation of these conditions,

and actual measurement of the quantities.

It is only through the progress of science in recent times that we have

become acquainted with so large a number of physical quantities that a classifi-

cation of them is desirable.

One very obvious classification of quantities is founded on that of the

sciences in which they occur. Thus temperature, pressure, density, specific heat,

latent heat, &c., are quantities occurring in the theory of the action of heat on

bodies.

But the classification which I now refer to is founded on the mathematical

or formal analogy of the diiferent quantities, and not on the matter to which

they belong. Thus a finite straight line, a force, a velocity of rotation, &c.,

are quantities, differing in their physical nature, but agreeing in their mathe-

matical form. We may distinguish the two methods of classification by calling

the first a physical, and the second a mathematical classification of quantities.

A knowledge of the mathematical classification of quantities is of great use

both to the original investigator and to the ordinary student of the science.

The most obvious case is that in which we learn that a certain system of

quantities in a new science stand to one another in the same mathematical

VOL. II. 33
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relations as a certain other system in an old science, which has already been

reduced to a mathematical form, and its problems solved by mathematicians.

Thus, when Mossotti observed that certain quantities relating to electro-

static induction in dielectrics had been shewn by Faraday to be analogous to

certain quantities relating to magnetic induction in iron and other bodies, he

was enabled to make use of the mathematical investigation of Poisson relative

to magnetic induction, merely translating it from the magnetic language into

the electric, and from French into Italian.

Another example, by no means so obvious, is that which was originally

pointed out by Sir William Thomson, of the analogy between problems in

attractions and problems in the steady conduction of heat, by the use of which

we are able to make use of many of the results of Fourier for heat in explaining

electrical distributions, and of all the results of Poisson in electricity in explaining

problems in heat.

But it is evident that all analogies of this kind depend on principles of a

more fundamental nature ; and that, if we had a true mathematical classification

of quantities, we should be able at once to detect the analogy between any

system of quantities presented to us and other systems of quantities in known

sciences, so that we should lose no time in availing ourselves of the mathe-

matical labours of those who had already solved problems essentially the same.

All quantities may be classed together in one respect, that they may be

defined by means of two factoi's, the first of which is a numerical quantity, and

the second is a standard quantity of the same kind with that to be defined.

Thus number may be said to rule the whole world of quantity, and the

four rules of arithmetic may be regarded as the complete equipment of the

mathematician.

Position and foim, which were formerly supposed to be in the exclusive

possession of geometers, were reduced by Descartes to submit to the rules of

arithmetic by means of that ingenious scaffolding of co-ordinate axes which he

made the basis of his operations.

Since this great step was taken in mathematics, all quantities have been

treated in the same way, and presented to the mind by means of numbers, or

symbols which denote numbers, so that as soon as any science has been

thoroughly reduced to the mathematical form, the solution of problems in that

science, as a mental process, is supposed (at least by the outer world) to be

carried on without the aid of any of the physical ideas of the science.
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I need not say that this is not true, and that mathematicians, in solving

physical problems, are very much aided by a knowledge of the science in which

the problems occur.

At the same time, I think that the progress of science, both in the way of

discovery, and in the way of diflfusion, would be greatly aided if more attention

were paid in a direct way to the classification of quantities.

A most important distinction was drawn by Hamilton when he divided the

quantities with which he had to do into Scalar quantities, which are completely

represented by one numerical quantity, and Vectors, which require three numerical

quantities to define them.

The invention of the calculus of Quaternions is a step towards the know-

ledge of quantities related to space which can only be compared for its impor-

tance, with the invention of triple co-ordinates by Descartes. The ideas of this

calculus, as distinguished from its operations and symbols, are fitted to be of

the greatest use in all parts of science.

We may imagine another step in the advancement of science to be the

invention of a method, equally appropriate, of conceiving dynamical quantities.

As our conceptions of physical science are rendered more vivid by substituting

for the mere numerical ideas of Cartesian mathematics the geometrical ideas of

Hamiltonian mathematics, so in the higher sciences the ideas might receive a

still higher development if they could be expressed in language as appropriate

to dynamics as Hamilton's is to geometry.

Another advantage of such a classification is, that it guides us in the use

of the four rules of arithmetic. We know that we must not apply the rules

of addition or subtraction unless the quantities are of the same kind. In certain

cases we may multiply or divide one quantity by another, but in other cases

the result of the process is of no intellectual value.

It has been pointed out by Professor Rankine that the physical quantity

called Energy or Work can be conceived as the product of two factors in many

different ways.

MU
The dimensions of this quantity are —jip , where L, M, and T represent

the concrete units of length, time, and mass. If we divide the energy into two

factors, one of which contains D, both factors will be scalars. If, on the other

hand, both factors contain L, they will be both vectors. The energy itself is

always a scalar quantity.

33—2
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Thus, if we take the mass and the square of the velocity as the factors,

as is done in the ordinary definitions of vis-viva or kinetic energy, both factors

are scalar, though one of them, the square of the velocity, has no distinct physical

meaning.

Another division into apparently scalar factors is that into volume and
hydrostatic pressure, though here we must consider the volume, not in itself,

but as a quantity subject to increase and diminution, and this change of volume
can only occur at the surface, and is due to a variation of the surface in the

direction of the normal, so that it is not a scalar but a vector quantity. The pressure

also, though the abstract conception of a hydrostatic pressure is scalar, must be
conceived as applied at a surface, and thus becomes a directed quantity or vector.

The division of the energy into vector factors affords results always capable

of satisfactory interpretation. Of the two factors, one ia conceived as a tendency
towards a certain change, and the other as that change itself.

Thus the elementary definition of Work regards it as the product of a force

into the distance through which its point of application moves, resolved in the

direction of the force. In the language of Quaternions, it is the scalar part of

the product of the force and the displacement.

These two vectors, the force and the displacement, may be regarded as

types of many other pairs of vectors, the products of which have for their

scalar part some form of energy.

Thus, instead of dividing kinetic energy into the factors " mass " and " square

of velocity," the latter of which has no meaning, we may divide it into "mo-
mentum" and "velocity," two vectors which, in the dynamics of a particle, are

in the same direction, but, in generalized dynamics, may be in different direc-

tions, so that in taking their product we must remember the rule for finding

the scalar part of it.

But it is when we have to deal with continuous bodies, and quantities

distributed in space, that the general principle of the division of energy into

two factors is most clearly seen.

When we regard energy as residing intrinsically in a body, we may measure

its intensity by the amount contained in unit of volume. This is, of course, a

scalar quantity.

Of the factors which compose it, one is referred to unit of length, and the

other to unit of area. This gives what I regard as a very important distinction

among vector quantities.
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Vectors which are referred to unit of length I shall call Forces, using the

word in a somewhat generalized sense, as we shall see. The operation of taking

the integral of the resolved part of a force in the direction of a line for

every element of that line, has always a physical meaning. In certain cases the

result of the integration is independent of the path of the line between its

extremities. The result is then called a Potential.

Vectors which are refeiTed to unit of area I shall call Fluxes. The opera-

tion of taking the integral of the resolved part of a flux perpendicular to a

surface for every element of the surface has always a physical meaning. In

certain cases the result of the integration over a closed surface is independent,

within certain restrictions, of the position of the surface. The result then

expresses the Quantity of some kind of matter, either existing within the surface,

or flowing out of it, according to the physical nature of the flux.

In many physical cases, the force and the flux are always in the same

direction, and proportional to each other. The one is therefore used as the

measure of the other, their symbols degenerate into one, and their ideas become

confounded together. One of the most important mathematical results of the

discovery of substances having different physical properties in different directions,

has been to enable us to distinguish between the force and the flux, by letting

us see that their directions may be different.

Thus, in the ordinary theory of fluids, in which the only motion considered

is that which we can directly perceive, we may define the velocity equally well

in two different ways. We may define it with reference to unit of length, as

the number of such units described by a particle in unit of time ; or we may

define it with reference to unit of area, as the volume of the fluid which

passes through unit of area in unit of time. If defined in the first way, it

belongs to the category of forces ; if defined in the second way, to the category

of fluxes.

But if we endeavour to develope a more complete theory of fluids, which

shall take into account the facts of diff'usion, where one fluid has a different

velocity from another in the same place; or if we accept the doctrine, that the

molecules of a fluid, in virtue of the heat of the substance, are in a state of

agitation ; then though we may give a definition of the velocity of a single mole-

cule with reference to unit of length, we cannot do so for the fluid ; and the only

way we have of defining the motion of the fluid is by considering it as a flux,

and measuring it by the mass of the fluid which flows through unit of area.



262 MATHEMATICAL CLASSIFICATION

This distinction is still more necessary when we come to heat and electricity.

The flux of heat or of electricity cannot be even thought of in any way except

as the quantity which flows through a given area in a given time. To form a

conception of the velocity, properly so calle»d, of either agent, would require

us to conceive heat or electricity as a continuous substance having a known

density.

We must therefore consider these quantities as fluxes. The forces corre-

sponding to them are, in the case of heat, the rate of variation of temperature,

and, in the case of electricity, the rate of variation of potential.

I have said enough to point out the distinction between forces and fluxes.

In statical electricity the resultant force at a point is the rate of variation of

potential, and the flux is a quantity, hitherto confounded with the force, which

I have called the electric displacement.

In magnetism the resultant force is also the rate of variation of the

potential, and the flux is what Faraday calls the magnetic induction, and is

measured, as Thomson has shewn, by the force on a unit pole placed in a narrow

crevasse cut perpendicular to the direction of magnetization of the magnet. I

shall not detain the Society with the explanation of these quantities, but I

must briefly state the nature of a ratio of a force to a flux in its most general

form.

When one vector is a function of another vector, the ratio of the first to

the second is, in general, a quaternion which is a function of the second

vector.

When, if the second vector varies in magnitude only, the first is always

proportional to it, and remains constant in direction, we have the important

case of the function being a linear one. The first vector is then said to be a

linear and vector function of the second. If a, y8, y are the Cartesian compo-

nents of the first vector, and a, 6, c those of the second, then

fi=p/i + rJ} + qjC,

y = q^a +pfi + r,c,

where the coefficients p, q, r are constants. When the ^'s are equal to the

corresponding q's, the function is said to be self-conjugate. It may then be

represented geometrically as the relation between the radius vector from the

centre of an ellipsoid, and the perpendicular on the tangent plane.
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We may remark that even here, where we may seem to have reached a

purer air, uncontaminated by physical applications, one vector is essentially a

line, while the other is defined as the normal to a plane, as in all the other

pairs of vectors already mentioned*.

Another distinction among physical vectors is founded on a different prin-

ciple, and divides them into those which are defined with reference to translation

and those which are defined with reference to rotation. The remarkable analogies

between these two classes of vectors is well pointed out by Poinsdt in his

treatise on the motion of a rigid body. But the most remarkable illustration of

them is derived from the two different ways in which it is possible to contem-

plate the relation between electricity and magnetism.

Helmholtz, in his great paper on Vortex Motion, has shewn how to construct

an analogy between electro-magnetic and hydro-kinetic phenomena, in which

meignetic force is represented by the velocity of the fluid, a species of translation,

while electric current is represented by the rotation of the elements of the fluid.

He does not propose this as an explanation of electro-magnetism ; for though

the analogy is perfect in form, the dynamics of the two systems are different.

According to Ampere and all his followers, however, electric currents are

regarded as a species of translation, and magnetic force as depending on rotation.

I am constrained to agree with this view, because the electric current is

associated with electrolysis, and other undoubted instances of translation, whUe

magnetism is associated with the rotation of the plane of polarization of light,

which, as Thomson has shewn, involves actual motion of rotation.

The Hamiltonian operator FV, applied to any vector function, converts it

from translation to rotation, or from rotation to translation, according to the kind

of vector to which it is applied.

I shall conclude by proposing for the consideration of mathematicians certain

phrases to express the results of the Hamiltonian operator A. I should be

greatly obliged to anyone who can give me suggestions on this subject, as I

feel that the onomastic power is very faint in me, and that it can be success-

fully exercised only in societies.

. ,, ^. . d . d , d
V IS the operation "^ 1~ '^^ 'J"^ Tfy'

where i, j, k are unit vectors parallel to x, y, z respectively. The result of

The subject of linear equations in quaternions has been developed by Professor Tait, in severil

communications to the Royal Society of Edinburgh.
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performing this operation twice on any subject is the well known operation (of

Laplace)

The discovery of the square root of this operation is due to Hamilton

;

but most of the applications here given, and the whole development of the

theory of this operation, are due to Prof. Tait, and are given in several papers,

of which the first is in the Proceedings of the Royal Society of Edinburgh,

April 28, 1862, and the most complete is that on "Green's and other allied

Theorems," Transactions of the Royal Society of Edinburgh, 1869—70.

And, first, I propose to call the result of V (Laplace's operation with the

negative sign) the Concentration of the quantity to which it is applied.

For if ^ be a quantity, either scalar or vector, which is a function of the

position of a point; and if we find the integral of Q taken throughout the

volume of a sphere whose radius is r; then, if we divide this by the volume

of the sphere, we shall obtain Q, the mean value of Q within the sphere. If

Qa \b the value of Q at the centre of the sphere, then, when r is small,

or the value of Q at the centre of the sphere exceeds the mean value of Q
within the sphere by a quantity depending on the radius, and on V^*^. Since,

therefore, V=Q indicates the excess of the value of Q at the centre above its

mean value in the sphere, I shall call it the concentration of Q.

If ^ is a scalar quantity, its concentration is, of course, also scalar. Thus,

if Q is an electric potential, V'^ is the density of the matter which produces

the potential.

If ^ is a vector quantity, then both ^o and Q are vectors, and V-^ is

also a vector, indicating the excess of the uniform force ^o applied to the whole

substance of the sphere above the resultant of the actual force Q acting on all

the parts of the sphere.

Let us next consider the Hanultonian operator V. First apply it to a scalar

function P. The quantity VP is a vector, indicating the direction in which P
decreases most rapidly, and measuring the rate of that decrease. I venture, with

much diffidence^, to call this the slope of P. Lamd calls the magnitude of VP
the " first differential parameter " of P, but its direction does not enter into his
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conception. We require a vector word, which shall indicate both direction and

magnitude, and one not already employed in another mathematical sense. I have

taken the liberty of extending the ordinary sense of the word slope from topo-

graphy, where only two independent variables are used, to space of three

dimensions.

If a represents a vector function, Vtr may contain both a scalar and a

vector part, which may be wTitten *SVcr and FVo-.

I propose to call the scalar part the Convergence of cr, because, if a closed

surface be described about any point, the surface integral of cr, which expresses

the effect of the vector o- considered as an inward flux through the surface, is

equal to the volume integral of SVo- throughout the enclosed space. I think,

therefore, that the convergence of a vector function is a very good name for the

effect of that vector function in carrying its subject inwards towards a point.

But vcr has, in general, also a vector portion, and I propose, but with

great diffidence, to call this vector the Curl or Version of the original vector

function.

It represents the direction and magnitude of the rotation of the subject

matter carried by the vector cr. I have sought for a word which shall neither,

like Rotation, Whirl, or Twirl, connote motion, nor, like Twist, indicate a helical

or screw structure which is not of the nature of a vector at all.

/

N . ^

CONVERGENCE. CITRLb CONVERGENCE AND CURL.

If we subtract from the general value of the vector function cr its value

cTo at the point P, then the remaining vector cr — a^ will, when there is pure

convergence, point towards P. When there is pure curl, it will point tan-

gentially round P; and when there is both convergence and curl, it will point

in a spiral manner.

The following statements are true :

—

The slope of a scalar function has no curl.

The curl of a vector function has no convergence.

VOL. 11. 34
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The convergence of the slope of a scalar function is its concentration.

The concentration of a vector function is the slope of its convergence,

together with the curl of its curl.

The quaternion expressions, of which the above statements are a translation,

were given by Prof. Tait, in his paper in the Proceedings of the Royal Society

of Edinburgh, April 28th, 1862; but for the more complete mathematical treat-

ment of the operator v, see a very able paper by Prof. Tait, "On Green's

and other Allied Theorems" (Transactions of the Royal Society of Edinburgh,

1870), and another paper in the Proceedings of the Royal Society of Edinburgh,

for 1870—71, p. 318.



[From the Proceedings of the Royal Imtitution of Great Britain, Vol. vi.]

XLVII. On Colour Vision.

All vision is colour vision, for it is only by observing differences of colour

that we distinguish the forms of objects. I include differences of brightness

or shade among differences of colour.

It was in the .Eoyal Institution, about the beginning of this century, that

Thomas Young made the first distinct announcement of that doctrine of the

vision of colours which I propose to illustrate. We may state it thus :—We
are capable of feeling three different colour-sensations. Light of different kinds

excites these sensations in different proportions, and it is by the different

combinations of these three primary sensations that all the varieties of visible

colour are produced. In this statement there is one word on which we must

fix our attention. That word is, Sensation. It seems almost a truism to say

that colour is a sensation ; and yet Young, by honestly recognising this ele-

mentary truth, established the first consistent theory of colour. So far as I

know, Thomas Young was the first who, starting from the well-known fact that

there are three primary colours, sought for the explanation of this fact, not in

the nature of light, but in the constitution of man. Even of those who have

written on colour since the time of Young, some have supposed that they ought

to study the properties of pigments, and others that they ought to analyse

the rays of light. They have sought for a knowledge of colour by examining

something in external nature—something out of themselves.

Now, if the sensation which we call colour has any laws, it must be

something in our own nature which determines the form of these laws ; and I

need not tell you that the only evidence we can obtain respecting ourselves

is derived from consciousness.

The science of colour must therefore be regarded as * essentially a mental
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science. It differs from the greater part of what is called mental science in

the large use which it makes of the physical sciences, and in particular of

optics and anatomy. But it gives evidence that it is a mental science by the

numerous illustrations which it furnishes of various operations of the mind.

In this place we always feel on firmer ground when we are dealing with

physical science. I shall therefore begin by shewing how we apply the dis-

coveries of Newton to the manipulation of light, so as to give you an oppor-

tunity of feeling for yourselves the different sensations of colour.

Before the time of Newton, white light was supposed to be of all known

things the purest. When light appears coloured, it was supposed to have

become contaminated by coming into contact with gross bodies. We may still

think white light the emblem of purity, though Newton has taught us that

its purity does not consist in simplicity.

We now form the prismatic spectrum on the screen [exhibited]. These are

the simple colours of which white light is always made up. We can distinguish

a great many hues in passing from the one end to the other; but it is when

we employ powerful spectroscopes, or avail ourselves of the labours of those

who have mapped out the spectrum, that we become aware of the immense

multitude of different kinds of light, every one of which has been the object

of special study. Every increase of the power of our instruments increases in

the same proportion the number of lines visible in the spectrum.

All light, as Newton proved, is composed of these rays taken in different

proportions. Objects which we call coloured when illuminated by white light,

make a selection of these rays, and our eyes receive from them only a part

of the light which falls on them. But if they receive only the pure rays of

a single colour of the spectrum they can appear only of that colour. K I

place this disk, containing alternate quadrants of red and green paper, in the

red rays, it appears all red, but the red quadrants brightest. If I place it in

the green rays both papers appear green, but the red paper is now the darkest.

This, then, is the optical explanation of the colours of bodies when illuminated

with white light. They separate the white light into its component parts,

absorbing some and scattering others.

Here are two transparent solutions [exhibited]. One appears yellow, it

contains bichromate of potash; the other appears blue, it contains sulphate of

copper. If I transmit the light of the electric lamp through the two solutions

at once, the spot on the screen appears green. By means of the spectrum we
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shall be able to explain this. The yellow solution cuts off the blue end of

the spectrum, leaving only the red, orange, yellow, and green. The blue solution

cuts off the red end, leaving only the green, blue, and violet. The only light

which can get through both is the green Ught, as you see. In the same way
most blue and yellow paints, when mixed, appear green. The light which falls

on the mixture is so beaten about between the yellow particles and the blue

that the only light which survives is the green. But yellow and blue light

when mixed do not make green, as you will see if we allow them to fall on

the same part of the screen together.

It is a striking illustration of our mental processes that many persons have

not only gone on believing, on the evidence of the mixture of pigments, that

blue and yellow make green, but that they have even persuaded themselves

that they could detect the separate sensations of blueness and of yellowness

in the sensation of green.

We have availed ourselves hitherto of the analysis of light by coloured

substances. We must now return, still under the guidance of Newton, to the

prismatic spectrum. Newton not only

"Untwisted all the shining robe of day,"

but shewed how to put it together again. We have here a pure spectrun),

but instead of catching it on a screen we allow it to pass through a lens

large enough to receive all the coloured rays. These rays proceed, according

to well-known principles in optics, to form an image of the prism on a screen

placed at the proper distance. This image is formed by rays of all colours,

and you see the result is white. But if I stop any of the coloured rays the

image is no longer white, but coloured ; and if I only let through rays of

one colour, the image of the prism appears of that colour.

I have here an arrangement of slits by which I can select one, two, or

three portions of the light of the spectrum, and allow them to form an image

of the prism while all the rest are stopped. This gives me a perfect conunand

of the colours of the spectrum, and I can produce on the screen every possible

shade of colour by adjusting the breadth and the position of the sUts through

which the light passes. I can also, by interposing a lens in the passage of

the light, shew you a magnified image of the slits, by which you will see the

different kinds of light which compose the mixture.

The colours are at present red, green, and blue^ and the mixture of the
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three colours is, as you see, nearly white. Let us try the effect of Tiniying

two of these colours. Red and blue form a fine purple or crimson, green and

blue form a sea-green or sky-blue, red and green form a yellow.

Here again we have a fact not universally known. No painter, wishing to

produce a fine yellow, mixes his red with his green. The result would be a

very dirty drab colour. He is furnished by nature with brilliant yellow pigments,

and he takes advantage of these. When he mixes red and green paint, the

red light scattered by the red paint is robbed of nearly all its brightness by

getting among particles of green, and the green light fares no better, for it

is sure to fall in with particles of red paint. But when the pencil with which

we paint is composed of the rays of light, the effect of two coats of colour

is very different. The red and the green form a yeUow of great splendour,

which may be shewn to be as intense as the purest yellow of the spectrum.

I have now arranged the slits to transmit the yellow of the spectrum.

You see it is similar in colour to the yellow formed by mixing red and green.

It differs from the mixture, however, in being strictly homogeneous in a physical

point of view. The prism, as you see, does not divide it into two portions

as it did the mixture. Let us now combine this yellow with the blue of the

spectrum. The result is certainly not green; we may make it pink if our

yeUow is of a warm hue, but if we choose a greenish yeUow we can produce

a good white.

You have now seen the most remarkable of the combinations of colours

—

the others differ from them in degree, not in kind. I must now ask you to

think no more of the physical arrangements by which you were enabled to see

these colours, and to concentrate your attention upon the colours you saw, that

is to say on certain sensations of which you were conscious. We are here

surrounded by difficulties of a kind which we do not meet with in purely

physical inquiries. We can all feel these sensations, but none of us can describe

them. They are not only private property, but they are incommunicable. We
have names for the external objects which excite our sensations, but not for

the sensations themselves.

When we look at a broad field of uniform colour, whether it is really

simple or compound, we find that the sensation of colour appears to our con-

sciousness as one and indivisible. We cannot directly recognise the elementary

sensations of which it is composed, as we can distinguish the component notes
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of a musical chord. A colour, therefore, must be regarded aa a single thing,

the quality of which is capable of variation.

To bring a quality within the grasp of exact science, we must conceive it

as depending on the values of one or more variable quantities, and the first

step in our scientific progress is to determine the number of these variables

which are necessary and sufficient to determine the quality of a colour. We
do not require any elaborate experiments to prove that the quality of colour

can vary in three and only in three independent ways.

One way of expressing this is by saying, with the painters, that colour

may vary in hue, tint, and shade.

The finest example of a series of colours, varying in hue, is the spectrum

itself. A difference in hue may be illustrated by the difference between adjoining

colours in the spectrum. The series of hues in the spectrum is not complete

;

for, in order to get purple hues, we must blend the red and the blue.

Tint may be defined as the degree of purity of a colour. Thus, bright

yellow, buff, and cream-colour, form a series of colours of nearly the same hue,

but varying in tint. The tints, corresponding to any given hue, form a series,

beginning with the most pronounced colour, and ending with a perfectly neutral

tint.

Shade may be defined as the greater or less defect of illumination. If

we begin with any tint of any hue, we can form a gradation from that colour

to black, and this gradation is a series of shades of that colour. Thus we

may say that brown is a dark shade of orange.

The quality of a colour may vary in three different and independent ways.

We cannot conceive of any others. In fact, if we adjust one colour to another,

80 as to agree in hue, in tint, and in shade, the two colours are absolutely

indistinguishable. There are therefore three, and only three, ways in which a

colour can vary.

I have purposely avoided introducing at this stage of our inquiry anything

which may be called a scientific experiment, in order to shew that we may

determine the number of quantities upon which the variation of colour depends

by means of our ordinary experience alone.

Here is a point in this room : if I wish to specify its position, I may do

so by giving the measurements of three distances—namely, the height above the

floor, the distance from the wall behind me, and the distance from the wall

at my left hand.
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This is only one of many ways of stating the position of a point, but

it is one of the most convenient. Now, colour also depends on three things.

If we call these the intensities of the three primary colour sensations, and if

we are able in any way to measure these three intensities, we may consider

the colour as specified by these three measurements. Hence the specification of

a colour agrees with the specification of a point in the room in depending on

three measurements.

Let us go a step farther and suppose the colour sensations measured on

some scale of intensity, and a point found for which the three distances, or

co-ordinates, contain the same number of feet as the sensations contain degrees

of intensity. Then we may say, by a useful geometrical convention, that the

colour is represented, to our mathematical imagination, by the point so found

in the room; and if there are several colours, represented by several points, the

chromatic relations of the colours will be represented by the geometrical rela-

tions of the points. This method of expressing the relations of colours is a

great help to the imagination. You will find these relations of colours stated

in an exceedingly clear manner in Mr Benson's Manual of Colour one of the

very few books on colour in which the statements are founded on legitimate

experiments.

There is a still more convenient method of representing the relations of

colours by means of Young's triangle of colours. It is impossible to represent

on a plane piece of paper every conceivable colour, to do this requires space of

three dimensions. If, however, we consider only colours of the same shade

—

that is, colours in which the sum of the intensities of the three sensations is

the same, then the variations in tint and in hue of all such colours may be

represented by points on a plane. For this purpose we must draw a plane

cutting off equal lengths from the three lines representing the primary sensations.

The part of this plane within the space in which we have been distributing our

colours will be an equilateral triangle. The three primary colours will be at the

three angles, white or gray will be in the middle, the tint or degree of purity

of any colour will be expressed by its distance from the middle point, and its

hue will depend on the angular position of the line which joins it with the

middle point.

Thus the ideas of tint and hue can be expressed geometrically on Young's

triangle. To understand what is meant by shade we have only to suppose the

illumination of the whole triangle increased or diminished, so that by means of
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this adjustment of illumination Young's triangle may be made to exhibit every

variety of colour. If we now take any two colours in the triangle and mix

them in any proportions, we shall find the resultant colour in the line joining

the component colours at the point corresponding to their centre of gravity.

I have said nothing about the nature of the three primary sensations, or

what particular colours they most resemble. In order to lay down on paper

the relations between actual colours, it is not necessary to know what the

primary colours are. We may take any three colours, provisionally, as the

angles of a triangle, and determine the position of any other observed colour

with respect to these, so as to form a kind of chart of colours.

Of all colours which we see, those excited by the different rays of the

prismatic spectrum have the greatest scientific importance. All light consists

either of some one kind of these rays, or of some combination of them. The

colours of all natural bodies are compounded of the colours of the spectrum. If

therefore we can form a chromatic chart of the spectrum, expressing the relations

between the colours of its different portions, then the colours of all natural

bodies will be found within a certain boundary on the chart defined by the

positions of the colours of the spectrum.

But the chart of the spectrum will also help us to the knowledge of the

nature of the three primary sensations. Since every sensation is essentially a

positive thing, every compound colour-sensation must be within the triangle of

which the primary colours are the angles. In particular, the chart of the spec-

trum must be entirely within Young's triangle of colours, so that if any colour

in the spectrum is identical with one of the colour-sensations, the chart of the

spectrum must be in the form of a line having a sharp angle at the point

corresponding to this colour.

I have already shewn you how we can make a mixture of any three of

the colours of the spectrum, and vary the colour of the mixture by altering

the intensity of any of the three components. If we place this compound

colour side by side with any other colour, we can alter the compound colour

till it appears exactly similar to the other. This can be done with the greatest

exactness when the resultant colour is nearly white. I have therefore constructed

an instrument which I may call a colour-box, for the purpose of making

matches between two colours. It can only be used by one observer at a time,

and it requires daylight, so I have not brought it with me to-night. It is

nothing but the realisation of the construction of one of Newton's propositions

VOL. II. 35



274 COLOUR VISION.

in his Lectiones Optica, where he shews how to take a beam of light, to

separate it into its components, to deal with these components as we please by

means of slits, and afterwards to unite them into a beam again. The observer

looks into the box through a small slit. He sees a round field of light con-

sisting of two semicircles divided by a vertical diameter. The semicircle on the

left consists of light which has been enfeebled by two reflexions at the surface

of glass. That on the right is a mixture of colours of the spectrum, the positions

and intensities of which are regulated by a system of slits.

The observer forms a judgment respecting the colours of the two semicircles.

Suppose he finds the one on the right hand redder than the other, he says so,

and the operator, by means of screws outside the box, alters the breadth of

one of the slits, so as to make the mixture less red ; and so on, till the right

semicircle is made exactly of the same appearance as the left, and the hne of

separation becomes almost invisible.

When the operator and the observer have worked together for some time,

they get to understand each other, and the colours are adjusted much more

rapidly than at first.

When the match is pronounced perfect, the positions of the slits, as indicated

by a scale, are registered, and the breadth of each slit is carefully measured by

means of a gauge. The registered result of an observation is called a "colour

equation." It asserts that a mixture of three colours is, in the opinion of the

observer (whose name is given), identical with a neutral tint, which we shall call

Standard White. Each colour is specified by the position of the slit on the

scale, which indicates its position in the spectrum, and by the breadth of the

slit, which is a measure of its intensity.

In order to make a survey of the spectrum we select three points for

purposes of comparison, and we call these the three Standard Colours. The

standard colours are selected on the same principles as those which guide the

enoineer in selecting stations for a survey. They must be conspicuous and

invariable and not in the same straight line.

In the chart of the spectrum you may see the relations of the various

colours of the spectrum to the three standard colours, and to each other. It

is manifest that the standard green which I have chosen cannot be one of the

true primary colours, for the other colours do not all lie within the triangle

formed by joining them. But the chart of the spectrum may be described as con-

sisting of two straight lines meeting in a point. This point corresponds to a green
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auout a fifth of the distance from h towards F. This green lias a wave length

of about 510 millionths of a millimetre by Ditscheiner's measurement. This green

is either the true primary green, or at least it is the nearest approach to it

which we can ever see. Proceeding from this green towards the red end of

the spectrum, we find the different colours lying almost exactly in a straight

line. This indicates that any colour is chromatically equivalent to a mixture of

any two colours on opposite sides of it, and in the same straight line. The
extreme red is considerably beyond the standard red, but it is in the same

straight line, and therefore we might, if we had no other evidence, assume the

extreme red as the true primary red. We shall see, however, that the true

primary red is not exactly represented in colour by any part of the spectrum.

It lies somewhat beyond the extreme red, but in the same straight line.

On the blue side of primary green the colour equations are seldom so

accurate. The colours, however, lie in a line which is nearly straight. I have

not been able to detect any measurable chromatic difference between the extreme

indigo and the violet. The colours of this end of the spectrum are represented

by a number of points very close to each other. We may suppose that the

primary blue is a sensation differing little from that excited by the parts of the

spectrum near G,

Now, the first thing which occurs to most people about this result is that

the division of the spectrum is by no means a fair one. Between the red and

the green we have a series of colours apparently very different from either, and

having such marked characteristics that two of them, orange and yellow, have

received separate names. The colours between the green and the blue, on the

other hand, have an obvious resemblance to one or both of the extreme colours,

and no distinct names for these colours have ever become popularly recognised,

I do not profess to reconcile this discrepancy between ordinary and scientific

experience. It only shews that it is impossible by a mere act of introspection

to make a true analysis of our sensations. Consciousness is our only authority

;

but consciousness must be methodically examined in order to obtain any trust-

worthy results.

I have here, through the kindness of Professor Huxley, a picture of the

structure upon which the light falls at the back of the eye. There is a minute

structure of bodies like rods and cones or pegs, and it is conceivable that the

mode in which we become aw*are of the shapes of things is by a consciousness

which differs according to the particular rods on the ends of which the light

35—2
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faUg, just as the pattern on the web formed by a Jacquard loom depends on the
mode in which the perforated cards act on the system of moveable rods in that

machine. In the eye we have on the one hand light falling on this wonderful

structure, and on the other hand we have the sensation of sight. We cannot

compare these two things ; they belong to opposite categories. The whole of

Metaphysics lies like a great gulf between them. It is possible that discoveries

in physiology may be made by tracing the course of the nervous disturbance

"Up the fine fibres to the sentient brain;"

but this would make us no wiser than we are about those colour-sensations

which we can only know by feeling them ourselves. Still, though it is impossible

to become acquainted with a sensation by the anatomical study of the organ

with which it is connected, we may make use of the sensation as a means of

investigating the anatomical structure.

A remarkable instance of this is the deduction of Helmholtz's theory of

the structure of the retina from that of Young with respect to the sensation

of colour. Young asserts that there are three elementary sensations of colour;

Helmholtz asserts that there are three systems of nerves in the retina, each

of which has for its function, when acted on by light or any other disturbing

agent, to excite in us one of these three sensations.

No anatomist has hitherto been able to distinguish these three systems of

nerves by microscopic observation. But it is admitted in physiology that the

only way in which the sensation excited by a particular nerve can vary is by

degrees of intensity. The intensity of the sensation may vary from the faintest

impression up to an insupportable pain ; but whatever be the exciting cause,

the sensation will be the same when it reaches the same intensity. If this

doctrine of the function of a nerve be admitted, it is legitimate to reason from

the fact that colour may vary in three different ways, to the inference that

these three modes of variation arise from the independent action of three differ-

ent nerves or sets of nerves.

Some very remarkable observations on the sensation of colour have been

made by M. Sigmund Exner in Professor Helmholtz's physiological laboratory at

Heidelberg. While looking at an intense light of a brilliant colour, he exposed

his eye to rapid alternations of light and darkness by waving his fingers before

his eyes. Under these circumstances a peculiar minute structure made its

appearance in the field of view, which many of us may have casually observed.
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M. Exner states that the character of this structure is different according to

the colour of the light employed. When red light is used a veined structure

is seen ; when the light is green, the field appears covered with minute black

dots, and when the light is blue, spots are seen, of a larger size than the

dots in the green, and of a lighter colour.

Whether these appearances present themselves to all eyes, and whether

they have for their physical cause any difference in the arrangement of the

nerves of the three systems in Helmholtz's theory I cannot say, but I am
sure that if these systems of nerves have a real existence, no method is more

likely to demonstrate their existence than that which M. Exner has followed.

Colour Blindnesn.

The most valuable evidence which we possess with respect to colour vision

is furnished to us by the colour-blind. A considerable number of persons in

every large community are unable to distinguish between certain pairs of colours

which to ordinary people appear in glaring contrast. Dr Dalton, the founder

of the atomic theory of chemistry, has given us an account of his own case.

The true nature of this peculiarity of vision was first pointed out by Sir

John Herschel in a letter written to Dalton in 1832, but not known to the

world till the publication of Dalton's Life by Dr Henry. The defect consists

in the absence of one of the three primary sensations of colour. Colour-blind

vision depends on the variable intensities of two sensations instead of three.

The best description of colour-blind vision is that- given by Professor Pole in

his account of his own case in the Phil. Trans., 1859.

In all cases which have been examined with sufi&cient care, the absent

sensation appears to resemble that which we call red. The point P on the

chart of the spectrum represents the relation of the absent sensation to the

colours of the spectrum, deduced from observations with the colour box furnished

by Professor Pole.

If it were possible to exhibit the colour corresponding to this point on the

chart, it would be invisible, absolutely black, to Professor Pole. As it does

not lie within the range of the colours of the spectrum we cannot exhibit it

;

and, in fact, colour-blind people can perceive the extreme end of the spectrum

which we call red, though it appears to them much darker than to us, and

does not excite in them the sensation which we call red. In the diagram of

the intensities of the three sensations excited by different parts of the spectrum,
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the upper figure, marked P, is deduced from the observations of Professor Pole;

while the lower one, marked K, is founded on observations by a very accurate

observer of the normal type.

The only difference between the two diagrams is that in the upper one

the red curve is absent. The forms of the other two curves are nearly the

same for both observers. We have great reason therefore to conclude that the

colour sensations which Professor Pole sees are what we call green and blue.

This is the result of my calculations; but Professor Pole agrees with every

other colour-blind person whom I know in denying that green is one of his

sensations. The colour-blind are always making mistakes about green things and

confounding them with red. The colours they have no doubts about are cer-

tainly blue and yellow, and they persist in saying that yellow, and not green,

is the colour which they are able to see.

To explain this discrepancy we must remember that colour-blind persons

learn the names of colours by the same method as ourselves. They are told

that the sky is blue, that grass is green, that gold is yellow, and that soldiers'

coats are red. They observe difference in the colours of these objects, and they

often suppose that they see the same colours as we do, only not so well. But

if we look at the diagram we shall see that the brightest example of their

second sensation in the spectrum is not in the green, but in the part which

we call yellow, and which we teach them to call yellow. The figure of the

spectrum below Professor Pole's curves is intended to represent to ordinary eyes

what a colour-blind person would see in the spectrum. I hardly dare to draw your

attention to it, for if you were to think that any painted picture would enable you

to see with other people's vision I should certainly have lectured in vain.

On the Yelloiv Spot.

Experiments on colour indicate very considerable differences between the

vision of different persons, all of whom are of the ordinary type. A colour,

for instance, which one person on comparing it with white will pronounce

pinkish, another person will pronounce greenish. This difference, however, does

not arise from any diversity in the nature of the colour sensations in different

persons. It is exactly of the same kind as would be observed if one of the

persons wore yellow spectacles. In fact, most of us have near the middle of

the retina a yellow spot through which the rays must pass before they reach

the sensitive organ : this spot appears yellow because it absorbs the rays near
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the line F, which are of a greenish-blue colour. Some of us have this spot

strongly developed. My own observations of the spectrum near the line F are

of very little value on this account. I am indebted to Professor Stokes for

the knowledge of a method by which anyone may see whether he has this

yellow spot. It consists in looking at a white object through a solution of

chloride of chromium, or at a screen on which light which has passed through

this solution is thrown [exhibited]. This light is a mixture of red light with

the light which is so strongly absorbed by the yellow spot. When it falls on

the ordinary surface of the retina it is of a neutral tint, but when it falls on

the yellow spot only the red light reaches the optic nerve, and we see a red

spot floating like a rosy cloud over the illuminated field.

Very few persons are unable to detect the yellow spot in this way. The

observer K, whose colour equations have been used in preparing the chart of

the spectrum, is one of the very few who do not see everything as if through

yellow spectacles. As for myself, the position of white light in the chart of

the spectrum is on the yellow side of true white even when I use the outer

parts of the retina; but as soon as I look direct at it, it becomes much

yellower, as is shewn by the point WC. It is a curious fact that we do not

see this yellow spot on every occasion, and that we do not think white objects

yellow. But if we wear spectacles of any colour for some time, or if we live

in a room lighted by windows all of one colour, we soon come to recognize

white paper as white. This shews that it is only when some alteration takes

place in our sensations, that we are conscious of their quality.

There are several interesting facts about the colour sensation which I can

only mention briefly. One is that the extreme parts of the. retina are nearly

insensible to red. If you hold a red flower and a blue flower in your hand

as far back as you can see your hand, you will lose sight of the red flower,

while you still see the blue one. Another is, that when the light is diminished

red objects become darkened more in proportion than blue ones. The third is,

that a kind of colour bUndness in which blue is the absent sensation can be

produced artificially by taking doses of Santonine. This kind of colour blindness

is described by Dr Edmund Rose, of Berlin. It is only temporary, and does

not appear to be followed by any more serious consequences than headaches.

I must ask your pardon for not having undergone a course of this medicine,

even for the sake of becoming able to give you information at firat hand about

colour blindness.



P'rom the Transactions of the Royal Society of Edinburgh, Vol. xxvi.]

XLVIII. On the Geometrical Mean Distance of Tivo Figures on a Plane.
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There are several problems of great practical importance in electro-magnetic

measurements, in -which the value of a quantity has to be calculated by taking

the sum of the logarithms of the distances of a system of parallel wires from a

given point. The calculation is in some respects analogous to that in which

we find the potential at a point due to a given system of equal particles, by

adding the reciprocals of the distances of the particles from the given point.

There is this difference, however, that whereas the reciprocal of a line is com-

pletely defined when we know the unit of length, the logarithm of a line has no

meaning till we know not only the unit of length, but the modulus of the system

of logarithms.

In both cases, however, an additional clearness may be given to the state-

ment of the result by dividing, by the number of wires in the first case, and

by the number of particles in the second. The result in the first case is the

logarithm of a distance, and in the second it is the reciprocal of a distance

;

and in both cases this distance is such that, if the whole system were con-

centrated at this distance from the given point, it would produce the same

potential as it actually does.

In the first case, since the logarithm of the resultant distance is the arith-

metical mean of the logarithms of the distances of the various components of

the system, we may call the resultant distance the geometrical mean distance of

the system from the given point.

In the second case, since the reciprocal of the resultant distance is the

arithmetical mean of the reciprocals of the distances of the particles, we may
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call the resultant distance the harmonic mean distance of the system from the

given point.

The practical use of these mean distances may be cotapared with that of

several artificial lines and distances which are known in Dynamics as the radius

of gyration, the length of the equivalent simple pendulum, and so on. The
result of a process of integration is recorded, and presented to us in a form

which we cannot misunderstand, and which we may substitute in those ele-

mentary formulae which apply to the case of single particles. If we have anv

doubts about the value of the numerical co-efficients, we may test the expression

for the mean distance by taking the point at a great distance from the system,

in which case the mean distance must approximate to the distance of the centre

of gravity.

Thus it is well known that the harmonic mean distance of two spheres, each

of which is external to the other, is the distance between their centres, and that

the harmonic mean distance of any figure from a thin shell which completely

encloses it is equal to the radius of the shell.

I shall not discuss the harmonic mean distance, because the calculations

which lead to it are well known, and because we can do very well without it.

I shall, however, give a few examples of the geometric mean distance, in order

to shew its use in electro-magnetic calculations, some of which seem to me to

be rendered both easier to follow and more secure against error by a free use

of this imaginary line.

If the co-ordinates of a point in the first of two plane figures be x and y,

and those of a point in the second ^ and rj, and if r denote the distance between

these points, then R, the geometrical mean distance of the two figures, is

defined by the equation

logR . jjjjdxdyd^dr) = jjjj log r dxdyd^d-q.

The following are some examples of the results of this calculation :

—

(1) Let AB he 2i uniform Hne, and a point

not in the line, and let OP be the perpendicular

from O on the line AB, produced if necessary, then

if R is the geometric mean distance of from the

line AB,

AB . (\ogR+l) =PB . log OB-PA log OA + OP . AOB.
VOL. II. 36
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(2) The geometrical mean distance of P, a point in the line itself, from AB

is found from the equation

AB{\ogR + l) = PB\ogPB-PA\ogPA.

When P lies between A and B, PA must be taken negative, but in taking the

logarithm of PA we regard PA as a positive numerical quantity.

(3) If R is the geometric mean distance between two finite lines AB and

CD, lying in the same straight line,

AB.CD(2\ogR + 2>) = ADnogAD +BCnogBC-ACnogAC-BDno^BD.

(4) If AB coincides with CD, we find for the geometric mean distance

of all the points oi AB from each other

R = ABe-K

(5) If 72 is the geometric mean distance of the

rectangle ABCD from the point in its plane, and

POR and QOS are parallel to the sides of the

rectangle through 0,

ABCD (2\ogR + 2;) = 20P . OQ\ogOA + 20Q.OR\ogOB

+ 20R. OS log 0C+20S.0P log CD
+ op'.d6a +0Q"- .a6b

+ OR^ . BOC + OS' . COD

(6) If R is the geometric mean of the distances

of all the points of the rectangle ABCD from each B

other,

logi2 =log^(7-i-g^log^-i^^log-g^

When the rectangle is a square, whose side = a,

logi2 = loga + ilog2 + ^-f|

= log a -0-8050866,

i2 = 0-44705o.



OF TWO FIGURES ON A PLANE. 283

(7) The geometric mean distance of a circular line of radius «, from a

point in its plane at a distance r from the centre, is r if the point be without

the circle, and a if the point be within the circle.

(8) The geometric mean distance of any figure from a circle which 'com-

pletely encloses it is equal to the radius of the circle. The geometric mean

distance of any figure from the annular space between two concentric circles,

both of which completely enclose it, is R, where

{a,' - a/) (log R + l) = a,' log a, - a* log a„

a, being the radius of the outer circle, and a, that of the inner. The geometric

mean distance of any figure from a circle or an annular space between two

concentric circles, the figure being completely external to the outer circle, is

the geometric mean distance of the figure from the centre of the circle.

(9) The geometric mean distance of all the points of the annular space

between two concentric circles from ^ach other is R, where

(«,' - clJ (log R - log aO = i (3a/ - a,^) (a/ - a,^) - a,' log|

.

When a,, the radius of the inner circle, vanishes, we find

R = ae-i.

When a^, the radius of the inner circle, becomes nearly equal to a„ that of the

outer circle,

R = a,.

As an example of the application of this method, let us take the case of a

coil of wire, in which the wires are arranged so that the transverse section of

the coil exhibits the sections of the wires arranged in square order, the distance

between two consecutive wires being D, and the diameter of each Avire d.

Let the whole section of the coil be of dimensions which are small com-

pared with the radius of curvature of the wires, and let

the geometrical mean distance of the section from itself

be R.

Let it be required to find the coefficient of induction

of this coil on itself, the number of windings being n.

1st. If we begin by supposing that the wires fill up

the whole section of the coil, without any interval^ of

insulating matter, then if M is the coefficient of induc-

3C—

2

o



284 THE GEOMETRICAL MEAN DISTANCE

tion of a linear circuit of the same shape as the coil on a similar parallel cir-

cuit at a distance R, the coefficient of induction of the coil on itself will be

2nd. The current, however, is not uniformly distributed over the section.

It is confined to the wires. Now the coefficient of self-induction of a unit of

length of a conductor is

C-2logjR,

where C is a constant depending on the form of the axis of the conductor, and

R is the mean geometric distance of the section from itself.

Now for a square of side D,

logA= logZ)-Hjlog2 + |-f|,

and for a circle of diameter d

log Ri = log d — log ^ — i-

Hence log;^' = log^ + f log2-l-|-^,

and the coefficient of self-induction of the cylindric wire exceeds that of the

square wire by

2 {log ^-f 0-1380606}

per unit of length.

3rd. We must also compare the mutual induction between the cylindric

wire and the other cylindric wires next it with that between the square wire

and the neighbouring square wires. The geometric mean distance of two

squares side by side is to the distance of their centres of gravity as 0*99401 is

to unity.

The geometric mean distance of two squares placed comer to comer is to

the distance between their centres of gravity as TOO 11 is to unity.

Hence the correction for the eight wires nearest to the wire considered is

-2 X (0-01971).
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The correction for the wires at a greater distance is less than one-thousandth

per unit of length.

The total self-induction of the coil is therefore

7r3f+2/|log^ + 0-11835},

wliere n is the number of windings, and I the length of wire.

For a circular coil of radius = a,

M= imi (log 8a - log R - 2),

where R is the geometrical mean distance of the section of the coil from itself



[From the Proceedings of the Royal Society, No. 132, 1872.]

XLIX. On the Induction of Electnc Currents in an Infinite Plane Sheet of

Uniform Conductivity.

1. "When, on account of the motion or the change of strength of any
magnet or electro-magnet, a change takes place in the magnetic field, electro-

motive forces are called into play, and, if the material in which they act is a
conductor, electric currents are produced. This is the phenomenon of the induc-

tion of electric currents, discovered by Faraday.

I propose to investigate the case in which the conducting substance is in
the form of a thin stratum or sheet, bounded by parallel planes, and of indefi-

nite extent. A system of magnets or electro-magnets is supposed to exist on
the positive side of this sheet, and to vary in any way by changing its position
or its intensity. We have to determine the nature of the currents induced in
the sheet, and their magnetic effect at any point, and, in particular, their
reaction on the electro-magnetic system which gave rise to them. The induced
currents are due, partly to the direct action of the external system, and partly
to their mutual inductive action; so that the problem appears, at first sight,

somewhat difficult.

2. The result of the investigation, however, may be presented in a re-

markably simple form, by the aid of the principle of images which was first

applied to problems in electricity and hydrokinetics by Sir W. Thomson. The
essential part of this principle is, that we conceive the state of things on the
positive side of a certain closed or infinite surface (which is really caused by
actions having their seat on that surface) to be due to an imaginary system on
the negative side of the surface, which, if it existed, and if the action of the
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surface were abolished, would give rise to the actual state of things in the

space on the positive side of the surface.

The state of things on the positive side of the surface is expressed by a

mathematical function, which is different in form from that which expresses the

state of things on the negative side, but which is identical with that which

would be due to the existence, on the negative side, of a certain system which

is called the Image.

The image, therefore, is what we should arrive at by producing, as it were,

the mathematical function as far as it will go; just as, in optics, the \'irtual

image is found by producing the rays, in straight lines, backwards from the place

where their direction has been altered by reflexion or refraction.

3. The position of the image of a point in a plane surface is found by

drawing a perpendicular from the point to the surface and producing it to an

equal distance on the other side of the surface. If the image is of the same

sign as the point, as it is in hydrokinetics when the surface is a rigid plane, it

is called a positive image. If it is of the opposite sign, as in statical electricity,

when the surface is a conductor, it is called a negative image. The image of a

conducting circuit is reckoned positive when the electric current flows in the

corresponding directions through corresponding parts of the object and the image.

The image is reckoned negative when the direction of the current is reversed.

In the case of the plane conducting sheet, the imaginary system on the

negative side of the sheet is not the simple image, positive or negative, of the

real magnet or electro-magnet on the positive side, but consists of a mo\nng

train of images, the nature of which we now proceed to define.

4. Let the electric resistance of a rectangular portion of the sheet whose

length is a, and whose breadth is 2na, be E.

R is to be measured on the electro-magnetic system, and is therefore a

velocity, the value of which is independent of the magnitude of the line a.

[If p denotes the specific resistance of the material of the sheet for a unit

cube and if c is the thickness of the sheet, then R = -^/, and if cr denotes

the specific resistance of the sheet for a unit (or any other) square, ^ = ^-]
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5. Let us begin by dividing the time into a num-

ber of equal intervals, each equal to Bt. The smaller

we take these intervals the more accurate will be the ^ . . . • O
definition of the train of images which we shall now

describe.

6. At a given time t, let a positive image of the

magnet or electro-magnet be formed on the negative •
;

i
: i © ^

side of the sheet.

As soon as it is formed, let this image begin to

move away from the sheet in the direction of the

normal, with the velocity R, its form and intensity ®

remaining constantly the same as that which the

magnet had at the time t.

After an interval Bt, that is to say, at the time t+ Bt, let a negative

image, equal in magnitude and opposite in sign to this positive image, be formed

in the original position of the positive image, and let it then begin to move along

the normal, after the positive image, with the velocity H. The interval of time

between the arrival of these images at any point will be Bt, and the distance

between corresponding points will be RBt.

7. Leaving this pair of images to pursue their endless journey, let us

attend to the real magnet, or electro-magnet, as it is at the time t + Bt. At

this instant let a new positive image be formed of the magnet in its new

position, and let this image also travel in the direction of the normal with the

velocity E, and be followed after an interval of time Bt by a corresponding

negative image. Let these operations be repeated at equal intervals of time,

each of these intervals being equal to 8^.

8. Thus at any given instant there will be a train or trail of images,

beginning with a single positive image, and followed by an endless succession of

pairs of images. This trail, when once formed, continues unchangeable in form

and intensity, and moves as a whole away from the conducting sheet with

the constant velocity B.

9. If we now suppose the interval of time Bt to be diminished without

limit, and the train to be extended without limit in the negative direction, so

as to include all the images which have been formed in all past time, the

magnetic effect of this imaginary train at any point on the positive side of the
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conducting sheet will be identical with that of the electric currents which

actually exist in the sheet.

Before proceeding to prove this statement, let us take notice of the form

which it assumes in certain cases.

10. Let us suppose the real system to be an electro-magnet, and that its

intensity, originally zero, suddenly becomes /, and then remains constant. At

this instant a positive image is formed, which begins to travel along the

normal with velocity R. After an interval ht another positive image is formed;

but at the same instant a second negative image is formed at the same place,

which exactly neutralizes its effect. Hence the result is, that a single positive

image travels by itself along the normal with velocity R. The magnetic effect of

this image on the positive side of the sheet is equivalent to that of the currents

of induction actually existing in the sheet, and the diminution of this effect, as

the unage moves away from the sheet, accurately represents the effect of the

currents of induction, which gradually decay on account of the resistance of the

sheet. After a sufficient time, the image is so distant that its effects are no

longer sensible on the positive side of the sheet. If the current of the electro-

magnet be now broken, there will be no more images ; but the last negative

image of the train will be left unneutralized, and will move away from the sheet

with velocity R. The currents in the sheet will therefore be of the same

magnitude as those which followed the excitement of the electro-magnet, but in

the opposite direction.

11. It appears from this that, when the electro-magnet is increasing in

intensity, it will be acted on by a repulsive force from the sheet, and when

its intensity is diminishing, it will be attracted towards the sheet.

It also appears that if any system of currents is produced in the sheet

and then left to itself, the effect of the decay of the currents, as observed at

a point on the positive side of the sheet, will be the same as if the sheet, with

its currents remaining constant, had been carried away in the negative direction

w^ith velocity R.

12. If a magnetic pole of strength m is brought from an infinite distance

along a normal to the sheet with a uniform velocity v towards the sheet, it

will be repelled with a force

4? R^'
where z is the distance from the sheet at the given instant.

VOL. II. 37
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This formula will not apply to the case of the pole moving away from the

sheet, because in that case we must take account of the currents which are

excited when the pole begins to move, which it does when near the sheet.

13. If the magnetic pole moves in a straight line parallel to the sheet,

with uniform velocity v, it will be acted on by a force in the opposite direction

to its motion, and equal to

7)v jR + ^-+R-v
V

42^ {^E'+'if+Ey
'

Besides this retarding force, it is acted on by a force repelling it from the

sheet, equal to

42= E+ v' +EjE + v''

14. If the pole moves uniformly in a circle, the trail is in the form of a

helix, and the calculation of its effect is more difficult ; it is easy, however, to

see that, besides the retarding force and the repelling force, there is also a force

towards the centre of the circle.

15. It is shewn, in my treatise 0)i Electricity and Magnetism (Vol. n.

Art. 600), tliat the currents in any system are the same, whether the conducting

system or the inducing system be in motion, provided the relative motion is

the same. Hence the results already given are directly applicable to the case

of Arago's rotating disk, provided the induced currents are not sensibly affected

by the limitation arising from the edge of the disk. These will introduce other

sets of images, which we shall not now investigate.

16. The greater the resistance of the sheet, whether from its thinness or

from the low conducting-power of its material, the greater is the velocity E.

Hence in most actual cases E is very great compared with v the velocity of

the external system, and the trail of images is nearly normal to the sheet, and

the induced currents differ little from those which arise from the direct action

of the external system (see § 1).

17. If the conductivity of the sheet were infinite, or its resistance zero,

E would be zero. The images, once formed, would remain stationary, and all

except the last formed positive image would be neutralized. Hence the trail
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would be reduced to a single positive image, and the sheet would exert a repul-

sive force ~, on the pole, whether the pole be in motion or at rest.

I need not say that this case does not occur in nature as we know it.

Something of the kind is supposed to exist in the interior of molecules in

Weber's Theory of Diamagnetiam,

Mathematical Investigation.

18. Let the conducting sheet coincide with the plane of xy, and let its

thickness be so small that we may neglect the variation of magnetic force at

different points of the same normal within its substance, and that, for the same

reason, the only currents which can produce sensible effects are those which are

parallel to the surface of the sheet.

Current-function.

19. We shall define the currents in the sheet by means of the current-

function j). This function expresses the quantity of electricity which, in unit

of time, crosses from right to left a curve drawn from a point at infinity to

the point P.

This quantity will be the same for any two curves drawn from this point

to P, provided no electricity enters or leaves the sheet at any point between

these curves. Hence <^ is a single-valued function of the position of the point P.

The quantity which crosses the element ds of any curve from right to left is

-y- as.
ds

By drawing ds first perpendicular to the axis of x, and then perpendicular

to the axis of y, we obtain for the components of the electric current in the

directions of x and of y respectively

„=#, ,= _# (I).
ay ax

The curves for which </> is constant are called current lines.

20. The annular portion of the sheet included between the current lines

<^ and <f)-{-B(f) is a conducting circuit round which an electric current of strength

37—2
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S<j> Is flowing in the positive direction, that is, from x towards y. Such a

circuit Is equivalent In its magnetic effects to a magnetic shell of strength B(j>,

having the circuit for its edge*.

The whole system of electric currents in the sheet will therefore be equi-

valent to a complex magnetic shell, consisting of all the simple shells, defined

as above, into which it can be divided. The strength of the equivalent complex

shell at any point will be <^.

We may suppose this shell to consist of two parallel plane sheets of

imaginary magnetic matter at a very small distance c, the surface-density being

^ on the positive sheet, and - - on the negative sheet.

21. To find the magnetic potential due to this complex plane shell at

any point not in its substance, let us begin by finding P, the potential at the

point {^, 7), C) due to a plane sheet of imaginary magnetic matter whose surface-

density is
<f>,

and which coincides with the plane of xy. The potential due to

the positive sheet whose surface-density is -, and which is at a distance ^ on

the positive side of the plane of xij, is

l(p-4of..c.).

That due to the negative sheet, at a distance ^ on the negative side of the

plane of xy is

Hence the magnetic potential of the shell is

^--'i
(^)-

This, therefore, is the value of the magnetic potential of the current-sheet at

any given point on the positive side of it. Within the sheet there is no

magnetic potential, and at any point (^, rj, -Q on the negative side of the

sheet the potential is equal and of opposite sign to that at the point (i, -q, Cj

on the positive side.

' W. Thomson, "Mathematical Theoiy of Magnetism," Phil. Trans. 1850.
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22. At the positive surface the magnetic potential is

At the negative surface

K=-g = 2..^ (3).

f =M , •;- W-

The normal component of magnetic force at the positive surface is

dV d'P /-x

^^-dC^W ^^'

In the case of the magnetic shell, the magnetic force is discontinuous at

the surface ; but in the case of the current-sheet this expression gives the value

of y within the sheet itself, as well as in the space outside.

23. Let F, G, II be the components of the electro-magnetic momentum at

any point in the sheet, due to external electro-magnetic action as well as to

that of the currents in the sheet, then the electromotive force in the direction

of X is

_dF_d^
dt dx'

where xft is the electric potential'^; and by Ohm's law this is equal to au,

where cr is the specific resistance of the sheet.

dF dxP]
Hence ^''=—dt~di

Similarly, cru= —
dG_dxp
dt dy

.

(6).

Let the external system be such that its magnetic potential is represented

dP
by —~ , then the actual magnetic potential will be

r=-|(P.+P) (7),

and F=§-^{P. + P), G=-^^{P, + P), H=0 (8).

"Dynamical Theory of the Electromagnetic Field," Phil. Trans. 1865, p. 483.
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Hence equations (6) become, by introducing the stream-function <j> from (1),

dy dtdy^ ' ' dx

dx dtdx^ " ' dy

.

A solution of these equations is

o-<^=-^(P„ + P), i/, = constant (10).

Substituting the value of <}> in terms of P, as given in equation (4),

2^f=-l(^«+^) (")•

The quantity — is evidently a velocity; let us therefore for conciseness

call it R, then

-f-f-^f- (-)•

24. Let Po' be the value of P^ at the time t-T, and at a point on the

negative side of the sheet, whose co-ordinates are x, y, (z — Rt), and let

=\> (13).

At the upper limit when t is infinite P^ vanishes. Hence at the lower limit,

when T = and P^ = P^, we must have

but by equation (12)

dQ dQ , y

^^o^_dPj,dP
dt dt dz ^ ^

Hence the equation will be satisfied if we make

^=-f=-y>--^^ (^«)-

25. This, then, is a solution of the problem. Any other solution must

differ from this by a system of closed currents, depending on the initial state

of the sheet, not due to any external cause, and which therefore must decay
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rapidly. Hence, since we assume an eternity of past time, this is tlie only

solution of the problem.

This solution expresses P, a function due to the action of the induced

current, in terms of P/, and through this of P„, a function of the same kind

due to the external magnetic system. By differentiating P and P^ with respect

to z, we obtain the magnetic potential, and by differentiating them with respect

to t, we obtain, by equation (10), the current-function. Hence the relation

between P and P,, as expressed by equation (16), is similar to the relation

between the external system and its trail of images as expressed in the descrip-

tion of these images in the first part of this paper (§§ 6, 7, 8, 9), which is

simply an explanation of the meaning of equation (16) combined with the

definition of P^' in § 24.

Note to the preceding Paper.

At the time when this paper was written, I was not able to refer to two

papers by Prof. Felici, in Tortolini's Annali di Scienze for 1853 and 1854, in

which he discusses the induction of currents in solid homogeneous conductors and

in a plane conducting sheet, and to two papers by E. Jochmann in Crelle's

Journal for 1864, and one in Poggendorff's Annalen for 1864, on the currents

induced in a rotating conductor by a magnet.

Neither of these writers have attempted to take into account the inductive

action of the currents on each other, though both have recognised the existence

of such an action, and given equations expressing it. M. Felici considers the

case of a magnetic pole placed almost in contact with a rotating disk. E.

Jochmann solves the case in which the pole is at a finite distance from the

plane of the disk. He has also draAvn the forms of the current-lines and of

the equipotential lines, in the case of a single pole, and in the case of two

poles of opposite name at equal distances from the axis of the disk, but on

opposite sides of it, and has pointed out why the current-Unes are not, as

Matteucci at first supposed, perpendicular to the equipotential lines, which he

traced experimentally.

I am not aware that the principle of images, as described in the paper

presented to the Royal Society, has been previously applied to the phenomena

of induced currents, or that the problem of the induction of currents in an
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infinite plane sheet has been solved, taking into account the mutual induction

of these currents, so as to make the solution applicable to a sheet of any degree

of conductivity.

The statement in equation (10), that the motion of a magnetic system

does not produce differences of potential in the infinite sheet, may appear some-

what strange, since we know that currents may be collected by electrodes

touching the sheet at different points. These currents, however, depend entirely

on the inductive action on the part of the circuit not included in the sheet

;

for if the whole circuit lies in the plane of the sheet, but is so arranged as not

to interfere with the uniform conductivity of the sheet, there will be no dif-

ference of potential in any part of the circuit. This is pointed out by Felici,

who shews that when the currents are induced by the instantaneous magnetiza-

tion of a magnet, these currents are not accompanied with differences of potential

in different parts of the sheet.

When the sheet is itself in motion, it appears, from Art. 600 of my treatise

0)1 Electricity and Magnetism, that the electric potential of any point, as

measured by means of the electrodes of a fixed circuit, is

where —
, ^» ^ are the components of the velocity of the part of the sheet

to which the electrode is applied.

In the case of a sheet revolving with velocity w about the axis of z, this

becomes
dP ^ dP}

dx dy

Note 2.—The velocity R for a copper plate of best quality 1 millimetre in

thickness is about 25 metres per second. Hence it is only for very small velo-

cities of the apparatus that we can obtain any approximation to the true result

by neglecting the mutual induction of the currents.—Feb. 13.



[From the Proceedings of the London Mathematical Society, Vol. iv.]

L. 0)1 the Condition that, in the Transformation of any Figure hy Curvilinear

Co-ordinates in Three Dimensions, every Angle in the new Figure shall he

equal to the corresponding Angle in the original Figure.

[Read May 9th, 1872.]

In the corresponding problem in two dimensions, the only condition is

x + >r:^ly=f{^+J^lr)) (1).

where x, y are the co-ordinates in one system, and |, t^ in the other.

In three dimensions the solution is more restricted.

Let X, y, z be functions of $,7), C, then the point in the system x, y, z,

for which f is constant, will be in a certain surface, and by giving ^ a series

of values we obtain a series of such surfaces. There will be two other series of

surfaces, corresponding to t) and ^ respectively. If in the second system ^, rj, C

are rectangular co-ordinates, the surfaces corresponding to ^, t;, ^ in the first

system will intersect at right angles. The condition of this is

dx dx dy dy dzdz^_

d^dC'^d^dl dr)dC~

with two other equations in C and ^, and ^ and rj.

(2).

If we now WTite

^ dyy

d-n.

dzV

d-n.

Y /—

^-©*{i)'*(f

(3);

VOL. II.
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and d^ is the intercept of the line (7^ = const., ^ = const.) cut off between the

surfaces ^ and ^+d^.

The angle e, at which a line whose co-ordinates are functions of 2^ cuts a

line whose co-ordinates are functions of q, is found from the equation

dx dx dy dij dz dz

dp dq dp dq dp dq

mh&<PMm<i)-*m (4).

Expressing this in terms of $, rj, and C, it becomes

^.dldl_^ drjdrj dCdC
dp dq dp dq ' dp dq

= cose
f(f-^(i)-^(i)}'«{-©'*''©'-^©r-«^

In order that the angle e, at which these lines intersect in the system

{x, y, z), should be always equal to the angle e, at which the corresponding

lines in the system {$, rj, Q intersect, it is necessary and sufficient that

c^ = ^ = 7 (6).

for these are the conditions that equations (4) and (5) should be of the same

form.

Now consider the quadrilateral ABCD, cut off from

the surface (^ = const.) by the surfaces $, ^+d^, rj, and

7} + drj.

AB = adl

AD = ^drj,

OD=[a^%d,)dl

BC=[^^^f^di^dyj.

Since the three sets of surfaces are orthogonal, their intersections are lines

of curvature, by Dupin's Theorem. Hence AB is a line of curvature of the
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surface t), drawn parallel to a. Hence the normals at A and B will intersect

at some point 0. Let us call OA, the radius of curvature of t) in the xdanc

of a, /»*,«, then

AB : DC :: 7^ - J^,^ + '^D.

Hence ^^"^^Zl'
^"^^^''^^^^^ ^^'^"^•

cIt) dr]

These values of the radii of curvature are true for any system of orthogonal

surfaces, but since in this case a = y, we find

or the principal radii of cur\'ature of the surface r) are equal to each other at

every point of the surface. Hence the surfaces t] must be spherical.

Since a = y8 = 7, the other flimilies of surfaces | and C must also be spherical.

Now take one of the points where three spherical surfaces meet at right

angles for the origin, and invert the system. These spheres when inverted

become three planes intersecting at right angles, and the other spheres become

spheres, each intersecting at right angles two of these planes. Hence their

centres lie in the lines of intersection of the planes. Let a, b, c be the distances,

from the point of intersection of the three planes, of the centres of spheres

belonging each to one of the three systems, and let their radii be p, q, r

respectively. Then the conditions that these spheres intersect at right angles

are (/ + ?-' = 6- + r, r-+p- = c- + (r, _2)' + 2' = «' + ^^

whence p' = a-, q- = h-, r^ = c-;

or all the spheres pass through the origin, and each system has a common

tangent plane. Hence if we take these three planes as co-ordinate planes, and

write

x"- + 7f-{-z- = r,

we have rp = R\ a constant quantity,

x _ ?/ _ 2

38—2
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whence X--



[From Nature, Vol. vii.]

LI. Reprint of Papers on Electrostatics and Magnetism. By Sir W. Thomson,

D.C.L., LL.D., F.KS., F.R.S.E., Fellow of St Peter's CoUege, Cambridge,

and Professor of Natural Philosophy in the University of Glasgow. (London:

Macmillan and Co., 1872.)

To obtain any adequate idea of the present state of electro-magnetic science

we must study these papers of Sir W. Thomson's. It is true that a great deal

of admirable work has been done, chiefly by the Germans, both in analytical

calculation and in experimental researches, by methods which are independent

of, or at least different from, those developed in these papers, and it is the

glory of true science that all legitimate methods must lead, to the same final

results. But if we are to count the gain to science by the number and value

of the ideas developed in the course of the inquiry, which preserve the results

of former thought in a form capable of being employed in future investigation,

we must place Sir W. Thomson's contributions to electro-magnetic science on

the very highest level.

One of the most valuable of these truly scientific, or science-forming ideas,

is that which forms the subject of the first paper in this collection. Two
scientific problems, each of the highest order of difficulty, had hitherto been

considered from quite different points of view. Cavendish and Poisson had

investigated the distribution of electricity on conductors on the hypothesis that

the particles of electricity exert on each other forces which vary inversely as

the square of the distance between them. On the other hand Fourier had

investigated the laws of the steady conduction of heat on the hypothesis that

the flow of heat from the hotter parts of a body to contiguous parts which

are colder is proportional to the rate at which the temperature varies from

point to point of the body. The physical ideas involved in these two problems
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are quite dift'erent. In the one we have an attraction acting instantaneously

at a distance, in the other heat creeping along from hotter to colder parts.

The methods of investigation were also different. In the one the force on a

given particle of electricity has to be determined as the resultant of the

attraction of all the other particles. In the other we have to solve a certain

partial differential equation which expresses a relation between the rates of

variation of temperature in passing along lines drawn in three different direc-

tions throuo-h a point. Thomson, in this paper, points out that these two

problems, so different, both in their elementary ideas and their analytical

methods, are mathematically identical, and that, by a proper substitution of

electrical for thermal terms in the original statement, any of Fourier's wonderful

methods of solution may be applied to electrical problems. The electrician has

only to substitute an electrified surface for the surface through which heat is

supplied, and to translate temperature into electric potential, and he may at

once take possession of all Fourier's solutions of the problem of the uniform

flow of heat.

To render the results obtained in the prosecution of one branch of inquiry

available to the students of another is an important service done to science,

but it is still more important to introduce into a science a new set of ideas,

belono-ino- as in this case, to what was, till then, considered an entirely uncon-

nected science. This paper of Thomson's, published in February 1842, when he

was a very young freshman at Cambridge, first introduced into mathematical

science that idea of electrical action earned on by means of a continuous

medium which, though it had been announced by Faraday, and used by him

as the guiding idea of his researches, had never been appreciated by other men

of science, and was supposed by mathematicians to be inconsistent with the

laws of electrical action, as established by Coulomb, and built on by Poisson.

It was Thomson who pointed out that the ideas employed by Faraday under

the names of Induction, Lines of Force, &c., and implying an action transmitted

from one part of a medium to another, were not only consistent with the

results obtained by the mathematicians, but might be employed in a mathe-

matical form so as to lead to new results. One of these new results, which

was, we have reason to believe, obtained by this method, though demonstrated

by Thomson by a very elegant adaptation of Newton's method in the theory

of attraction, is the "Method of Electrical Images," leading to the "Method

of Electrical Inversion."
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Poisson had already, by means of Laplace's powerful method of spherical

harmonics, determined, in the form of an infinite series, the distribution of

electricity on a sphere acted on by an electrified system. No one, however,
seems to liave observed that when the external electrified system is reduced
to a point, the resultant external action is equivalent to that of this point,

together with an imaginary electrified point within the sphere, which Thomson
calls the electnc image of the external point.

Now if in an infinite conducting solid heat is flowing outwards uniformly

from a very small spherical source, and part of this heat is absorbed at another

small spherical surface, which we may call a sink, while the rest flows out in

all directions through the infinite solid, it is easy, by Fourier's methods, to

calculate the stationary temperature at any point in the solid, and to draw
the isothermal surfaces. One of these surfaces is a sphere, and if, in the

electrical problem, this sphere becomes a conducting surface in connection with

the earth, and the external source of heat is transformed into an electrified

point, the sink will become the image of that point, and the temperature and
flow of heat at any point outside the sphere will become the electric potential

and resultant force.

Thus Thomson obtained the rigorous solution of electrical problems relating

to spheres by the introduction of an imaginary electrified system within the

sphere. But this imaginary system itself next became the subject of exami-

nation, as the result of the transformation of the external electrified system by
reciprocal radii vectores. By this method, called that of electrical inversion, the

solution of many new problems was obtained by the transformation of problems

already solved. A beautiful example of this method is suggested by Thomson
in a letter to M. Liouville, dated October 8, 1845, and published in Liouville's

Journal, for 1845, but which does not seem to have been taken up by any

mathematician, till Thomson himself, in a hitherto unpublished paper (No. xv.

of the book before us), wrote out the investigation complete. This, the most

remarkable problem of electrostatics hitherto solved, relates to the distribution

of electricity on a segment of spherical surface, or a houi, as Thomson calls

it, under the influence of any electrical forces. The solution includes a very

important case of a flat circular dish, and of an infinite flat screen with a

circular hole cut out of it.

If, however, the mathematicians were slow in making use of the physical

method of electric inversion, they were more ready to appropriate the geometrical
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idea of inversion by reciprocal radii vectores, which is now well known to all

geometers, having been, we suppose, discovered and re-discovered repeatedly,

though, unless we are mistaken, most of these discoveries are later than 1845,

the date of Thomson's paper.

But to return to physical science, we have in No. vii. a paper of even

earlier date (1843), in which Thomson shews how the force acting on an elec-

trified body can be exactly accounted for by the diminution of the atmospheric

pressure on its electrified surface, this diminution being everywhere proportional

to the square of the electrification per unit of area. Now this diminution of

pressure is only another name for that tension along the lines of electric force,

by means of which, in Faraday's opinion, the mutual action between electrified

bodies takes place. This short paper, therefore, may be regarded as the germ

of that course of speculation by which Maxwell has gradually developed the

mathematical significance of Faraday's idea of the physical action of the lines

of force.

"We have dwelt, perhaps at too great length, on these youthful contributions

to science, in order to shew how early in his career, Thomson laid a soHd

foundation for his future labours, both in the development of mathematical

theories and in the prosecution of experimental research. Mathematicians how-

ever will do well to take note of the theorem in No. xni., the apphcations

of which to various branches of science will furnish them, if they be dihgent,

both occupation and renown for some time to come.

We must now turn to the next part of this volume, in which the

mathematical electrician, now established as a Professor at Glasgow, turns his

attention to the practical and experimental work of his science. In such work

the mathematician, if he succeeds at all, proves himself no mere mathematician,

but a thoroughly furnished man of science. And first we have an account of

that research into atmospheric electricity which created a demand for electro-

meters ; then a series of electrometers of gradually improving species ; and lastly,

an admirable report on electrometers and electrostatic measurements, in which

the results of many years' experience are given in a most instructive and

scientific form. In this report the different instruments are not merely described,

but classified, so that the student is furnished with the means of devising a

new instrument to suit his own wants. He may also study, in the recorded

history of electrometers, the principles of natural selection, the conditions of the

permanence of species, the retention of rudimentary organs in manufactured
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articles, and the tendency to reversion to older types in the absence of scientific

control.

A good deal of Sir W. Thomson's practical electrical work is not referred

to in this volume. It is to be hoped that he will yet find time to give some

ELCCount of his many admirable telegraphic contrivances in galvanometers, sus-

pended coils, and recording instruments, and to complete this collection by his

papers on electrolysis, measurement of resistance, electric qualities of metals,

thermo-electricity, and electro-magnetism in generar'\

The second division of the book contains the theory of magnetism.

The first paper, communicated to the Royal Society in 1849 and 1850, is

the best introduction to the theory of magnetism that we know of. The

discussion of particular distributions of magnetisation is altogether original, and

prepares the way for the theory of electro-magnets which follows. This paper

on electro-magnets is interesting as having been in manuscript for twenty-three

years, during which time a great deal has been done both at home and abroad

on the same subject, but without in any degree trenching upon the ground

occupied by Thomson in 1847. Though in these papers we find several formidable

equations bristling with old English capitals, the reader will do well to obser^*e

that the most important results are often obtained without the use of this

mathematical apparatus, and are always expressed in plain scientific English.

As regards the most interesting of all subjects, the history of the develop-

ment of scientific ideas—we know of few statements so full of meaning as the

note at p. 419 relating to Ampere's theory of magnetism, as depending on

electric currents, flowing in circuits within the molecules of the magnet ; he

goes on to say :
" From twenty to five-and-twenty years ago, when the materials

of the present compilation were worked out, I had no belief in the reality of

this theory ; but I did not then know that motion is the very essence of what

has been hitherto called matter. At the 1847 meeting of the British Association

in Oxford, I learned from Joule the dynamical theory of heat, and was forced

to abandon at once many, and gradually from year to year all other, statical

preconceptions regarding the ultimate causes of apparently statical phenomena."

After a short, but sufficient, proof that the magnetic rotation of the plane

of polarised light discovered by Faraday implies an actual rotatory motion of

something, and that this motion is part of the phenomenon of magnetism, he

* [See Mathematical a-nd Physical Papers, hj Sir W. Thomson, Vol. L, Cambridge University

Press, 1882.]

VOL. XL 39
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adds: "The explanation of all phenomena of electro-magnetic attraction or

repulsion, and of electro-magnetic induction, is to be looked for simply in the

inertia and pressure of the matter of which the motions constitute heat. Whether

this matter is or is not electricity, whether it is a continuous fluid interper-

meating the spaces between molecular nuclei, or is itself molecularly grouped

;

or whether all matter is continuous, and molecular heterogeneousness consists in

finite vortical or other relative motions of contiguous parts of a body ; it is

impossible to decide, and perhaps in vain to speculate, in the present state of

science."

The date of these remarks is 1856. In 1861 and 1862 appeared Maxwell's

"theory of molecular vortices applied to magnetism, electricity, &c." which may

be considered as a development of Thomson's idea in a form which, though

rough and clumsy compared with the realities of nature, may have served its

turn as a provisional hypothesis.

The concluding sections of the book before us are devoted to illustrations

of magnetic force derived from the motion of a perfect fluid. They are not

put forward as explanations of magnetic force, for in fact the forces are of

the opposite kind to those of magnets. They belong more properly to that

remarkable extension of the science of hydrokinetics which was begun by

Helmholtz and so ably followed up by Thomson himself.

Tlie conception of a perfectly homogeneous, incompressible frictionless fluid

is as essential a part of pure dynamics as that of a circle is of pure geometry.

It is true that the motions of ordinary fluids are very imperfect illustrations

of those of the perfect fluid. But it is equally true that most of the objects

which we are pleased to call circles are very imperfect representations of a true

circle.

Neither a perfect fluid nor a perfect circle can be formed from the materials

which we deal with, for they are assemblages of molecules, and therefore not

liomogeneous except when regarded roughly in large masses. The perfect circle

is truly continuous and the perfect fluid is truly homogeneous.

It follows, however, from the investigations of Helmholtz and Thomson that

if a motion of the kind called rotational is once set up in the fluid, the portion

of the fluid to which this motion is communicated, retains for ever, during all

its wanderings through the fluid mass, the character of the motion thus impressed

on it.

This vortex then, as Helmlioltz calls it, be it large or small, possesses that
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character of permanence and individuality which we attribute to a material

molecule, while at the same time it is capable, while retaining its essential

characteristics unchanged both in nature and value, of clianging its form in an

infinite variety of ways, and of executing the vibrations which excite those rays

of the spectrum by which the species of the molecule may be discovered. It

would puzzle one of the old-fashioned little round hard molecules to execute

vibrations at all. There was no music in those spheres.

But besides this application of hydrokinetics to this new conception of the

old atom, there is a vast field of high mathematical inquiry opened up by the

papers of Helmholtz and Thomson. It is to be hoped that the latter will soon

complete his papers on Vortex Motion and give them to the world. But why

does no one else work in the same field ? Has the multiplication of symbols

put a stop to the development of ideas ?



[From the Proceedings of the Cambridge Philosophical Society, Vol. ii., 1876.]

LII. On the Proof of the Equations of Motion of a Connected System.

To deduce from the known motions of a system the forces which act on it

is the primary aim of the science of Dynamics. The calculation of the motion

when the forces are known, though a more difficult operation, is not so impor-

tant, nor so capable of application to the analytical method of physical science.

The expressions for the forces which act on the system in terms of the

motion of the system were first given by Lagrange in the fourth section of

the second part of his Mecanique Analytique. Lagrange's investigation may be

regarded from a mathematical point of view as a method of reducing the dy-

namical equations, of which there are originally three for every particle of the

system, to a number equal to that of the degrees of freedom of the system.

In other words it is a method of eliminating certain quantities called reactions

from the equations.

The aim of Lagrange was, as he tells us himself, to bring dynamics under

the power of the calculus, and therefore he had to express dynamical relations in

teiTQS of the corresponding relations of numerical quantities.

In the present day it is necessary for physical inquirers to obtain clear ideas

in dynamics that they may be able to study dynamical theories of the physical

sciences. We must therefore avail ourselves of the labours of the mathematician,

and selecting from his symbols those which correspond to conceivable physical

quantities, we must retranslate them into the language of dynamics.

In this way our words will call up the mental image, not of certain

operations of the calculus, but of certain characteristics of the motion of bodies.

The nomenclature of dynamics has been greatly developed by those who in

recent times have expounded the doctrine of the Conservation of Energy, and

it will be seen that most of the following statement is suggested by the investi-
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gallons in Thomson and Tait's Xatuml Philosophy, especially the method of

beginning with the case of impulsive forces.

*I have applied this method in such a way as to get rid of the explicit

consideration of the motion of any part of the system except the co-ordinates or

variables on which the motion of the whole depends. It is important to the

student to be able to trace the way in which the motion of each part is

determined by that of the variables, but I think it desirable that the final equa-

tions should be obtained independently of this process. That this can be done is

evident from the fact that the symbols by which the dependence of the motion

of the parts on that of the variables was expressed, are not found in the final

equations.

The whole theory of the equations of motion is no doubt familiar to mathe-

maticians. It ought to be so, for it is the most important part of their science

in its application to matter. But the importance of these equations does not

depend on their being useful in solving problems in dynamics. A higher function

which they must discharge is that of presenting to the mind in the clearest

and most general form the fundamental principles of dynamical reasoning.

In forming dynamical theories of the physical sciences, it has been a too

frequent practice to invent a particular dynamical hypothesis and then by means

of the equations of motion to deduce certain results. The agreement of these

results with real phenomena has been supposed to furnish a certain amount of

evidence in favour of the hypothesis.

The true method of physical reasoning is to begin with the phenomena and

to deduce the forces from them by a direct application of the equations of

motion. The difficulty of doing so has hitherto been that we arrive, at least

during the first stages of the investigation, at results which are so indefinite

that we have no terms sufficiently general to express them without introducing

some notion not strictly deducible from our premisses.

It is therefore very desirable that men of science should invent some method

of statement by which ideas, precise so far as they go, may be conveyed to the

mind, and yet sufficiently general to avoid the introduction of unwarrantable

details.

For instance, such a method of statement is greatly needed in order to

express exactly what is known about the undulatory theory of light.

* [In the Author's treatise On Electricity and Magnetism, Vol. il. Part iv. Chap, v., the reader

will find the subject treated at length from the point of view advocated in the text.]



[From the Proceedings of the Cambridge Philosophical Society, "Vol. ii., 1876.]

LIII. On a Problem in the Calculus of Variations in which the solution

is discontinuous.

The rider on the third question in the Senate-House paper of Wednesday,

January 15, 1^ to 4, was set as an example of discontinuity introduced into

a problem in a way somewhat different, I think, from any of those discussed

in Mr Todhunter's essay "^^ In some of Mr Todhunter's cases the discontinuity

was involved or its possibility impUed in the statement of the problem, as when

a curve is precluded from transgressing the boundary of a given region, or where

its curv-ature must not be negative. In the case of figures of revolution con-

sidered as generated by a plane curve revolving about a line in its plane, this

forms a boundary of the region within which the curve must lie, and therefore

often forms part of the curve required for the solution.

In the problem now before us there is no discontinuity in the statement,

and it is introduced into the problem by the continuous change of the co-

efiicients of a certain equation as we pass along the curve. At a certain point

the two roots of this equation which satisfy the minimum condition coalesce

with each other and with a maximum root. Beyond this point the root which

formerly indicated a maximum indicates a minimum, and the other two roots

become impossible.

* Hesearclies in the Calculus of Variations, <L'C.

[The question referred to was set in 1873, and is as follows :—If the velocity of a carriage along

a road is proportional to the cube of the cosine of the inclination of the road to the horizon, determine

the path of quickest ascent from the bottom to the top of a hemispherical hill, and shew that it consists

of the spherical curve described by a point of a great circle which rolls on a small circle described about

the pole with a radius ^ , together with an arc of a great circle. How is the discontinuity introduced

into this problem?]



[From the Proceedings of the Royal Institution of Great Britain, Vol. vii.]

LIV. On Action at a Distance.

I HAVE no new discovery to bring before you this evening. I must ask

you to go over very old ground, and to turn your attention to a question

which has been raised again and again ever since men began to think.

The question is that of the transmission of force. We see that two bodies

at a distance from each other exert a mutual influence on each other's motion.

Does this mutual action depend on the existence of some third thing, some

medium of communication, occupying the space between the bodies, or do the

bodies act on each other immediately, without the intervention of anything else ?

The mode in which Faraday was accustomed to look at phenomena of this

kind difiers from that adopted by many other modern inquirers, and my special

aim will be to enable you to place yourselves at Faraday's point of view, and to

point out the scientific value of that conception of lines of force which, in his

hands, became the key to the science of electricity.

When we observe one body acting on another at a distance, before we

assume that this action is direct and immediate, we generally inquire whether

there is any material connection between the two bodies ; and if we find strings,

or rods, or mechanism of any kind, capable of accounting for the observed

action between the bodies, we prefer to explain the action by means of these

intermediate connections, rather than to admit the notion of direct action at a

distance.

Thus, when we ring a bell by means of a wire, the successive parts of

the wire are first tightened and then moved, till at last the bell is rung at

a distance by a process in which all the intermediate particles of the wire have

taken part one after the other. We may ring a bell at a distance in other

ways, as by forcing air into a long tube, at the other end of which is a

cylinder with a piston which is made to fly out and strike the bell. We
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may also use a wire; but instead of pulling it, we may connect it at one end

with a voltaic battery, and at the other with an electro-magnet, and thus ring

the bell by electricity.

Here are three different ways of ringing a bell. They all agree, however,

in the circumstance that between the ringer and the bell there is an unbroken

line of communication, and that at every point of this line some physical

process goes on by which the action is transmitted from one end to the other.

The process of transmission is not instantaneous, but gradual; so that there is

an interval of time after the impulse has been given to one extremity of the

line of communication, during which the impulse is on its way, but has not

reached the other end.

It is clear, therefore, that in many cases the action between bodies at a

distance may be accounted for by a series of actions between each successive

pair of a series of bodies which occupy the intermediate space ; and it is asked,

by the advocates of mediate action, whether, in those cases in which we cannot

perceive the intermediate agency, it is not more philosophical to admit the

existence of a medium which we cannot at present perceive, than to assert that

a body can act at a place where it is not.

To a person ignorant of the properties of air, the transmission of force by

means of that invisible medium would appear as unaccountable as any other

example of action at a distance, and yet in this case we can explain the whole

process, and determine the rate at which the action is passed on from one

portion to another of the medium.

Why then should we not admit that the familiar mode of communicating

motion by pushing and pulling with our hands is the type and exemplification

of all action between bodies, even in cases in which we can observe nothing

between the bodies which appears to take part in the action?

Here for instance is a kind of attraction with which Professor Outhrie

has made us familiar. A disk is set in vibration, and is then brought near a

light suspended body, which immediately begins to move towards the disk, as

if drawn towards it by an invisible cord. What is this cord ? Sir W. Thomson

has pointed out that in a moving fluid the pressure is least where the velocity

is greatest. The velocity of the vibratory motion of the air is greatest nearest

the disk. Hence the pressure of the air on the suspended body is less on the

side nearest the disk than on the opposite side, the body yields to the greater

pressure, and moves toward the disk.
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The disk, therefore, does not act ^Yhere it is not. It sets the air next it

in motion by pushing it, this motion is communicated to more and more distant

portions of the air in turn, and thus the pressures on opposite sides of the

suspended body are rendered unequal, and it moves towards the disk in conse-

quence of the excess of pressure. The force is therefore a force of the old

school—a case of vis a tcnjo—a shove from behind.

The advocates of the doctrine of action at a distance, however, have not

been put to silence by such arguments. Wliat right, say they, have we to

assert that a body cannot act where it is not ? Do we not see an instance of

action at a distance in the case of a magnet, which acts on another magnet not

only at a distance, but with the most complete indifference to the nature of

the matter which occupies the intervening space ? If the action depends on

something occupying the space between the two magnets, it cannot surely be a

matter of indifference whether tliis space is filled with air or not, or whether

wood, glass, or copper, be placed between the magnets.

Besides this, Newton's law of gravitation, which every astronomical obser-

vation only tends to establish more firmly, asserts not only that the heavenly

Ijodies act on one another across immense intervals of space, but that two

portions of matter, the one buried a thousand miles deep in the interior of

the earth, and the other a hundred thousand miles deep in the body of the

sun, act on one another with precisely the same force as if the strata beneath

which each is buried had been non-existent. If any medium takes part in

transmitting this action, it must surely make some difference whether the space

between the bodies contains nothing but this medium, or whether it is occupied

by the dense matter of the earth or of the sun.

But the advocates of dbect action at a distance are not content with

instances of this kind, in which the phenomena, even at first sight, appear to

favour their doctrine. They push their operations into the enemy's camp, and

maintain that even when the action is apparently the pressure of contiguous

portions of matter, the contiguity is only apparent—that a space ahcai/s inter-

venes between the bodies which act on each other. They assert, in short, that

so far from action at a distance being impossible, it is the only kind of action

which ever occurs, and that the favourite old vis a terrjo of the schools has no

existence in nature, and exists only in the imagination of schoolmen.

The best way to prove that when one body pushes another it does not

touch it, is to measure the distance between them. Here are two glass lenses,

VOL. II. 40
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one of which is pressed against the other by means of a weight. By means

of the electric Hght we may obtain on the screen an image of the place where

the one lens presses against the other. A series of coloured rings is formed on

the screen. These rings were first observed and first explained by Newton.

The particular colour of any ring depends on the distance between the surfaces

of the pieces of glass. Newton formed a table of the colours corresponding to

different distances, so that by comparing the colour of any ring with Newton's

table, we may ascertain the distance between the surfaces at that ring. The

colours are arranged in rings because the surfaces are spherical, and therefore

the interval between the surfaces depends on the distance from the line joining

the centres of the spheres. The central spot of the rings indicates the place

where the lenses are nearest together, and each successive ring corresponds to

an increase of about the 4000th part of a millimetre in the distance of the

surfaces.

The lenses are now pressed together with a force equal to the weight of

an ounce ; but there is still a measurable interval between them, even at the

place where they are nearest together. They are not in optical contact. To

prove this, I apply a greater weight. A new colour appears at the central

spot, and the diameters of all the rings increase. This shews that the surfaces

are now nearer than at first, but they are not yet in optical contact, for if

they were, the central spot would be black. I therefore increase the weights,

so as to press the lenses into optical contact.

But what we call optical contact is not real contact. Optical contact indi-

cates only that the distance between the surfaces is much less than a wave-

length of light. To shew that the surfaces are not in real contact, I remove

the weights. The rings contract, and several of them vanish at the centre.

Now it is possible to bring two pieces of glass so close together, that they

will not tend to separate at all, but adhere together so firmly, that when torn

asunder the glass will break, not at the surface of contact, but at some other

place. The glasses must then be many degrees nearer than when in mere optical

contact.

Thus we have shewn that bodies begin to press against each other whilst

still at a measurable distance, and that even when pressed together with great

force they are not in absolute contact, but may be brought nearer still, and

that by many degrees.

Why, then, say the advocates of direct action, should we continue to
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maintain the doctrine, founded only on the rough experience of a pre-scientiiic

age, that matter cannot act where it is not, instead of admitting that all the

facts from which our ancestors concluded that contact is essential to action were

in reality cases of action at a distance, the distance being too small to be

measured by their imperfect means of observation ?

If we are ever to discover the laws of nature, we must do so by obtaining

the most accurate acquaintance with the facts of nature, and not by dressing

up in philosophical language the loose opinions of men who had no know-

ledge of the facts which throw most light on these laws. And as for those

who introduce cetherial, or other media, to account for these actions, without

any direct evidence of the existence of such media, or any clear understanding

of how the media do their work, and who fill all space three and four times

over with aethers of different sorts, why the less these men talk about their

philosophical scruples about admitting action at a distance the better.

If the progress of science were regulated by Newton's first law of motion,

it would be easy to cultivate opinions in advance of the age. "We should only

have to compare the science of to-day with that of fifty years ago ; and by

producing, in the geometrical sense, the line of progress, we should obtain the

science of fifty years hence.

The progress of science in Newton's time consisted in getting rid of the

celestial machinery with which generations of astronomers had encumbered the

heavens, and thus " sweeping cobwebs off the sky."

Though the planets had already got rid of their crystal spheres, they were

still swimming in the vortices of Descartes. Magnets were surrounded by

effluvia, and electrified bodies by atmospheres, the properties of which resembled

in no respect those of ordinary effluvia and atmospheres.

When Newton demonstrated that the force which acts on each of the

heavenly bodies depends on its relative position with respect to the other

l)odies, the new theory met with violent opposition from the advanced philoso-

phers of the day, who described the doctrine of gravitation as a return to the

exploded method of explaining everything by occult causes, attractive vii-tues,

and the like.

Newton himself, with that wise moderation which is characteristic of all his

speculations, answered that he made no pretence of explaining the mechanism

l)y which the heavenly bodies act on each other. To determine the mode in

which their mutual action depends on their relative position was a great step
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in science, and this step Newton asserted that he had made. To explain the

process by which this action is effected was a quite distinct step, and this

step Newton, in his Pnncipia, does not attempt to make.

But so far was Newton from asserting that bodies really do act on one

another at a distance, independently of anything between them, that in a

letter to Bentley, which has been quoted by Faraday in this place, he says :

—

"It is inconceivable that inanimate brute matter should, without the media-

tion of something else, which is not material, operate upon and affect other

matter without mutual contact, as it must do if gravitation, in the sense of

Epicurus, be essential and inherent in it That gravity should be innate,

inherent, and essential to matter, so that one body can act upon another at

a distance, through a vacuum, without the mediation of anything else, by and

through which their action and force may be conveyed from one to another, is

to me so great an absurdity, that I believe no man who has in philosophical

matters a competent faculty of thinking can ever fall into it."

Accordingly, we find in his Optical Queries, and in his letters to Boyle,

that Newton had very early made the attempt to account for gravitation by

means of the pressure of a medium, and that the reason he did not publish

these investigations "proceeded from hence only, that he found he was not

able, from experiment and observation, to give a satisfactory account of this

medium, and the manner of its operation in producing the chief phenomena of

nature*."

The doctiine of direct action at a distance cannot claim for its author the

discoverer of universal gravitation. It was first asserted by Roger Cotes, in

his preface to the Principia, which he edited during Newton's life. According

to Cotes, it is by experience that we learn that all bodies gravitate. We do

not learn in any other way that they are extended, movable, or solid. Gravi-

tation, therefore, has as much right to be considered an essential property of

matter as extension, mobility, or impenetrability.

And when the Newtonian philosophy gained ground in Europe, it was the

opinion of Cotes rather than that of Newton that became most prevalent, till

at last Boscovich propounded his theory, that matter is a congeries of mathe-

matical points, each endowed with the power of attracting or repelling the

others according to fixed laws. In his world, matter is unextended, and contact

* Maclaurin's Account of Xewton^s Discoveries.
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is impossible. He did not forget, however, to endow his mathematical points

with inertia. In this some of the modern representatives of his school have

thought that he "had not quite got so far a^ the strict modern view of

•matter' as being but an expression for modes or manifestations of ' force
'^•'."

But if we leave out of account for the present the development of the

ideas of science, and confine our attention to the extension of its boundaries, we

shall see that it was most essential that Newton's method should be extended

to every branch of science to which it was applicable—that we should investi-

gate the forces with which bodies act on each other in the first place, before

attempting to explain how that force is transmitted. No men could be better

fitted to apply themselves exclusively to the first part of the problem, than

those who considered the second part quite unnecessary.

Accordingly Cavendish, Coulomb, and Poisson, the founders of the exact

sciences of electricity and magnetism, paid no regard to those old notions of

"magnetic effluvia" and "electric atmospheres," which had been put forth in

the previous century, but turned their undivided attention to the determination

of the law of force, according to which electrified and magnetized bodies attract

or repel each other. In this way the true laws of these actions were dis-

covered, and this was done by men who never doubted that the action took

place at a distance, without the intervention of any medium, and who would

have regarded the discovery of such a medium as complicating rather than as

explaining the undoubted phenomena of attraction.

We have now arrived at the great discovery by Orsted of the connection

between electricity and magnetism. Orsted found that an electric current acts

on a magnetic pole, but that it neither attracts it nor repels it, but causes it

to move round the current. He expressed this by saying that "the electric

conflict acts in a revolving manner."

The most obvious deduction from this new fact was that the action of the

current on the magnet is not a push-and-pull force, but a rotatory force, and

accordingly many minds were set a-speculating on vortices and streams of aether

whirling round the current.

But Ampere, by a combination of mathematical skill with experimental

ingenuity, first proved that two electric currents act on one another, and then

analysed this action into the resultant of a system of push-and-pull forces

between the elementary parts of these currents.

* Review of Mrs Somerville, Saturday Revietc, Feb. 13, 1869.
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The formula of Ampere, however, is of extreme complexity, as compared

with Newton's law of gravitation, and many attempts have been made to resolve

it into something of greater apparent simplicity.

I have no wish to lead you into a discussion of any of these attempts to

improve a mathematical formula. Let us turn to the independent method of

investigation employed by Faraday in those researches in electricity and mag-

netism which have made this Institution one of the most venerable shrines of

science.

No man ever more conscientiously and systematically laboured to improve

all his powers of mind than did Faraday from the very beginning of his

scientific career. But whereas the general course of scientific method then con-

sisted in the application of the ideas of mathematics and astronomy to each new

investigation in turn, Faraday seems to have had no opportunity of acquiring

a technical knowledge of mathematics, and his knowledge of astronomy was

mainly derived firom books.

Hence, though he had a profound respect for the great discovery of Newton,

he regarded the attraction of gravitation as a sort of sacred mystery, which,

as he was not an astronomer, he had no right to gainsay or to doubt, his

duty being to believe it in the exact form in which it was delivered to him.

Such a dead faith was not likely to lead him to explain new phenomena by

means of du-ect attractions.

Besides this, the treatises of Poisson and Ampere are of so technical a

form, that to derive any assistance from them the student must have been

thoroughly trained in mathematics, and it is very doubtful if such a training

can be begun with advantage in mature years.

Thus Faraday, with his penetrating intellect, his devotion to science, and

his opportunities for experiments, was debarred from following the course of

thought which had led to the achievements of the French philosophers, and

was obliged to explain the phenomena to himself by means of a symbolism

which he could understand, instead of adopting what had hitherto been the

only tongue of the learned.

This new symbolism consisted of those lines of force extending themselves

in every direction from electrified and magnetic bodies, which Faraday in his

mind's eye saw as distinctly as the solid bodies from which they emanated.

The idea of lines of force and their exhibition by means of iron filings

was nothing new. They had been observed repeatedly, and investigated mathe-
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matically as an interesting curiosity of science. But let us hear Faraday

himself, as he introduces to his reader the method which in his hands became

so powerful^'.

"It would be a voluntary and unnecessary abandonment of most valuable

aid if an experimentalist, who chooses to consider magnetic power as represented

by lines of magnetic force, were to deny himself the use of iron filings. By

their employment he may make many conditions of the power, even in com-

plicated cases, visible to the eye at once, may trace the varjHng direction of

the lines of force and determine the relative polarity, may observe in which

direction the power is increasing or diminishing, and in complex systems may

determine the neutral points, or places where there is neither polarity nor

power, even when they occur in the midst of powerful magnets. By their use

probable results may be seen at once, and many a valuable suggestion gained

for future leading experiments."

Experiment on Lines of Force.

In this experiment each filing becomes a little magnet. The poles of oppo-

site names belonging to different filings attract each other and stick together,

and more filings attach themselves to the exposed poles, that is, to the ends

of the row of filings. In this way the filings, instead of forming a confused

system of dots over the paper, draw together, filing to filing, till long fibres

of filino-s are formed, which indicate by their direction the lines of force in

every part of the field.

The mathematicians saw in this experiment nothing but a method of exhibit-

ing at one view the direction in different places of the resultant of two forces,

one directed to each pole of the magnet; a somewhat complicated result of

the simple law of force.

But Faraday, by a series of steps as remarkable for their geometrical

definiteness as for their speculative ingenuity, imparted to his conception of these

lines of force a clearness and precision far in advance of that with which the

mathematicians could then invest their own formulae.

In the first place, Faraday's lines of force are not to be considered merely

as individuals, but as forming a system, drawn in space in a definite manner

• Exp. Res. 3284.
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SO that the number of the lines which pass through an area, say of one square

inch, indicates the intensity of the force acting through the area. Thus the

lines of force become definite in number. The strength of a magnetic pole is

measured by the number of lines which proceed from it ; the electro-tonic state

of a circuit is measured by the number of lines which pass through it.

In the second place, each individual line has a continuous existence in

space and time. When a piece of steel becomes a magnet, or when an electric

current begins to flow, the lines of force do not start into existence each in

its own place, but as the strength increases new lines are developed within

the magnet or current, and gradually grow outwards, so that the whole system

expands from within, like Newton's rings in our former experiment. Thus every

line of force preserves its identity during the whole course of its existence,

though its shape and size may be altered to any extent.

I have no time to describe the methods by which every question relating

to the forces acting on magnets or on currents, or to the induction of currents

in conducting circuits, may be solved by the consideration of Faraday's lines of

force. In this place they can never be forgotten. By means of this new

symbolism, Faraday defined with mathematical precision the whole theory of

electro-magnetism, in language free from mathematical technicalities, and appli-

cable to the most complicated as well as the simplest cases. But Faraday did

not stop here. He went on from the conception of geometrical lines of force

to that of physical lines of force. He observed that the motion which the

magnetic or electric force tends to produce is invariably such as to shorten

the lines of force and to allow them to spread out laterally from each other.

He thus perceived in the medium a state of stress, consisting of a tension,

like that of a rope, in the direction of the lines of force, combined with a

pressure in all directions at right angles to them.

This is quite a new conception of action at a distance, reducing it to a

phenomenon of the same kind as that action at a distance which is exerted

by means of the tension of ropes and the pressure of rods. When the muscles

of our bodies are excited by that stimulus which we are able in some unknown

way to apply to them, the fibres tend to shorten themselves and at the same

time to expand laterally. A state of stress is produced in the muscle, and the

limb moves. This explanation of muscular action is by no means complete.

It gives no account of the cause of the excitement of the state of stress, nor

does it even investigate those forces of cohesion which enable the muscles to
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support this stress. Nevertheless, the simple fact, that it substitutes a kind of

action which extends continuously along a material substance for one of which

we know only a cause and an effect at a distance from each other, induces

us to accept it as a real addition to our knowledge of animal mechanics.

For similar reasons we may regard Faraday's conception of a state of stres.s

in the electro-magnetic field as a method of explaining action at a distance by

means of the continuous transmission of force, even though we do not know-

how the state of stress is produced.

But one of Faraday's most pregnant discoveries, that of the magnetic

rotation of polarised light, enables us to proceed a step farther. The phe-

nomenon, when analysed into its simplest elements, may be described thup :

—

Of two circularly polarised rays of light, precisely similar in configuration, but

rotating in opposite directions, that ray is propagated with the greater velocity

which rotates in the same direction as the electricity of the magnetiziuL'

current.

It follows from this, as Sir W. Thomson has shewn by strict dynamical

reasoning, that the medium when under the action of magnetic force must be

in a state of rotation—that is to say, that small portions of the medium,

which we may call molecular vortices, are rotating, each on its own axis, tlie

direction of this axis being that of the magnetic force.

Here, then, we have an explanation of the tendency of the lines of mag-

netic force to spread out laterally and to shorten themselves. It arises from

the centrifugal force of the molecular vortices.

The mode in which electromotive force acts in starting and stopping the

vortices is more abstruse, though it is of course consistent with dynamical

principles.

We have thus found that there are several different kinds of work to be

done by the electro-magnetic medium if it exists. We have also seen that

magnetism has an intimate relation to hght, and we know that there is a theory

of light which supposes it to consist of the vibrations of a medium. How is

this luminiferous medium related to our electro-magnetic medium ?

It fortunately happens that electro-magnetic measurements have been made

from which we can calculate by dynamical principles the velocity of progagatioii

of small magnetic disturbances in the supposed electro-magnetic medium.

This velocity is very great, from 288 to 314 millions of metres per second,

according to different experiments. Now the velocity of light, according to

VOL. II. 41
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Foucault's experiments, is 298 millions of metres per second. In fact, the different

determinations of either velocity differ from each other more than the estimated

velocity of light does from the estimated velocity of propagation of small electro-

magnetic disturbance. But if the luminiferous and the electro-magnetic media

occupy the same place, and transmit disturbances with the same velocity, what

reason have we to distinguish the one from the other ? By considering them

as the same, we avoid at least the reproach of filling space twice over with

different kinds of oether.

Besides this, the only kind of electro-magnetic disturbances which can be

jjropagated through a non-conducting medium is a disturbance transverse to the

direction of propagation, agreeing in this respect with what we know of that

disturbance which we call Hght. Hence, for all we know, light also may be an

electro-magnetic disturbance in a non-conducting medium. If we admit this, the

electro-magnetic theory of hght will agree in every respect with the undulatory

theory, and the work of Thomas Young and Fresnel will be established on a

firmer basis than ever, when joined with that of Cavendish and Coulomb by

the key-stone of the combined sciences of light and electricity—Faraday's great

discovery of the electro-magnetic rotation of light.

The vast interplanetary and interstellar regions will no longer be regarded

as waste places in the universe, which the Creator has not seen fit to fill with

the symbols of the manifold order of His kingdom. We shall find them to be

already full of this wonderful medium ; so full, that no human power can remove

it from the smallest portion of space, or produce the slightest flaw in its

infinite continuity. It extends unbroken from star to star ; and when a molecule

of hydrogen vibrates in the dog-star, the medium receives the impulses of these

vibrations ; and after carrying them in its immense bosom for three years,

delivers them in due course, regular order, and full tale into the spectroscope

of Mr Huggins, at Tulse Hill.

But the medium has other functions and operations besides bearing light

from man to man, and from world to world, and giving evidence of the absolute

unity of the metric system of the universe. Its minute parts may have rotatory

as well as vibratory motions, and the axes of rotation form those lines of

magnetic force which extend in unbroken continuity into regions which no eye

has seen, and which, by their action on our magnets, are telling us in language

not yet interpreted, what is going on in the hidden underworld from minute

to minute and from century to century.
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And these lines must not be regarded as mere mathematical absti^actions.

They are the directions in which the medium is exerting a tension like that

of a rope, or rather, like that of our own muscles. The tension of the medium
in the direction of the earth's magnetic force is in this country one grain

weight on eight square feet. In some of Dr Joule's experiments, the medium
lias exerted a tension of 200 lbs. weight per square inch.

But the medium, in virtue of the very same elasticity by which it is able

to transmit the undulations of light, is also able to act as a spring. When
properly wound up, it exerts a tension, different from the magnetic tension, by
which it draws oppositely electrified bodies together, produces effects through

the length of telegraph wires, and when of sufficient intensity, leads to the

rupture and explosion called lightning.

These are some of the already discovered properties of that which has

often been called vacuum, or nothing at all. They enable us to resolve several

kinds of action at a distance into actions between contiguous parts of a con-

tinuous substance. Whether this resolution is of the nature of exj)lication or

complication, I must leave to the metaphysicians.

41—2
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LY. Elements of Xatuml Philosophy. By Professors Sir W. Thomson and

P. G. Tait. Clarendon Press Series. (Macmillan and Co., 1873.)

Natural Philosophy, which is the good old English name for what is

now called Physical Science, has been long taught in two very different ways.

One method is to begin by giving the student a thorough training in pure

mathematics, so that when dynamical relations are afterwards presented to him

in the form of mathematical equations, he at once appreciates the language, if

not the ideas, of the new subject. The progress of science, according to this

method, consists in bringing the different branches of science in succession under

the power of the calculus. When this has been done for any particular science,

it becomes in the estimation of the mathematician like an Alpine peak which

has been scaled, retaining little to reward original explorers, though perhaps

still of some use, as furnishing occupation to professional guides-.

The other method of diffusing physical science is to render the senses

familiar with physical phenomena, and the ear with the language of science, till

the student becomes at length able both to perform and to describe experiments

of his own. The investigator of this type is in no danger of having no more

worlds to conquer, for he can always go back to his former measurements, and

carry them forward to another place of decimals.

Each of these types of men of science is of service in the great work of

subduing the earth to our use, but neither of them can fully accomplish the

still greater work of strengthening their reason and developing new powers of

thought. The pure mathematician endeavours to transfer the actual effort of

thought from the natural phenomena to the symbols of his equations, and the

pure experimentalist is apt to spend so much of his mental energy on matters

of detail and calculation, that he has hardly any left for the higher forms

of thought. Both of them are allowing themselves to acquire an unfruitful
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familiarity with the facts of nature, without taking advantage of the opportunity

of awakening those powers of thought which each fresh revelation of nature is

fitted to call forth.

There is, however, a third method of cultivating physical science, in which

each department in turn is regarded, not merely as a collection of facts to be

co-ordinated by means of the formulae laid up in store by the pure mathe-

maticians, but as itself a new mathesis by which new ideas may be developed.

Every science must have its fundamental ideas—modes of thought by which

the process of our minds is brought into the most complete harmony with the

process of nature—and these ideas have not attained their most perfect form

as long as they are clothed with the imagery, not of the phenomena of the

science itself, but of the machinery with which mathematicians have been

accustomed to work problems about pure quantities.

Poins6t has pointed out several of his dynamical investigations as instances

of the advantage of keeping before the mind the things themselves rather than

arbitrary symbols of them ; and the mastery which Gauss displayed over ever}^

subject which he handled is, as he said himself, due to the fact that he never

allowed himself to make a single step, without forming a distinct idea of the

result of that step.

The book before us shews that the Professors of Natural Philosophy at

Glasgow and Edinburgh have adopted this third method of diffusing physical

science. It appears from their preface that it has been since 1863 a text-book

in their classes, and that it is designed for use in schools and in the junior

classes in Universities. The book is therefore primarily intended for students

whose mathematical training has not been carried beyond the most elementary

stage.

The matter of the book however bears but small resemblance to that of

the treatises usually put into the hands of such students. We are very soon

introduced to the combination of harmonic motions, to irrotational strains, to

Hamilton's characteristic function, &c., and in every case the reasoning is con-

ducted by means of dynamical ideas, and not by making use of the analysis

of pure quantity.

The student, if he has the opportunity of continuing his mathematical

studies, may do so with greater relish when he is able to see in the mathe-

matical equations the symbols of ideas which have been already presented to

his mind in the more vivid colouring of dynamical phenomena. The differential
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calculus, for example, is at once recognised as the method of reasoning applicable

to quantities in a state of continuous change. This is Newton's conception of

Fluxions, and all attempts to banish the ideas of time and motion from the

mind must fad, since continuity cannot be conceived by us except by following

in imagination the course of a point which continues to exist while it moves

in space.

The arrangement of the book diflfers from that which has hitherto been

adopted in text-books. It has been usual to begin with those parts of the

subject in which the idea of change, though implicitly involved in the very

conception of force, is not explicitly developed so as to bring into view the

different configurations successively assumed by the system. For this reason,

the first place has generally been assigned to the doctrine of the equilibrium

of forces and the equivalence of systems of forces. The science of pure statics,

as thus set forth, is conversant with the relations of forces and of systems of

forces to each other, and takes no account of the nature of the material systems

to which they may be applied, or whether these systems are at rest or in

motion. The concrete illustrations usually given relate to systems of forces in

equilibrium, acting on bodies at rest, but the equilibrium of the forces is

established by reasoning which has nothing to do with the nature of the body,

or with its being at rest.

The practical reason for beginning with statics seems to be that the student

is not supposed capable of following the changes of configuration which take

place in moving systems. He is expected, how^ever, to be able to follow trains

of reasoning about forces, the idea of which can never be acquired apart from

that of motion, and which can only be thought of apart from motion by a

process of abstraction.

Professors Thomson and Tait, on the contrary, begin with kinematics, the

science of mere motion considered apart from the nature of the moving body

and the causes which produce its motion. This science differs from geometry

only by the explicit introduction of the idea of time as a measurable quantity.

(The idea of time as a mere sequence of ideas is as necessary in geometry as

in every other department of thought.) Hence kinematics, as involving the

smallest number of fundamental ideas, has a metaphysical precedence over statics,

which involves the idea of force, which in its turn implies the idea of matter

as well as that of motion.

In kinematics, the conception of displacement comes before that of velocity.
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which is the rate of displacement. And here we cannot but regret that the

authors, one of whom at least is an ardent disciple of Hamilton, have not at

once pointed out that every displacement is a vector, and taken the opportunity

of explaining the addition of vectors as a process, which, applied piimarily to

displacements, is equally applicable to velocities, or the rates of change of

displacement, and to accelerations, or the rates of change of velocities. For it

is only in this way that the method of Newton, to which we are glad to see

that our authors have reverted, can be fully understood, and the "parallelogram

of forces" deduced from the "parallelogram of velocities." Another conception

of Hamilton's, however, that of the hodograph, is early introduced and employed

with great effect. The fundamental idea of the hodograph is the same as that

of vectors in general. The velocity of a body, being a vector, is defined by

its magnitude and direction, so that velocities may be represented by straight

lines, and these straight lines may be moved parallel to themselves into whatever

position is most suitable for exhibiting their geometrical relations, as for instance

in the hodograph they are all drawn from one point. The same idea is made

use of in the theorems of the " triangle " and the " polygon " of forces, and

in the more general method of "diagrams of stress," in which the lines which

represent the stresses are drawn, not in the positions in which they actually

exist, but in those positions which most fully exhibit their geometrical relations.

We are sorry that a certain amount of slight is thrown on these methods in

§ 411, where a different proposition is called the tme triangle of forces.

It is when a writer proceeds to set forth the first principle of dynamics

that his true character as a sound thinker or otherwise becomes conspicuous.

And here we are glad to see that the authors follow Newton, whose Leges

Motus, more perhaps than any other part of his great work, exhibit the

unimproveable completeness of that mind without a flaw.

We would particularly recommend to writers on philosophy, first to deduce

from the best philosophical data at their command a definition of equal intervals

of time, and then to turn to § 212, where such a definition is given as a

logical conversion of Newton's First Law.

But it is in the exposition of the Third Law, which affirms that the actions

between bodies are mutual, that our authors have brought to light a doctrine,

which, though clearly stated by Newton, remained unknown to generations of

students and commentators, and even when acknowledged by the whole scientific

world was not known to be contained in a paragraph of the Pvincipia till it
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was pointed out by our authors in an article on " Energy " in Good Words,

October 18G2.

Our limits forbid us from following the authors as they carry the student

through the theories of varying action, kinetic force, electric images, and elastic

solids. We can only express our sympathy with the efforts of men, thoroughly

conversant with all that mathematicians have achieved, to divest scientific truths

of that symbolic language in which the mathematicians have left them, and to

clothe them in words, developed by legitimate methods from our mother tongue,

but rendered precise by clear definitions, and familiar by well-rounded statements.

Mathematicians may flatter themselves that they possess new ideas which

mere human language is as yet unable to express. Let them make the effort

to express these ideas in appropriate words without the aid of symbols, and

if they succeed they will not only lay us laymen under a lasting obligation,

l)ut, we venture to say, they will find themselves very much enlightened during

the process, and will even be doubtful whether the ideas as expressed in

symbols had ever quite found their way out of the equations into their minds.
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LVI. On the TTieory of a System of Electrified Conductors, and other Physical

Theories involcimj Uomogeneous Quadratic Functions.

[Read April 10th, 1873.]

The theory of homogeneous functions of the second degree is useful in

several parts of natural philosophy.

The general form of such a function may be written

V=\(A,,x,' + 2A,;c,x, + kc.) (l),

or more concisely Vx = ^^ S {A^^^,) (1'"),

r = l « = 1

in which each term consists of a product of two out of n variables a:„...a-„,

which may or may not be different, and of a coefficient ^„ belonging to that

pair of variables.

Differentiating V with respect to each of the n variables in succession, we

get n new quantities ^i, ... ^„ of the form

dV '="

i£=f'=.?.(^"-') (2)-

Multiplying each ^ by its corresponding x, and taking half the sura of the

products, we obtain a second expression for V,

T^n

V=iX{x,l) (3).
r = l

Since each of the 7i quantities ^ is a linear function of the n variables x,

we may, by solving the n equations of the form (2), obtain expressions for

each X in terms of the ^'s

r = n

x.= S{a„f,) (4);

VOL. II. 42
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and by substituting these values of the xs in (3), we obtain a thu'd expression

for T;

V, = fiT(a^^Ur) (5).
«=1 r=l

The first and last of these expressions for V are distinguished by the

suffixes X and ^, in order to shew that the first is expressed in terms of the

variables x and the last in terms of the variables |. The coefficients A and a

may be functions of any number, m, of variables. Let y^ be one of these

variables.

Since V^, V, and V^ are three different expressions for the same quantity,

V,+ V, = 2V=t{x,^;) (6).
r=l

If we now suppose the three sets of variables x, ^ and y to vary in any

consistent manner, and remember that F, is a function of the xs and y's, V^ of

the ^s and y's, and V of the xs and fs, we find

:!;{©-f^>j:{®-'>-h:j:{S-©'4-»-'"-
The three sets of variations Sx, Sf, and By are not independent of each

other, for if the variations hy and either of the other sets be given, the other

set may be determined. Hence we cannot immediately deduce any definite

results from this equation. But we know, from equation (2), that the coefficients

of the variations Bx vanish of themselves, and the remaining variations 8£ and By

are all independent of each other, so that we may equate the coefficient of each

of them to zero. We thus obtain two seta of equations,

-=t <«)'

and ^^' + ^^ = (9).
dyt dy,

In this purely algebraical theory of quadratic functions, of the two sets of

variables x and ^, either may be taken as the primary set. In the physical

applications of the theory, however, the variables form two classes which are not

interchangeable.

Thus, in kinetics, the variables are the components of velocity and those of

momentum ; in the theory of elasticity, they are stresses and strains ; in electro-
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magnetism, they are electric currents and the " electrotonic state" of circuits;

and in electrostatics, they are the potentials and the charges of conductors.

Now, if a change takes place in the configuration of the system, by whicli

the energy (whether potential or kinetic) of the system is diminished, while the

momenta, the strains, the electrotonic states, or the charges remain constant, the

displacement will be aided by a force of such a magnitude that the work done

by the force during the displacement is equal to the diminution of the energy

of the system.

For the momenta, the strains, the electrotonic states, and the cliarges do not

require for their maintenance the application of energy from without the system.

The same change of configuration, if effected under the condition that the

velocities, stresses, potentials, or electric currents remain constant, would, by

equation (9), increase the energy of the system by exactly the same amount as

it was diminished in the former case. The work done by the system during

the displacement will be the same as before, so that energy must in this case be

supplied from without to an amount double of this work, in order to satisfy

these new conditions.

For it is only by external compulsion that the velocities of the system can

be maintained constant when the configuration changes. Work must be done on

an elastic system to keep the stress constant while the strain varies. The

currents in a conducting circuit tend to vary when the electrotonic state of the

circuit varies, and can only be kept constant by battery power. The same

agency must be employed to maintain the potential of a conductor constant

during the displacement of the system of conductors.

Hence, when momenta, strains, electrotonic states, or charges are maintained

constant, the internal forces of the system tend to produce displacements which

would diminish the energy of the system.

If, on the other hand, the velocities, stresses, electric currents, or potentials

are maintained constant, the internal forces tend to produce displacements

which would increase the energy of the system.

This distinction between the two sets of physical quantities is of great

importance in the theory of classification of such quantities. The characteristic

of the first set is inherent persistence. Any persistence which we may observe

in the second set is only apparent, and arises from the second set being

functions of the first set when the configuration of the system either does

not vary or is not such as to cause a variation of the coeflficients A and a.

42—2
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LVII. On the Focal Lines of a Refracted Pencil.

[Read April 10th, 1873.]

Hamilton has shewn, by means of his Characteristic Function, that in

whatever manner a pencil may be refracted, the rays always pass through two

focal lines, the planes through which and the axis of the pencil are at right

angles to each other. The same method leads to the following geometrical

construction for finding the focal lines of any thin pencil after refraction through

a curved surface, the focal lines of the incident pencil and the nature of the

curvature of the surface being given.

1. The characteristic function of a thin pencil whose axis coincides with

the axis of z, and whose rays pass through focal lines in the planes of xz and

yz at distances a and h from the origin respectively, is foe points near the

origin

V=K+J.-^-l] (1).

If we turn this system of rays round the axis of z, through an angle <^

reckoned from x towards y, the expression for V becomes

where -r = - 008"^+ j-sm'A
A a ^ ^

^ = - sin' <^ + T cos^ci
If a ^ ^

1 1
sin2<^

(2),

(3).
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If we now turn the system round the axis of y, through an angle $

from z towards x, we find

{2x cos 6-\-z sin 0) z sin 6 yz sin $]

2A 2C i
(4).

2. Now consider two portions of a pencil, close to the origin but in

diflferent media, whose indices of refraction are /i„ /i, respectively, and let the

coefficients belonging to these portions be distinguished by corresponding suffixes

{. and ,).

Let the media be separated by the surface whose equation is

_ cc' y* xy . .

''~2A'^2B'^2C ^^^•

Then, since the characteristic function is continuous at this surface, we

have the condition Fi— F, = when z has the value given in (5).

Substituting this value of z in the expressions for F, and Fj, and neglecting

terms of the third degree in x and y, we obtain

(x^ ti^ xy \

/re* cos' ^1 , ^ xyco8 0\ . /ai^cos*^, y* ocycoad.\ ^ . >

That the term in x may vanish, we must have

^1 sin ^1 = /x, sin ^, (7),

the ordinary law of refraction.

Equating to zero the coefficients of x*, y\ and xy, we find

COS'^i COS"^, 1 / . /I i/i\ ,r.\

z:srk-2:iiE^.=2<^°''''-~*^'' w-

s^rsii^ri^"'^^'-"'^^''* (')•

cot^ _ c^ =^(cote.-cot(?.) (10).
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3. These relations of the quantities A, B, C may be found by the fol-

lowing construction :

—

Let 10 be the incident and OR the refracted ray, and let ON be the

normal to the surface; NOI^O,, NOR = 6,.

Find the points A, B, C, whose co-ordinates are

^cos-^.-cos'^, . cos'^,cot(9,-cos=^,cot^, , X

^^^^^' ^ =^ cot^.-cot^/ ' =^ cot^.-cot;^,
^''^'

for B, x = 0, z =B (12);

_ ^ cos d. - COS 6^ ri cos 6, cot 6^ - cos 6.^ cot ^^ , .

f"-^^' ^=^cot^;-cot^: -
'=^—

z^eT^^e,
— ('^>-

The positions of these points depend only on the form of the surface and

on the directions of the axes of the incident and refracted pencil. The point

B is absolutely fixed, being the centre of curvature of a normal section of the

surface perpendicular to the plane of refraction.

Let 0A„ 0B„ OC, be the values of A„ B„ C, for the incident ray. To

find the corresponding quantities for the refracted ray, draw the straight lines

AA„ BB„ CO, intersecting the refracted ray in A„ B„ C,. 0A„, 0B„, and OC^

are the required values of A„, Bj, (Z.

When any of these quantities becomes infinite, the line must be drawn

in a given direction. For A„ B„ or Q infinite, it must be parallel to the

incident ray. For A„ B„ or C, infinite, it must be parallel to the refracted

ray. For B infinite, it must be parallel to the normal ; for A infinite, it must

make with the normal an angle whose tangent is

COS' 6^ — cos" dj
(14)-

cos'^icot^,-cos^^,cot(9, ^ ^'
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and for C infinite the tangent of the angle must be

cos ^, — cos Ot

335

cos ^iCot 61 — cos ^3cot 0.^

(15).

If the plane of refraction cuts the surface along a line of curvature,

C= 00 , and if one of the focal lines of the incident pencil is in the plane of

refraction, C,= oo. The points A„ /?, then coincide with the focal hues of the

incident pencil, and A^, B^ with those of the refracted pencil.

That A^ may coincide with B^, and A^ with ^„ the line joining both pairs

of points must be on the line AB. There is therefore one, and only one, point

on the axis of the incident pencil from which a pencil may diverge so that,

after refraction, it still diverges from or converges to a single point.

4. When the quantity C has a finite value, the plane of refraction is not

a plane of symmetry, and we have to deduce the quantities a, h,
<f>

from

A, B, C. The following construction enables us to pass from either of these

systems to the other :

—

Let OA, OB, OC be the values of A, B, C.

Draw A A' perpendicular and equal to AO. Join BA\ and produce to D,

a point on the perpendicular to OA through 0. Cut off OD' equal to OD,
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but in the opposite direction. Join D'A, and produce to P, where D'A

meets BD.

Join CD, and draw OQ perpendicular to CD from 0.

Make Od, Od' each equal to OQ. Draw c/P, d'P cutting 0^ in h and a.

Bisect the angle DOQ by OjEJ.

Then Oa=^a, Ob = h, and DOE =
(f>,

the angle which the first focal line

makes with the plane of xz.

5. If a, h, and <^ are given, the construction is easily reversed, thus:

Let Oa = a, Oh = b, and DOE =
(f>.

Draw aa perpendicular and equal to aO. Draw ha cutting OD, the per-

pendicular to aO from in d. Cut off OcZ' equal and opposite to Od. Draw

d'a cutting hd in P.

Draw OQ=Od so that the angle DOE=OEQ.

Di-aw CQZ> perpendicidar to OQ, cutting Oa in C and Oci in D.

Make OD' equal and opposite to OD. Draw DP, X)'P cutting Oa in P
and A.

Then 0.4 = .4, OP = P, and OC=C.

6. If therefore the given data be the radii of curvature of the refracting

surface and the angle, </>, which the plane of incidence makes with the prin-

cipal section whose curvature is a, we may determine A, B, C for the refracting

surface.

Then from a^ and h^ the distances of the focal lines of the incident pencil,

and <^i the angle which a^ makes with the plane of incidence, we must find

J„ Pi, Ci for the incident pencil.

From these data, by § 4, we must determin.e A._, B.„ C^ for the refracted

pencil, and from these a.^, h.,, and
<f>.,.

I have not been able to obtain any simpler construction for the general

Ci\se of a refracted pencil.

7. For a pencil after passing through any series of surfaces the construction

is necessarily more complex, as ten constants are involved in the general term

of the second degree of the characteristic function, which is of the form

F= ^,x,' + lh,ij^ + c,x,y, -}- \a^.^ + ^6.^,' + cjc.^, +px,x, + qx,y, -h ry,x, + sy,y, ;
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and if V, = h'i .^.' + ^B^y" + C'.x^i

.

and r, = ^A^* + ^B^* + C^^„

and we put D = {A, + a,) {B, + h,)-{C, + c,y,

{A,-a,)D+p^B, + h,) + T'{A, + a,)-2pr(C, + c,) = 0,

{B, -b,)D + q' (B, + 6.) + s* (J. + a,) - 2qs (C, + c,) = 0,

(C, - c,) D -{-pq (B, + 6.) + rs (A, + a,)-(ps + qr) (C, + c,) = 0.

These equations enable us to determine A„ B^, C, when A„ B„ C, are

given.

Here we must observe that the quantities A, B, C, &c., do not represent

lines, as in the first part of this paper, but the reciprocals of lines.

VOL. It.
^'^
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LVIII. An Essay on the Mathematical Principles of Physics, &c. By the Rev.

James Challis, M.A., F.R.S., F.R.A.S., Plumian Professor of Astronomy and

Experimental Philosophy in the University of Cambridge, and Fellow of

Trinity College. (Cambridge: Deighton, Bell, and Co., 1873.)

This Essay is a sort of abstract or general account of the mathematical

and physical researches on which the author has been so long engaged, portions

of which have appeared from time to time in the Philosophical Magazine, and

also in his larger work on the "Principles of Mathematics and Physics." It

is always desirable that mathematical results should be expressed in intelligible

language, as well as in the symbolic form in which they were at first obtained,

and we have to thank Professor Challis for this Essay, which though, or rather

because, it hardly contains a single equation, sets forth his system more clearly

than has been done in some of his previous mathematical papers.

The aim of this Essay, and of the author's long-continued labours, is to

advance the theoretical study of Physics. He regards the material universe as

"a vast and wonderful mechanism, of which not the least wonderful quality is,,

its being so constructed that we can understand it." The Book of Nature, in

fact, contains elementaiy chapters, and, to those who know where to look for

them, the mastery of one chapter is a preparation for the study of the next.

The discovery of the calculation necessary to determine the acceleration of a

particle whose position is given in terms of the time led to the Newtonian

epoch of Natural Philosophy. The study from the cultivation of which our

author looks for the "inauguration of a new scientific epoch," is that of the

motion of fluids, commonly called Hydrodynamics. The scientific method which

he recommends is that described by Newton as the " foundation of all philo-

sophy," namely, that the properties which we attribute to the least parts of
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matter must be consistent with those of which experiments on sensible bodies

have made us cognizant.

The world, according to Professor Challis, is made up of atoms and aether.

The atoms are spheres, unalterable in magnitude, and endowed with inertia, but

with no other property whatever. The aether is a perfect fluid, endowed with

inertia, and exerting a pressure proportional to its density. It is truly con-

tinuous (and therefore does not consist of atoms), and it fills up all the

interstices of the atoms.

Here, then, we have set before us with perfect clearness the two con-

stituents of the universe: the atoms, which we can picture in our minds as

so many marbles ; and the sether, which behaves exactly as air would do il'

Boyle's law were strictly accurate, if its temperature were invariable, if it were

destitute of viscosity, and if gravity did not act on it.

We have no diflSculty, therefore, in forming an adequate conception of the

properties of the elements from which we have to construct a world. The

hypothesis is at least an honest one. It attributes to the elements of things

no properties except those which we can clearly define. It stands, therefore,

on a dLfiferent scientific level from those waxen hypotheses in which the atoms

are endowed with a new system of attractive or repulsive forces whenever a

new phenomenon has to be explained.

But the task stiU before us is a herculean one. It is no less than to

explain all actions between bodies or parts of bodies, whether in apparent

contact or at stellar distances, by the motions of this all-embi-acing sether, and

the pressure thence resulting-

One kind of motion of the aether is evidently a wave-motion, like that of

sound-waves in air. How will such waves afiect an atom ? Will they propel

it forward like the driftwood which is flung upon the shore, or will they draw

it back Uke the shingle which is carried out by the returning wave? Or will

they make it oscillate about a fixed position without any advance or recession

on the whole I

We have no intention of going through the calculations necessary to solve

this problem. They are not contained in this Essay, and Professor Challis

admits that he has been unable to determine the absolute amount of the

constant term which indicates the permanent effect of the waves on an atom.

This is unfortunate, as it gives us no immediate prospect of making those

numerical comparisons with observed facts which are necessary for the verification
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of the theor}\ Let us, however, suppose this purely mathematical difficulty-

surmounted, and let us admit with Professor Challis that if the wave-length

of the undulations is very small compared with the diameter of the atom, the

atom will be urged in the direction of wave-propagation, or in other words

repelled from the origin of the waves. If on the other hand the wave-length

is very great compared with the diameter of the atom, the atom will be urged

in the direction opposite to that in which the waves travel, that is, it will

be attracted towards the source of the waves.

The amount of this attraction or repulsion will depend on the mean of

the square of the velocity of the periodic motion of the particles of the sether,

and since the amplitude of a diverging wave is inversely as the distance from

the centre of diverger ce, the force will be inversely as the square of this

distance, according to Newton's law.

We must remember, however, that the problem is only imperfectly solved,

as we do not know the absolute value of this force, and we have not yet

arrived at an explanation of the fact that the attraction of gravitation is in

exact proportion to the mass of the attracted body, whatever be its chemical

nature. (See p. 36.)

Admitting these results, and supposing the great ocean of aether to be

traversed by waves, these waves impinge on the atoms, and are reflected in

the form of diverging waves. These, in their turn, beat other atoms, and cause

attraction or repulsion, according as their wave-length is great or small. Thus

the waves of shortest period perform the office of repelling atom from atom,

and rendering their collision for ever impossible. Other waves, somewhat longer,

bind the atoms together in molecular groups. Others contribute to the elasticity

of bodies of sensible size, while the long waves are the cause of universal

gravitation, holding the planets in their courses, and preserving the most ancient

heavens in all their freshness and strength. Then besides the waves of aether,

our author contemplates its streams, spiral and otherwise, by which he accounts

for electric, magnetic, and galvanic phenomena.

Without pretending to have verified all or any of the calculations on which

this theory is based, or to have compared the electric, magnetic, and galvanic phe-

nomena, as described in the Essay, with those actually observed, we may venture

to make a few remarks upon the theory of action at a distance here put forth.

The explanation of any action between distant bodies by means of a clearly

conceivable process going on ia the intervening medium is an achievement of
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the highest scientific value. Of all such actions, that of gravitation is the most

universal and the most mysterioua Whatever theory of the constitution of

bodies holds out a prospect of the ultimate explanation of the process by which

gravitation is effected, men of science will be found ready to devote the whole

remainder of their lives to the development of that theory.

The only theory hitherto put forth as a dynamical theory of gravitation

is that of Lesage, who adopts the Lucretian theory of atoms and void.

Gravitation on this theory is accounted for by the impact of atoms of

incalculable minuteness, which are flying through the heavens with inconceivable

velocity and in every possible direction. These "ultramundane corpuscules"

falling on a solitary heavenly body would strike it on every side with equal

impetus, and would have no effect upon it in the way of resultant force. If,

however, another heavenly body were in existence, each would screen the other

from a portion of the corpuscular bombardment, and the two bodies would be

attracted to each other. The merits and the defects of this theory have been

recently pointed out by Sir W. Thomson. If the corpuscules are perfectly elastic

one body cannot protect the other from the storm, for it will reflect exactly

as many corpuscules as it intercepts. If they are inelastic, as Lesage supposes,

what becomes of them after collision ? Why are not bodies always growing by

the perpetual accumulation of them ? How do they get swept away 1 and what

becomes of their energy ? Why do they not volatilise the earth in a few

minutes ? I shall not enter on Sir W. Thomson's improvement of this theory,

as it involves a different kind of hydrodynamics from that cultivated in the

Essay, but in whatever way we regard Lesage's theory, the cause of gravitation

in the universe can be represented only as depending on an ever fresh supply

of something fi'om without.

Though Professor Challis has not, as far as we can see, stated in what

maimer his jethereal waves are originally produced, it would seem that on his

theory also the primary waves, by whose action the waves diverging from the

atoms are generated, must themselves be propagated from somewhere outside the

world of stars.

On either theory, therefore, the universe is not even temporarily automatic,

but must be fed from moment to moment by an agency external to itself.

If the corpuscules of the one theory, or the sethereal waves of the other,

were from any cause to be supplied at a different rate, the value of every

force in the universe would suffer change.
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On both theories, too, the preservation of the universe is effected only by the

unceasing expenditure of enormous quantities of work, so that the conservation

of energy in physical operations, which has been the subject of so many

measurements, and the study of which has led to so many discoveries, is

apparent only, and is merely a kind of "maveable equilibrium" between supply

and destruction.

It may seem a sort of anticlimax to descend from these highest heavens

of invention down to the "equations of condition" of fluid motion. But it

would not be right to pass by the fact that the fluids treated of in this Essay

are not in all respects similar to those met with elsewhere. In all their motions

they obey a law, which our author was the first to lay down, in addition

—

or perhaps in some cases in opposition—to those prescribed for them by Lagrange,

Poisson, &c.

It is true that a perfect fluid, originally at rest, and afterwards acted on

only by such forces as occur in nature, will freely obey this law, and that not

only in the form laid down by Professor Challis, in which its rigour is partially

relaxed by the introduction of an arbitrary factor, but in its original severe

simplicity, as the condition of the existence of a velocity-potential.

But, on the one hand, problems in which the motion is assumed to violate

this condition have been solved by Helmholtz and Sir W. Thomson, who tell

us what the fluid will then do; and, on the other hand, Professor Challis's

fluid is able, in virtue of the new equation, to transmit plane waves consisting

of transverse displacements. As this is what takes place in the luminiferous

fether, other physicists refuse to regard that sether as a fluid, because, according

to their definition, the action between any contiguous portions of a fluid is

entirely normal to the surface which separates them.

It is not necessary, however, for us to say any more on this subject, as

the Essay before us does not contain, in an expUcit form, the equation referred

to, but is devoted rather to the exposition of those wider theories of the

constitution of matter and the phenomena of nature, some of which we have

endeavoured to describe.
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LIX. On Loschmidt's Experiments on Diffusion in relation to the Kinetic

Tlieory of Gases.

The kinetic theory asserts that a gas consists of separate molecules, each

moving with a velocity amounting, in the case of hydrogen, to 1,800 metres

per second. This velocity, however, by no means determines the rate at which

a group of molecules set at liberty in one part of a vessel full of the gas

will make their way into other parts. In spite of the great velocity of the

molecules, the direction of their course is so often altered and reversed by

collision with other molecules, that the process of diffusion is comparatively a

slow one.

The first experiments from which a rough estimate of the rate of diffusion

of one gas through another can be deduced are those of Graham'". Professor

Loschmidt, of Vienna, has recently f made a series of most valuable and accurate

experiments on the interdiffusion of gases in a vertical tube, from which he

has deduced the coefficient of diflfusion of ten pairs of gases. These results I

consider to be the most valuable hitherto obtained as data for the construction

of a molecular theory of gases.

There are two other kinds of diffusion capable of experimental investigation,

and from which the same data may be derived, but in both cases the experi-

mental methods are exposed to much greater risk of error than in the case

of diffusion. The first of these is the diffusion of momentum, or the lateral

communication of sensible motion from one stratum of a gas to another. This

is the explanation, on the kinetic theory, of the viscosity or internal friction

of gases. The investigation of the viscosity of gases requires experiments of

great delicacy, and involving very considerable corrections before the true

Brande's Journal for 1829, pt. ii. p. 74, "On the Mobility of Gases," Phil. Trans. 1863.

t SU7h. d. k, Akad. d. Wisseiich. 10 Marz. 1870.
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coefficient of viscosity is obtained. Thus the numbers obtained by myself in 1865

are nearly double of those calculated by Prof Stokes from the experiments

of Baily on pendulums, but not much more than half those deduced by 0. E.

Meyer from his own experiments. The other kind of diffusion is that of the

energy of agitation of the molecules. This is called the conduction of heat.

The experimental investigation of this subject is confessedly so difficult, that

it is only recently that Prof. Stefan of Vienna*, by means of a very ingenious

method, has obtained the first experimental determination of the conductivity

of air. This result is, as he says, in striking agreement with the kinetic

theory of gases.

The experiments on the interdiffusion of gases, as conducted by Prof

Loschmidt and his pupils, appear to be far more independent of disturbing

causes than any experiments on viscosity or conductivity. The interdiffusing

gases are left to themselves in a vertical cylindrical vessel, the heavier gas

being underneath. No disturbing effect due to currents seems to exist, and the

results of different experiments with the same pair of gases appear to be very

consistent with each other.

They prove conclusively that the coefficient of diffusion varies inversely as

the pressure, a result in accordance with the kinetic theory, whatever hypo-

thesis we adopt as to the nature of the mutual action of the molecules during

their encounters.

They also shew that the coefficient of diffusion increases as the temperature

rises, but the range of temperature in the experiments appears to be too small

to enable us to decide whether it varies as 'P, as it should be according to the

theory of a force inversely as the fifth power of the distance adopted in my
paper in the Phil. Trans. 1866, or as T^ as it should do according to the

theory of elastic spherical molecules, which was the 'hypothesis originally developed

by Clausius, by myself in the Phil. Mag. 1860, and by 0. E. Meyer.

In comparing the coefficients of diffusion of different pairs of gases, Prof.

Loschmidt has made use of a formula according to which the coefficient of

diffusion should vary inversely as the geometric mean of the atomic weights

of the two gases. I am unable to see any ground for this hypothesis in the

kinetic theory, which in fact leads to a different result, involving the diameters

of the molecules, as well as their masses. The numerical results obtained by

* Sitzb. d. k. Akad. Feb. 22, 1872.



THE KINETIC THEORY OF OASES. 345

Prof. Loschmidt do not agree with his formula in a manner corresponding to

the accuracy of his experiments. They agree in a very remarkable manner with

the formula derived from the kinetic theory.

I have recently been revising the theory of gases founded on that of the

collisions of elastic spheres, using, however, the methods of my paper on the

dynamical theory of gases {Phil. Trans. 18GG) rather than those of my first

paper in the Phil. Mag., 18 GO, which are more difficult of application, and

which led me into great confusion, especially in treating of the diffusion of

gases.

The coefficient of interdiffusion of two gases, according to this theory, is

" 2V6ir N'Jw.'^w,?: ^'''

where tv^ and w, are the molecular weights of the two gases, that of hydrogen

being unity.

Sa is the distance between the centres of the molecules at collision in centi-

metres.

V is the " velocity of mean square " of a molecule of hydrogen at 0" C.

185,900 centimetres per second.

P

N is the number of molecules in a cubic centimetre at O'C. and 76 cm. B.

(the same for all gases).

( PPTltllTlGtrG l'

Z>u is the coefficient of interdiffusion of the two gases in g

—

measure.

We may simplify this expression by writing

2j6u N' '^'~D„ Vw, w,
(2).

Here a is a quantity the same for all gases, but involving the unknown

number N.

a- is a quantity which may be deduced from the corresponding experiment

of M. Loschmidt. We have thus

5i, = ao-u (3).

VOL. II. 44
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or the distance between the centres of the molecules at collision is proportional

to the quantity cr, which may be deduced from experiment.

If di and d, are the diameters of the two molecules,

s^ = ^(d^+ d,).

Hence if d = ah o-,, = i (S, + 8,) (4).

Now M. Loschmidt has determined D for the six pairs of gases which

can be formed from Hydrogen, Oxygen, Carbonic Oxide, and Carbonic Acid. The

six values of <r deduced from these experiments ought not to be independent,

since they may be deduced from the four values of S belonging to the two

gases. Accordingly we find, by assuming

Table I.

8(H) =.1-739

S(0) =2-283

8 (CO) =2-461

8(COJ = 2-775

(7,2
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of viscosity, and p the density of a gas at O'C. and 760 mm. B., the theory

gives

10 d'
•(5),

so that the following relation exists between the viscosities of two gases and

their coefficient of interdiffusion

—

D.. = \i^^^^
'-^^\P^P

(6).

Calculating from the data of Table I., the viscosities of the gases, and com-

paring them with those found by O. E. Meyer and by myself, and reducing all

to centimetre, gramme, second measure, and O'C—

Table II.

Coefficient of Viscosity.

Gas.
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molecule, or, more concisely, the mean path. Its value, according to my cal-

culations, is

.(7).JI^s'N" JnV S'

Its value in tenth-metres (1 metre x 10"") is

Table III.

For Hydrogen ... 965 Tenth-metres at 0" C. and 760 B.
For Oxygen . . . 560
For Carbonic Oxide . . 482
For Carbonic Acid . . 430

(The wave-length of the hydrogen ray F is 4,861 tenth-metres, or about ten
times the mean path of a molecule of carbonic oxide.)

"We may now proceed for a. few steps on more hazardous ground, and
inquire into the actual size of the molecules. Prof. Loschmidt himself in his

paper "Zur Grosse der Luftmolecule " {Acad. Vienna, Oct. 12, 1865), was the
first to make this attempt. Independently of him and of each other, Mr G. J.

Stoney (Phil. Mag., Aug. 1868), and Sir W. Thomson {Nature, March 31, 1870),
have made similar calculations. We shall follow the track of Prof. Loschmidt.

The volume of a spherical molecule is - s', where s is its diameter. Hence
b

if N is the number of molecules in unit of volume, the space actually filled

by the molecules is t-ZVs'.

This, then, would be the volume to which a cubic centimetre of the gas

would be reduced if it could be so compressed as to leave no room whatever

between the molecules. This, of course, is impossible ; but we may, for the

sake of clearness, call the quantity

-=1^^ (8)

* The difference between this value and that given by M. Clausius in his paper of 1858, arises

from his assuming that all the molecules have equal velocities, while I suppose the velocities to be

distributed according to the "law of errors."
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the ideal coeflScient of condensation. The actual coefficient of condensation, when

the gas is reduced to the liquid or even the solid form, and exposed to the

greatest degree of cold and pressure, is of course greater than c.

Multiplying equations (7) and (8), we find

s = 6j2d (9).

where s is the diameter of a molecule, € the coefficient of condensation, and

I the mean path of a molecule.

Of these quantities, we know I approximately already, but with respect

to € we only know its superior limit. It is only by ascertaining whether calcu-

lations of this kind, made with respect to different substances, lead to consistent

results, that we can obtain any confidence in our estimates of e.

M. Lorenz Meyer* has compared the " molecular volumes " of different

substances, as estimated by Kopp from measurements of the density of these

substances and their compounds, with the values of s* as deduced from experi-

ments on the viscosity of gases, and has shewn that there is a considerable

deo-ree of correspondence between the two sets of numbers.

The "molecular volume" of a substance here spoken of is the volume in

cubic centimetres of as much of the substance in the liquid state as contains

as many molecules as one gramme of hydrogen. Hence if po denote the density

of hydrogen, and b the molecular volume of a substance, the actual coefficient

of condensation is

e' = p„b (10).

These "molecular volumes" of liquids are estimated at the boiling-points of

the liquids, a very arbitrary condition, for this depends on the pressure, and

there is no reason in the nature of things for fixing on 760 mm. B. as a

standard pressure merely because it roughly represents the ordinary pressure

of our atmosphere. What would be better, if it were not impossible to obtain

it, would be the volume at -273"C. and oo B.

But the volume relations of potassium with its oxide and its hydrated

oxide as described by Faraday seem to indicate that we have a good deal yet

to learn about the volumes of atoms.

* Annalen d. Cftemie u. Fkarmacie v. Snpp. bd. 2, Heft (1867).
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If, however, for our immediate purpose, we assume the smallest molecular

volume of oxygen given by Kopp as derived from a comparison of the volume

of tin with that of its oxide and put

b(0 = 16) = 27,

we find for the diameters of the molecules

—

Table IV.

Hydrogen . . . . 5-8 tenth-metres.

Oxygen .... 76
Carbonic Oxide . . 8-3

Carbonic Acid ... 9*3

The mass of a molecule of hydrogen on this assumption is

4-6 X 10"'' gramme.

The number of molecules in a cubic centimetre of any gas at O'C. and

760 mm. B. is

iV= 19x10".

Hence the side of a cube which, on an average, would contain one molecule

would be

iV"* = 37 tenth-metres.



[From Nature, Vol viii.]

LX. On the Final State of a System of Molecules in motion subject to forces

of any kind.

Let perfectly elastic molecviies of different kinds be in motion witHn a

vessel with perfectly elastic sides, and let each kind of molecules be acted on

by forces which have a potential, the form of which may be different for

different kinds of molecules.

Let X, y, z be the co-ordinates of a molecule, M, and ^, t), i the com-

ponents of its velocity, and let it be required to determine the number of

molecules of a given kind which, on an average, have their co-ordinates between

X and x + dx, y and y + dy, z and z + dz, and also their component velocities

between ^ and i+d^, rj and Tj + dr), and ^ and C+ dC- This number must

depend on the co-ordinates and the components of velocities and on the Umits

of these quantities. We may therefore write it

dN=f{x, y, z, t 7j, dxdydzd^drjdC (l).

We shall begin by investigating the manner in which this quantity depends

on the components of velocity, before we proceed to determine in what way it

depends on the co-ordinates.

If we distinguish by suffixes the quantities corresponding to different kinds

of molecules, the whole number of molecules of the first and second kind within

a given space which have velocities within given limits may be written

f(L v., Q di,. dr^,. dC. = n, (2),

and f(L 1^, Q d^,. dri,. di, = n, (3).

The number of pairs which can be formed by taking one molecule of each

kind is n,. 7i„
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Let a pair of molecules encounter each other, and after the encounter let

their component velocities be ^/, t;/, t,( and f/, -q^, U. The nature of the

encounter is completely defined when we know ^^-^^, rji-Vi, 4-^i the velocity

of the second molecule relative to the first before the encounter, and x^-x„

y.-y^, z^-z, the position of the centre of the second molecule relative to the

first at the instant of the encounter. When these quantities are given, ^/-^/i

7),' -7),' and C,'-Ci, the components of the relative velocity after the encounter,

are determinable.

Hence putting a, y8. y for these relative velocities, and a, h, c for the

relative positions, we find for the number of molecules of the first kind having

velocities between the limits |, and ^, + d^, &c., which encounter molecules of

the second kind having velocities between the limits £, and ^, + d^, &c., in such

a way that the relative velocities lie between a and a + da, &c., and the relative

positions between a and a+ da, &c.

/ {L V. Q d^d-qdC.f, {L V. 9 d^dyjdC. 4> (ahcaM dadbdcdadfidy...{A),

and after the encounter the velocity of M, will be between the limits ^,' and

^/ + d^, &c. and that of M^ between the limits ^/ and ^/ + d^, &c.

The differences of the limits of velocity are equal for both kinds of mole-

cules, and both before and after the encounter.

When the state of motion of the system is in its permanent condition,

as many pairs of molecules change their velocities from Fj, F, to F/, F/ as

from F/, F/ to F„ Fj, and the circumstances of the encounter in the one case

are precisely similar to those in the second; Hence, omitting for the sake of

brevity the quantities cZ^, &c., and
<f>,

which are of the same value in the two

cases, we find

/ (L V. QML V. Q=m:^ v:, u)fM, v:^ 40 (s),

writing log/(|, 7j, C) =F{MV\ I, m, n) (6),

where I, m, n are the direction-cosines of the velocity, F, of the molecule M.

Taking the logarithm of both sides of equation (5),

F, (M, VX'm.n,) -f F, (M, Vfyi^n,) = F, (if, V,%'mX') + ^2 (^.F,%'7«) ... (7).

The only necessary relation between the variables before and after the

encounter is

M,V,' + M,V,' = M,V,'' + M,V:' (8).
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If the right-hand side of the equations (7) and (8) are constant, the left-

hand sides will also be constant ; and since l^, m„ n, are independent of l„ m^, n,

we must have

F, =AM,V: and F, = A3I,V,' (9),

where ^ is a quantity independent of the components of velocity, or

/(^„^.,Q = C,e^''"-' (10),

/,(^,.^.« = C,e-^'^.' (11).

This result as to the distribution of the velocities of the molecules at a

given place is independent of the action of finite forces on the molecules during

their encounter, for such forces do not afiect the velocities during the infinitely

short time of the encounter.

We may therefore write equation (1)

dN^Ce^''^^^'>'^^d^d-qdt,dxdydz (12).

where C is a function of x, y, z which may be difierent for different kinds

of molecules, while A is the same for every kind of molecule, though it may,

for aught we know as yet, vary from one place to another.

Let us now suppose that the kind of molecules under consideration are

acted on by a force whose potential is r//. The variations of x, y, z arising from

the motion of the molecules during a time Zt are

hx==^%t. hj = r)ht, Sz = C^t (13).

and those of ^, -q, ^ in the same time due to the action of the force, are

'^=-Pj'-'^--p'-'^--'l'^ (1^)-

If we make c = logC (15),

dN

The variation of this quantity due to the variations Sx„ 8y„ Bz^, S^i, Btj^, S^„ is

....(17).
4>4^^S^'-^^^^(4'-/4^^3^'

+if(f+V-.C)(f^5^+/^+C^^)3.

VOL. II. 45
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Since the number of the molecules does not vary during their motion, this

quantity is zero, whatever the values of $, t], C- Hence we have in virtue of the

last term
dA ^ dA ^ dA ^ , ,

3j=°' Tr'- &=° ^''^'

or A is constant throughout the whole region traversed by the molecules.

Next, comparing the first and second terms, we find

c = AM{2xfj + B) (19).

We thus obtain as the complete form of dN
dN, = e^''^^^^'^'>^'^^^''-'*^^'^^^dxdydzdid7]dC (20),

when A is an absolute constant, the same for every kind of molecule in the

vessel, but B^ belongs to the first kind only. To determine these constants,

we must integrate this quantity with respect to the six variables, and equate

the result to the number of molecules of the first kind. We must then, by

integrating dN,^M,{i,' + rj^- + ^^' + 2xjj,) determine the whole energy of the system,

and equate it to the original energy. We shall thus obtain a sufficient number
of equations to determine the constant A, common to all the molecules, and

B„ B^, &c. those belonging to each kind.

The quantity A is essentially negative. Its value determines that of the

mean kinetic energy of all the molecules in a given place, which is —%-j, and

therefore, according to the kinetic theory, it also determines the temperature

of the medium at that place. Hence, since A^, in the permanent state of the

system, is the same for every part of the system, it follows that the tempera-

ture is everywhere the same, whatever forces act upon the molecules.

The number of molecules of the first kind in the element dxdydz,

i
The effect of the force whose potential is i/zj is therefore to cause the

molecules of the first kind to accumulate in greater numbers in those parts of

the vessel towards which the force acts, and the distribution of each different

kind of molecules in the vessel is determined by the forces which act on them

in the same way as if no other molecules were present. This agrees with

Dalton's doctrine of the distribution of mixed gases.

(

-^\ e^""^^'^^^^^^ dxdydz (21).





'a/la^a^a^.
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[From Nature, Vol. viii.]

LXI. Faraday.

[Michael Faraday, bom September 22, 1791, died August 25, 1867.]

With this number of Nature we present to our subscribers the first of

what we hope will be a long series of Portraits of Eminent Men of Science.

This first portrait is one of Faraday, engraved on steel, by Jeens, from a

photograph by "Watkins. Those who had the happiness of knowing Faraday

best will best appreciate the artist's skill—he has indeed surpassed himself, for

the engraving is more life-like than the photograph. We could ill spare such

a memorial of such a man, one in which all the beautiful simplicity of his

life beams upon us. There is no posturing here 1

There is no need that we should accompany the portrait with a memoir

of Faraday. Bence Jones, Tyndall, and Gladstone have already lovingly told the

story of the grand and simple life which has shed and will long continue to

shed such lustre on English Science, and their books have carried the story

home to millions; nor is there any need that we should state why we have

chosen to commence our series with Faraday; everybody will acknowledge the

justice of our choice.

But there is great need just now that some of the lessons to be learnt

from Faraday's life should be insisted upon, and we regard it as a fortunate

circumstance that we have thus the opportunity of insisting upon them while

our Scientific Congress is in session, and before the echoes of the Address of

the President of the British Association for the Advancement of Science have

died away.

In the first place, then, we regard Faraday at once as the most useful

and the most noble type of a scientific man. The nation is bigger and stronger

in that Faraday has lived, and the nation would be bigger and stronger still

were there more Faradays among us now. Professor Williamson, in his admirable

45—2
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address, acknowledges that the present time is " momentous." In truth the

question of the present condition of Science and the ways of improving it, is

occupying men's minds more than it has ever done before ; and it is now
conceded on all sides that this is a national question, and not only so, but

one of fundamental importance. Now what is the present condition of English

Science ? It is simply this, that while the numbers of our professors and their

emoluments are increasing, while the number of students is increasing, while

practical instruction is being introduced and text-books multiplied, while the

number and calibre of popular lecturers and popular writers in Science is

increasing, original research, the fountain-head of a nation's wealth, is decreasing.

Now a scientific man is useful as such to a nation according to the amount

of new knowledge with which he endows that nation. This is the test which

the nation, as a whole, applies, and Faraday's national reputation rests on it.

Let the nation know then that the real difficulty at present is this ; we want

more Faradays ; in other words more men working at new knowledge.

It is refreshing to see this want so clearly stated in the Presidential

Address

:

"The first thing wanted for the work of advancing science is a supply of

well-qualified workers. The second thing is to place and keep them under the

conditions most favourable to their efficient activity. The most suitable men

must be found while still young, and trained to the work. Now I know only

one really effectual way of finding the youths who are best, endowed by nature

for the purpose ; and that is to systematise and develop the natural conditions

which accidentally concur in particular cases, and enable youths to rise from

the crowd.

" Investigators, once found, ought to be placed in the circumstances most

favourable to their efficient activity.

" The first and most fundamental condition for this is, that their desire for

the acquisition of knowledge be kept alive and fostered. They must not merely

retain the hold which they have acquired on the general body of their science

;

they ought to strengthen and extend that hold, by acquiring a more complete

and accurate knowledge of its doctrines and methods ; in a word, they ought

to be more thorough students than during their state of preliminary training.

"They must be able to live by their work, without diverting any of their

energies to other pursuits ; and they must feel security against want, in the

event of illness or in their old age.
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" They must be supplied with intelligent and trained assistants to aid in

the conduct of their researches, and whatever buildings, apparatus, and materials

may be required for conducting those researches effectively.

" The desired system must therefore provide arrangements favourable to the

maintenance and development of the true student-spirit in investigators, while

providing them with permanent means of subsistence, suflBcient to enable them

to feel secure and tranqud in working at science alone, yet not sufficient to

neutralise their motives for exertion ; and at the same time it must give them

all external aids, in proportion to their wants and powers of making good use

of them."

Whether the scheme proposed by Dr Williamson to bring such a state of

things about will have the full success he anticipates is a matter of second-

rate importance ; what is of importance is, that the need of some scheme is

now fully recognised.

So far the remarks we have made have been suggested by Faraday's

usefulness. It is to be hoped that the nobleness of his simple, undramatic life,

will live as long in men's memories as the discoveries which have immortalised

his name. Here was no hunger after popular applause, no jealousy of other

men's work, no swerving from the well-loved, self-imposed task of "working,

finishing, publishing."

" The simplicity of his heart, his candour, his ardent love of the truth, his

fellow-interest in all the successes, and ingenuous admiration of all the discoveries

of others, his natural modesty in regard to what he himself discovered, his

noble soul—independent and bold—all these combined, gave an incomparable

charm to the features of the illustrious physicist."

Such was his portrait as sketched by Dumas, a man cast in the same

mould. All will recognise its truth. Can men of science find a nobler exemplar

on which to fashion their own life ? Nay, if it were more widely followed than

it is, should we not hear less of men falling away from the "brilliant promise"

of their youth, tempted by "fees," or the "applications of Science," or the

advantages attendant upon a popular exposition of other men's work ? Should

we not hear a little less frequently than we do that research is a sham, and

that all attempts to aid it savour of jobbery ?

Lastly we may consider Faraday's place in the general history of Science

;

this is far from easy. Our minds are still too much occupied with the memory
of the outward form and expression of his scientific work to be able to compare
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him aright with the other great men among whom we shall have to place

him.

Every great man of the first rank is unique. Each has his own office and

his own place in the historic procession of the sages. That office did not exist

even in the imagination, till he came to fill it, and none can succeed to his

place when he has passed away. Others may gain distinction by adapting the

exposition of science to the varying language of each generation of students, but

their true function is not so much didactic as paedagogic—not to teach the use

of phrases which enable us to persuade ourselves that we understand a science,

but to bring the student into living contact with the two main sources of

mental growth, the fathers of the sciences, for whose personal influence over

the opening mind there is no substitute, and the material things to which

their labours first gave a meaning.

Faraday is, and must always remain, the father of that enlarged science of

electro-magnetism which takes in at one view, all the phenomena which former

inquirers had studied separately, besides those which Faraday himself discovered

by following the guidance of those convictions, which he had already obtained,

of the unity of the whole science.

Before him came the discovery of most of the fundamental phenomena, the

electric and magnetic attractions and repulsions, the electric current and its

effects. Then came Cavendish, Coulomb, and Poisson, who by following the

path pointed out by Newton, and making the forces which act between bodies

the principal object of their study, founded the mathematical theories of electric

and magnetic forces. Then Orsted discovered the cardinal fact of electro-magnetic

force, and Ampere investigated the mathematical laws of the mechanical action

between electric currents.

Thus the field of electro-magnetic Science was already very large when

Faraday first entered upon his public career. It was so large that to take in

at one view all its departments required a stretch of thought for which a

special preparation was necessary. Accordingly, we find Faraday endeavouring

in the first place to obtain, from each of the known sources of electric action,

all the phenomena which any one of them was able to exhibit. Having thus

established the unity of nature of all electric manifestations, his next aim was

to form a conception of electrification, or electric action, which would embrace

them all. For this purpose it was necessary that he should begin by getting

rid of those parasitical ideas, which are so apt to cling to every scientific term,
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and to invest it with a luxuriant crop of connotative meanings flourishing at

the expense of the meaning which the word was intended to denote. He
therefore endeavoured to strip all such terms as " electric fluid," " current," and

"attraction" of every meaning except that which is warranted by the phenomena

themselves, and to invent new terms, such as " elect^-olysis," "electrode," "di-

electric," which suggest no other meaning than that assigned to them by their

definitions.

He thus undertook no less a task than the investigation of the facts, the

ideas, and the scientific terms of electro-magnetism, and the result was the

remodelling of the whole according to an entirely new method.

That old and popular phrase, "electric fluid," which is now, we trust,

banished for ever into the region of newspaper paragraphs, had done what it

could to keep men's minds fixed upon those particular parts of bodies where

the "fluid" was supposed to exist.

Faraday, on the other hand, by inventing the word "dielectric," has

encouraged us to examine all that is going on in the air or other medium

between the electrified bodies.

It is needless to multiply instances of this kind. The terms, field of force,

lines of force, induction, &c., are sufficient to recall them. They all illustrate

the general principles of the growth of science, in the particular form of which

Faraday is the exponent.

We have, first, the careful observation of selected phenomena, then the

examination of the received ideas, and the formation, when necessary, of new

ideas ; and, lastly, the invention of scientific terms adapted for the discussion

of the phenomena in the light of the new ideas.

The high place which we assign to Faraday in electro-magnetic science may

appear to some inconsistent with the fact that electro-magnetic science is an

exact science, and that in some of its branches it had already assumed a

mathematical form before the time of Faraday, whereas Faraday was not a

professed mathematician, and in his writings we find none of those integrations

of difierential equations which are supposed to be of the very essence of an

exact science. Open Poisson and Ampdre, who went before him, or Weber and

Neumann, who came after him, and you will find their pages full of symbols,

not one of which Faraday would have understood. It is admitted that Faraday

made some great discoveries, but if we put these aside, how can we rank his

scientific method so high without disparaging the mathematics of these eminent men ?
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It Is true that no one can essentially cultivate any exact science without

understanding the mathematics of that science. But we are not to suppose that

the calculations and equations which mathematicians find so useful constitute

the whole of mathematics. The calculus is but a part of mathematics.

The geometry of position is an example of a mathematical science established

without the aid of a single calculation. Now Faraday's lines of force occupy

the same position in electro-magnetic science that pencils of lines do in the

geometry of position. They furnish a method of building up an exact mental

image of the thing we are reasoning about. The way in which Faraday made

use of his idea of lines of force in co-ordinating the phenomena of magneto-

electric induction* shews him to have been in reality a mathematician of a

very high order—one from whom the mathematicians of the future may derive

valuable and fertile methods.

For the advance of the exact sciences depends upon the discovery and

development of appropriate and exact ideas, by means of which we may form

a mental representation of the facts, sufficiently general, on the one hand, to

stand for any particular case, and sufficiently exact, on the other, to warrant

the deductions we may draw from them by the application of mathematical

reasoning.

From the straight Hne of Euclid to the lines of force of Faraday this has

been the character of the ideas by which science has been advanced, and by

the free use of dynamical as well as geometrical ideas we may hope for a

further advance. The use of mathematical calculations is to compare the results

of the application of these ideas with our measurements of the quantities

concerned in our experiments. Electrical science is now in the stage in which

such measurements and calculations are of the greatest importance.

We are probably ignorant even of the name of the science which will be

developed out of the materials we are now collecting, when the great philosopher

next after Faraday makes his appearance.

To estimate the intensity of Faraday's scientific power, we cannot do better than read the first

and second series of his Researches and compare them, first, with the statements in Bence Jones's Life

of Faraday, which tells tis the tales of the first discovery of the facts, and of the final publication

of the results, and second, with the whole course of electro-magnetic science since, which has added

no new idea to those set forth, but has only verified the truth and scientific value of every one of

them.



[From Nature, Vol. viil.]

LXII. Molecules^'.

An atom is a body which cannot be cut in two. A molecule is the

smallest possible portion of a particular substance. No one has ever seen or

handled a single molecule. Molecular science, therefore, is one of those branches

of study which deal with things invisible and imperceptible by our senses, and

which cannot be subjected to direct experiment.

The mind of man has perplexed itself with many hard questions. Is

space infinite, and if so in what sense ? Is the material world infinite in

extent, and are all places within that extent equally full of matter? Do atoms

exist, or is matter infinitely divisible?

The discussion of questions of this kind has been going on ever since men

began to reason, and to each of us, as soon as we obtain the use of our

faculties, the same old questions arise as fresh as ever. They form as essential

a part of the science of the nineteenth century of our era, as of that of the

fifth century before it.

We do not know much about the science organisation of Thrace twenty-

two centuries ago, or uf the machinery then employed for difiusing an interest

in physical research. There were men, however, in those days, who devoted

their lives to the pursuit of knowledge with an ardour worthy of the most

distinguished members of the British Association ; and the lectures in which

Democritus explained the atomic theory to his fellow-citizens of Abdera realised,

not in golden opinions only, but in golden talents, a sum hardly equalled even

in America.

To another very eminent philosopher, Anaxagoras, best known to the world

as the teacher of Socrates, we are indebted for the most important service to

* A Lecture delivered before the British Association at Bradford.
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the atomic theory, which, after its statement by Democritus, remained to be

done. Anaxagoras, in fact, stated a theory which so exactly contradicts the

atomic theory of Democritus that the truth or falsehood of the one theory

implies the falsehood or truth of the other. The question of the existence or

non-existence of atoms cannot be preseufed to us this evening with greater

clearness than in the alternative theories of these two philosophers.

Take any portion of matter, say a drop of water, and observe its properties.

Like every other portion of matter we have ever seen, it is divisible. Divide

it in two, each portion appears to retain all the properties of the original di'op,

and among others that of being divisible. The parts are similar to the whole

in every respect except in absolute size.

Now go on repeating the process of division till the separate portions of

water are so small that we can no longer perceive or handle them. Still we

have no doubt that the sub-division might be carried further, if our senses

were more acute and our instruments more delicate. Thus far all are agreed,

but now the question arises, Can this sub-division be repeated for ever ?

According to Democritus and the atomic school, we must answer in the

negative. After a certain number of sub-divisions, the drop would be divided

into a number of parts each of which is incapable of further sub-division. We
should thus, in imagination, arrive at the atom, which, as its name literally

signifies, cannot be cut in two. This is the atomic doctrine of Democritus,

Epicurus, and Lucretius, and, I may add, of your lecturer.

According to Anaxagoras, on the other hand, the parts into which the drop

is divided are in all respects similar to the whole drop, the mere size of a

body counting for nothing as regards the nature of its substance. Hence if

the whole drop is divisible, so are its parts down to the minutest sub-divisions,

and that without end.

The essence of the doctrine of Anaxagoras is that parts of a body are

in all respects similar to the whole. It was, therefore, called the doctrine

of Homoiomereia. Anaxagoras did not of course assert this of the parts of

organised bodies such as men and animals, but he maintained that those inor-

ganic substances which appear to us homogeneous are really so, and that the

universal experience of mankind testifies that every material body, without

exception, is divisible.

The doctrine of atoms and that of homogeneity are thus in direct con-

tradiction.
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But we must now go on to molecules. Molecule Is a modern word. It does

not occur in Johnson's Dictionary. The ideas it embodies are those belonging

to modern chemistry.

A drop of water, to return to our former example, may be divided into

a certain number, and no more, of portions similar to each other. Each of

these the modern chemist calls a molecule of water. But it is by no means

an atom, for it contains two different substances, oxygen and hydrogen, and by

a certain process the molecule may be actually divided into two parts, one

consisting of oxygen and the other of hydrogen. According to the received

doctrine, in each molecule of wat«r there are two molecules of hydrogen and

one of oxygen. Whether these are or are not ultimate atoms I shall not

attempt to decide.

We now see what a molecule is, as distinguished from an atom.

A molecule of a substance is a small body such that if, on the one hand, u

number of similar molecules were assembled together they would form a mass

of that substance, while on the other hand, if any portion of this molecule

were removed, it would no longer be able, along with an assemblage of othei-

molecules similarly treated, to make up a mass of the original substance.

Every substance, simple or compound, has its own molecule. If this molecule

be divided, its parts are molecules of a different substance or substances from

that of which the whole is a molecule. An atom, if there is such a thing,

must be a molecule of an elementary substance. Since, therefore, every molecule

is not an atom, but every atom is a molecule, I shall use the word molecule

as the more general term.

I have no intention of taking up your time by expounding the doctrines

of modern chemistry with respect to the molecules of different substances. It

is not the special but the universal interest of molecular science which encourages

me to address you. It is not because we happen to be chemists or physicists

or specialists of any kind that we are attracted towards this centre of all

material existence, but because we all belong to a race endowed with faculties

which urge us on to search deep and ever deeper into the nature of things.

We find that now, as in the days of the earliest physical speculations.

all physical researches appear to converge towards the same point, and every

inquirer, as he looks forward into the dim region towards which the path of

discovery is leading him, sees, each according to his sight, the vision of the

same Quest.
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One may see the atom as a material point, invested and surrounded by-

potential forces. Another sees no garment of force, but only the bare and

utter hardness of mere impenetrability.

But though many a speculator, as he has seen the vision recede before

him into the innermost sanctuary of the inconceivably little, has had to confess

that the quest was not for him, and though philosophers in every age have

been exhorting each other to direct their minds to some more useful and

attainable aim, each generation, from the earliest dawn of science to the present

time, has contributed a due proportion of its ablest intellects to the quest of

the ultimate atom.

Our business this evening is to describe some researches in molecular

science, and in particular to place before you any definite information which

has been obtained respecting the molecules themselves. The old atomic theory,

as described by Lucretius and revived in modern times, asserts that the molecules

of all bodies are in motion, even when the body itself appears to be at rest.

These motions of molecules are in the case of solid bodies confined within so

narrow a range that even with our best microscopes we cannot detect that they

alter their places at all. In liquids and gases, however, the molecules are not

confined within any definite limits, but work their way through the whole mass,

even when that mass is not disturbed by any visible motion.

This process of diffusion, as it is called, which goes on in gases and Hquids

and even in some solids, can be subjected to experiment, and forms one of the

most convincing proofs of the motion of molecules.

Now the recent progress of molecular science began with the study of the

mechanical efi'ect of the impact of these moving molecules when they strike

against any solid body. Of course these flying molecules must beat against what-

ever is placed among them, and the constant succession of these strokes is, according

to our theory, the sole cause of what is called the pressure of air and other gases.

This appears to have been first suspected by Daniel BernoulH, but he had not

the means which we now have of verifying the theory. The same theory was

afterwards brought forward independently by Lesage, of Geneva, who, however,

devoted most of his labour to the explanation of gravitation by the impact of

atoms. Then Herapath, in his Mathematical Physics^ published in 1847, made a

much more extensive application of the theory to gases, and Dr Joule, whose

absence from our meeting we must all regret, calculated the actual velocity of

the molecules of hydrogen.
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The further development of the theory is generally supposed to have

begun with a paper by Kronig, which does not, however, so far as I can see,

contain any improvement on what had gone before. It seems, however, to have

drawn the attention of Professor Clausius to the subject, and to him we owe

a very large part of what has been since accomplished.

We all know that air or any other gas placed in a vessel presses against

the sides of the vessel, and against the surface of any body placed within it.

On the kinetic theory this pressure is entirely due to the molecules striking

against these surfaces, and thereby communicating to them a series of impulses

which follow each other in such rapid succession that they produce an effect

which cannot be distinguished from that of a continuous pressure.

If the velocity of the molecules is given, and the number varied, then since

each molecule, on an average, strikes the sides of the vessel the same number

of times, and with an impulse of the same magnitude, each will contribute an

equal share to the whole pressure. The pressure in a vessel of given size is

therefore proportional to the number of molecules in it, that is to the quantity

of gas in it.

This is the complete dynamical explanation of the fact discovered by Robert

Boyle, that the pressure of air is proportional to its density. It shews also

that of different portions of gas forced into a vessel, each produces its own

part of the pressure independently of the rest, and this vhether these portions

be of the same gas or not.

Let us next suppose that the velocity of the molecules is increased. Each

molecule will now strike the sides of the vessel a greater number of times in

a second, but, besides this, the impulse of each blow will be increased in the

same proportion, so that the part of the pressure due to each molecule

will vary as the square of the velocity. Now the increase of velocity cor-

responds, on our theory, to a rise of temperature, and in this w^ay we can

explain the effect of warming the gas, and also the law discovered by Charles

that the proportional expansion of all gases between given temperatures is the

same.

The dynamical theory also tells us what will happen if molecules of different

masses are allowed to knock about together. The greater masses will go slower

than the smaller ones, so that, on an average, every molecule, great or small

will have the same energy of motion.

The proof of this dynamical theorem, in which I claim the priority, has
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recently been greatly developed and improved by Dr Ludwig Boltzmann. The

most important consequence which flows from it is that a cubic centimetre of

every gas at standard temperature and pressure contains the same number of

molecules. This is the dynamical explanation of Gay Lussac's law of the

equivalent volumes of gases. But we must now descend to particulars, and

calculate the actual velocity of a molecule of hydrogen.

A cubic centimetre of hydrogen, at the temperature of melting ice, and at

a pressure of one atmosphere, weighs 0-00008954 grammes. We have to find

at what rate this small mass must move (whether -altogether or in separate

molecules makes no difference) so as to produce the observed pressure on the

sides of the cubic centimetre. This is the calculation which was first made by

Dr Joule, and the result is 1,859 metres per second. This is what we are

accustomed to call a great velocity. It is greater than any velocity obtained

in artillery practice. The velocity of other gases is less, as you will see by

the table, but in all cases it is very great as compared with that of bullets.

"We have now to conceive the molecules of the air in this hall flying about

in all directions, at a rate of about seventeen miles in a minute.

If all these molecules were flying in the same direction, they would con-

stitute a wind blowing at the rate of seventeen miles a minute, and the only

wind which approaches this velocity is that which proceeds from the mouth of

a cannon. How, then, are you and I able to stand here 1 Only because the

molecules happen to be flying in difierent directions, so that those which strike

against our backs enable us to support the storm which is beating against our

faces. Indeed, if this molecular bombardment were to cease, even for an instant,

our veins would swell, our breath would leave us, and we should, literally,

expire. But it is not only against us or against the walls of the hall that

the molecules are striking. Consider the immense number of them, and the

fact that they are flying in every possible direction, and you will see that

they cannot avoid striking each other. Every time that two molecules come

into collision, the paths of both are changed, and they go off in new directions.

Thus each molecule is continually getting its course altered, so that in spite

of its great velocity it may be a long time before it reaches any great distance

from the point at which it set out.

I have here a bottle containing ammonia. Ammonia is a gas which you

can recognise by its smell. Its molecules have a velocity of six hundred metres

per second, so that if their course had not been interrupted by striking against
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the molecules of air in the hall, everyone in the most distant gallery would

have smelt ammonia before I was able to pronounce the name of the gas. But

instead of this, each molecule of ammonia is so jostled about by the mole-

cules of air, that it is sometimes going one way and sometimes another, and

like a hare which is always doubling, though it goes a great pace, it makes

very little progress. Nevertheless, the smell of ammonia is now beginning to

be perceptible at some distance from the bottle. The gas does diffuse itself

through the air, though the process is a slow one, and if we could close up

every opening of this hall so as to make it air-tight, and leave everything to

itself for some weeks, the ammonia would become uniformly mixed through every

part of the air in the hall.

This property of gases, that they diffuse through each other, was first

remarked by Priestley. Dalton shewed that it takes place quite independently

of any chemical action between the inter-diffusing gases. Graham, whose

researches were especially directed towards those pheDomena which seem to

throw light on molecular motions, made a careful study of diffusion, and obtained

the first results from which the rate of diffusion can be calculated.

Still more recently the rates of diffusion of gases into each other have

been measured with great precision by Professor Loschmidt of Vienna.

He placed the two gases in two similar vertical tubes, the lighter gas being

placed above the heavier, so as to avoid the formation of currents. He then

opened a sliding valve, so as to make the two tubes into one, and after leaving

the gases to themselves for an hour or so, he shut the valve, and determined

how much of each gas had diffused into the other.

As most gases are invisible, I shall exhibit gaseous diffusion to you by

means of two gases, ammonia and hydrochloric acid, which, when they meet,

form a solid product. The ammonia, being the lighter gas, is placed above the

hydrochloric acid, with a stratum of air between, but you will soon see that

the gases can diffuse through this stratum of air, and produce a cloud of white

smoke when they meet. During the whole of this process no currents or any

other visible motion can be detected. Eveiy part of the vessel appears as calm

as a jar of undisturbed air.

But, according to our theory, the same kind of motion is going on in calm

air as in the inter-diffusing gases, the only difference being that we can trace

the molecules from one place to another more easily when they are of a different

nature from those through which they are diffusing.
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If we wish to form a mental representation of what is going on among

the molecules in calm air, we cannot do better than observe a swarm of bees,

when every individual bee is flying furiously, first in one direction and then

in another, while the swarm, as a whole, either remains at rest, or sails slowly

through the air.

In certain seasons, swarms of bees are apt to fly off" to a great distance,

and the owners, in order to identify their property when they find them on

other people's ground, sometimes throw handfulls of flour at the swarm. Now
let us suppose that the flour thrown at the flying swarm has whitened those

bees only which happened to be in the lower half of the swarm, leaving those

in the upper half free from flour.

If the bees still go on flying hither and thither in an irregular manner,

the floury bees will be found in continually increasing proportions in the upper

part of the swarm, till they have become equally diffused through every part

of it. But the reason of this diffusion is not because the bees were marked

with flour, but because they are flying about. The only effect of the marking

is to enable us to identify certain bees.

We have no means of marking a select number of molecules of air, so

as to trace them after they have become diffused among others, but we may

communicate to them some property by which we may obtain evidence of their

diffusion.

For instance, if a horizontal stratum of air is moving horizontally, molecules

diffusing out of this stratum into those above and below will carry their

horizontal motion with them, and so tend to communicate motion to the

neighbouring strata, while molecules diffusing out of the neighbouring strata

into the moving one will tend to bring it to rest. The action between the

strata is somewhat like that of two rough surf^-ces, one of which shdes over

the other, rubbing on it. Friction is the name given to this action between

solid bodies; in the case of fluids it is called internal friction, or viscosity.

It is, in fact, only another kind of diffusion—a lateral diffusion of momentum,

and its amount can be calculated from data derived from observations of the

first kind of diffusion, that of matter. The comparative values of the viscosity

of different gases were determined by Graham in his researches on the tran-

spiration of gases through long narrow tubes, and their absolute values have

been deduced from experiments on the oscillation of discs by Oscar Meyer and

myself
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Another way of tracing the diffusion of molecules through calm air is to

heat the upper stratum of the air in a vessel, and to observe the rate at

which this heat is communicated to the lower strata. This, in fact, is a third

kind of diffusion—that of energy, and the rate at which it must take place

was calculated from data derived from experiments on viscosity before any direct

experiments on the conduction of heat had been made. Professor Stefan, of

Vienna, has recently, by a very delicate method, succeeded in determining the

conductivity of air, and he finds it, as he tells us, in striking agreement with

the value predicted by the theory.

All these three kinds of diffusion-^the diffusion of matter, of momentum,

and of energy—are carried on by the motion of the molecules. The greater

the velocity of the molecules and the further they travel before their paths are

altered by collision with other molecules, the more rapid will be the diffusion.

Now we know already the velocity of the molecules, and therefore, by experiments

on diffusion, we can determine how far, on an average, a molecule travels without

striking another. Professor Clausius, of Bonn, who first gave us precise ideas

about the motion of agitation of molecules, calls this distance the mean path

of a molecule. I have calculated, from Professor Loschmidt's diffnsion experi-

ments, the mean path of the molecules of four well-known gases. The average

distance travelled by a molecule between one collision and another is given in

the table. It is a very small distance, quite imperceptible to us even with

our best microscopes. Roughly speaking, it is about the tenth part of the

length of a wave of light, which you know is a very small quantity. Of
course the time spent on so short a path by such swift molecules must be

very small. I have calculated the number of collisions which each must undergo

in a second. They are given in the table and are reckoned by thousands of mil-

lions. No wonder that the travelling power of the swiftest molecule is but small,

when its course is completely changed thousands of millions of times In a second.

The three kinds of diffusion, also take place in liquids, but the relation

between the rates at which they take place is not so simple as in the case

of gases. The dynamical theory of liquids is not so well understood as that

of gases, but the principal difference between a gas and a liquid seems to be

that in a gas each molecule spends the greater part of its time In describing

its free path, and is for a very small portion of Its time engaged in encounters

with other molecules, whereas, in a liquid, the molecule has hardly any free

path, and is always in a state of close encounter with other molecules.

VOL. n. 47
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Hence in a liquid the diffusion of motion from one molecule to another

takes place much more rapidly than the diffusion of the molecules themselves,

for the same reason that it is more expeditious in a dense crowd to pass on

a letter from hand to hand than to give it to a special messenger to work

his way through the crowd. I have here a jar, the lower part of which contains

a solution of copper sulphate, while the upper part contains pure water. It

has been standing here since Friday, and you see how little progress the blue

liquid has made in diffusing itself through, the water above. The rate of

diffusion of a solution of sugar has been carefully observed by Voit. Comparing

his results with those of Loschmidt on gases, we find that about as much

diffusion takes place in a second in gases as requires a day in liquids.

The rate of diffusion of momentum is also slower in liquids than in gases,

but by no means in the same proportion. The same amount of motion takes

about ten times as long to subside in water as in air, as you will see by what

takes place when I stir these two jars, one containing water and the other air.

There is still less difference between the rates at which a rise of temperature

is propagated through a liquid and through a gas.

In solids the molecules are still in motion, but their motions are confined

within very narrow limits. Hence the diffusion of matter does not take place

in solid bodies, though that of motion and heat takes place very freely.

Nevertheless, certain liquids can diffuse through colloid solids, such as jelly and

gum, and hydrogen can make its way through iron and palladium.

We have no time to do more than mention that most wonderful molecular

motion which is called electrolysis. Here is an electric current passing through

acidulated water, and causing oxygen to appear at one electrode and hydrogen

at the other. In the space between, the water is perfectly calm ; and yet two

opposite currents of oxygen and of hydrogen must be passing through it. The

physical theory of this process has been studied by Clausius, who has given

reasons for asserting that in ordinary water the molecules are not only moving,

but every now and then striking each other with such violence that the oxygen

and hydrogen of the molecules part company, and dance about through the

crowd, seeking partners which have become dissociated in the same way. In

ordinary water these exchanges produce, on the whole, no observable effect; but

no sooner does the electromotive force begin to act than it exerts its guiding

influence on the unattached molecules, and bends the course of each toward its

proper electrode, till the moment when, meeting with an unappropriated molecule
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of the opposite kind, it enters again into a more or less permanent union with

it till it is again dissociated by another shock. Electrolysis, therefore, is a

kind of diffusion assisted by electromotive force.

Another branch of molecular science is that which relates to the exchange

of molecules between a liquid and a gas. It includes the theory of evaporation

and condensation, in which the gas in question is the vapour of the liquid, and

also the theory of the absorption of a gas by a liquid of a different substance.

The researches of Dr Andrews on the relations between the liquid and the

gaseous state have shewn us that though the statements in our elementary

text-books may be so neatly expressed as to appear almost self-evident, their

true interpretation may involve some principle so profound that, till the right

man has laid hold of it, no one ever suspects that any thing is left to be

discovered.

These, then, are some of the fields from which the data of molecular

science are gathered. We may divide the ultimate results into three ranks,

according to the completeness of our knowledge of them.

To the first rank belong the relative masses of the molecules of different

gases, and their velocities in metres per second. These data are obtained from

experiments on the pressure and density of gases, and are known to a high

degree of precision.

In the second rank we must place the relative size of the molecules of

different gases, the length of their mean paths, and the number of collisions

in a second. These quantities are deduced from experiments on the three

kinds of diffusion. Their received values must be regarded as rough approxi-

mations till the methods of experimenting are greatly improved.

There is another set of quantities which we must place in the third rank,

because our knowledge of them is neither precise, as in the first rank, nor

approximate, as in the second, but is only as yet of the nature of a probable

conjecture. These are :—The absolute mass of a molecule, its absolute diameter,

and the number of molecules in a cubic centimetre. We know the relative

masses of different molecules with great accuracy, and we know their relative

diameters approximately. From these we can deduce the relative densities of

the molecules themselves. So far we are on firm ground.

The great resistance of liquids to compression makes it probable that their

molecules must be at about the same distance from each other as that at which

two molecules of the same substance in the gaseous form act on each other

47—2
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during an -encounter. This conjecture has been put to the test by Lorenz Meyer,

who has compared the densities of different hquids with the calculated relative

densities of the molecules of their vapours, and has found a remarkable cor-

respondence between them.

Now Loschmidt has deduced from the dynamical theory the following

remarkable proportion :—As the volume of a gas is to the combined volume of

all the molecules contained in it, so is the mean path of a molecule to one-

eighth of the diameter of a molecule.

Assuming that the volume of the substance, when reduced to the liquid

form, is not much greater than the combined volume of the molecules, we obtain

from this proportion the diameter of a molecule. In this way Loschmidt, in

1865, made the first estimate of the diameter of a molecule. Independently

of him and of each other, Mr Stoney in 1868, and Sir W. Thomson in 1870,

published results of a similar kind, those of Thomson being deduced not only

in this way, but from considerations derived from the thickness of soap-bubbles,

and from the electric properties of metals.

According to the Table, which I have calculated from Loschmidt's data,

the size of the molecules of hydrogen is such that about two millions of them

in a row would occupy a millimetre, and a million million million million of

them would weigh between four and five grammes.

In a cubic centimetre of any gas at standard pressure and temperature

there are about nineteen million million million molecules. All these numbers

of the thii'd rank are, I need not tell you, to be regarded as at present

conjectural. In order to warrant us in putting any confidence in numbers

obtained in this way, we should have to compare together a greater number

of independent data than we have as yet obtained, and to shew that they

lead to consistent results.

Thus far we have been considering molecular science as an inquiry into

natural phenomena. But though the professed aim of all scientific work is to

unravel the secrets of nature, it has another efiect, not less valuable, on the

mind of the worker. It leaves him in possession of methods which nothing

but scientific work could have led him to invent; and it places him in a

position from which many regions of nature, besides that which he has been

studying, appear under a new aspect.

The study of molecules has developed a method of its own, and it has

also opened up new views of nature.
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When Lucretius wishes us to form a mental representation of the motion

of atoms, he tells us to look at a sunbeam shining through a darkened rooni

(the same instrument of research by which Dr Tyndall makes visible to us the

dust we breathe), and to observe the motes which chase each other- in all

directions through it. Tliis motion of the visible motes, he tells us, is but a

result of the far more complicated motion of the invisible atoms which knock

the motes about. In his dream of nature, as Tennyson tells us, he

" Saw the flaring atom-streams

And torrents of her myriad universe,

Ruining along the illimitable inane,

Fly on to clash together again, and make

Another and another frame of things

For ever."

And it is no wonder that he should have attempted to burst the bonds of

Fate by making his atoms deviate from their courses at quite uncertain times

and places, thus attributing to them a kind of irrational free will, which on

his materialistic theory is the only explanation of that power of voluntary

action of which we ourselves are conscious.

As long as we have to deal with only two molecules, and have all the

data given us, we can calculate the result of their encounter; but when we

have to deal with millions of molecules, each of which has millions of encounters

in a second, the complexity of the problem seems to shut out all hope of a

legitimate solution.

The modern atomists have therefore adopted a method which is, I believe,

new in the department of mathematical physics, though it has long been in

use in the section of Statistics. When the working members of Section F get

hold of a report of the Census, or any other document containing the numerical

data of Economic and Social Science, they begin by distributing the whole

population into groups, according to age, income-tax, education, religious belief,

or criminal convictions. The number of individuals is far too great to allow of

their tracing the history of each separately, so that, in order to reduce their

labour within human limits, they concentrate their attention on a small number

of artificial groups. The vaiying number of individuals in each group, and not

the varying state of each individual, is the primary datum from which they work.

This, of course, is not the only method of studying human nature. We
may observe the conduct of individual men and compare it with that conduct
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which their previous character and their present circumstances, according to the

best existing theory, would lead us to expect. Those who practise this method

endeavour to improve their knowledge of the elements of human nature in much

the same way as an astronomer corrects the elements of a planet by comparing

its actual position with that deduced from the received elements. The study

of human nature by parents and schoolmasters, by historians and statesmen, is

therefore to be distinguished from that carried on by registrars and tabulators,

and by those statesmen who put their faith in figures. The one may be called

the historical, and the other the statistical method.

The equations of dynamics completely express the laws of the historical

method as applied to matter, but the application of these equations impHes a

perfect knowledge of all the data. But the smallest portion of matter which

we can subject to experiment consists of millions of molecules, not one of which

ever becomes individuaUy sensible to us. We cannot, therefore, ascertain the

actual motion of any one of these molecules; so that we are obliged to abandon

the strict historical method, and to adopt the statistical method of dealmg with

large groups of molecules.

The data of the statistical method as applied to molecular science are the

sums of large numbers of molecular quantities. In studying the relations between

quantities of this kind, we meet with a new kind of regularity, the regularity

of averao-es, which we can depend upon quite sufficiently' for all practical

purposes,°but which can make no claim to that character of absolute precision

which belongs to the laws of abstract dynamics.

Thus molecular science teaches us that our experiments can never give us

anything more than statistical information, and that no law deduced from them

can pretend to absolute precision. But when we pass from the contemplation

of our experiments to that of the molecules themselves, we leave the world ol

chance and change, and enter a region where everything is certam and im-

mutable. . , 1 • 1 •

The molecules are conformed to a constant type with a precision which is

not to be found in the sensible properties of the bodies which they constitute.

In the first place, the mass of each individual molecule, and all its other

properties, are absolutely unalterable. In the second place, the properties of

all molecules of the same kind are absolutely identical.

Let us consider the properties of two kinds of molecules, those of oxygen

and those of hydrogen.
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We can procure specimens of oxygen from very different sources—from the

air, from water, from rocks of every geological epoch. The history of these

specimens has been very different, and if, during thousands of years, difference

of circumstances could produce difference of properties, these specimens of oxygen

would shew it.

In like manner we may procure hydrogen from water, from coal, or, as

Graham did, from meteoric iron. Take two litres of any specimen of hydrogen,

it will combine with exactly one litre of any specimen of oxygen, and will

form exactly two litres of the vapour of water.

Now if, during the whole previous history of either specimen, whether

imprisoned in the rocks, flowing in the sea, or careering through unknown

regions with the meteorites, any modification of the molecules had taken place,

these relations would no longer be preserved.

But we have another and an entirely different method of comparing the

properties of molecules. The molecule, though indestructible, is not a hard rigid

body, but is capable of internal movements, and when these are excited, it

emits rays, the wave-length of which is a measure of the time of vibration

of the molecule.

By means of the spectroscope the wave-lengths of different kinds of light

may be compared to within one ten-thousandth part. In this way it has been

ascertained, not only that molecules taken from every specimen of hydrogen in

our laboratories have the same set of periods of vibration, but that light, having

the same set of periods of vibration, is emitted from the sun and from the

fixed stars.

We are thus assured that molecules of the same nature as those of our

hydrogen exist in those distant regions, or at least did exist when the light

by which we see them was emitted.

From a comparison of the dimensions of the buildings of the Egyptians

with those of the Greeks, it appears that they have a common measure. Hence,

even if no ancient author had recorded the fact that the two nations employed

the same cubit as a standard of length, we might prove it from the buildings

themselves. We should also be justified in asserting that at some time or other

a material standard of length must have been carried from one country to the

other, or that both countries had obtained their standards from a common source.

But in the heavens we discover by their light, and by .their light alone,

stars so distant from each other that no material thing can ever have passed
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from one to another; and yet this light, which is to us the sole evidence of

the existence of these distant worlds, tells us also that each of them is built

up of molecules of the same kinds as those which we find on earth. A

molecule of hydrogen, for example, whether in Sirius or in Arcturus, executes

its vibrations in precisely the same time.

Each molecule, therefore, throughout the universe, bears impressed on it the

stamp of a metric system as distinctly as does the metre of the Archives at

Paris, or the double royal cubit of the Temple of Karnac.

No theory of evolution can be formed to account for the similarity of

molecules, for evolution necessarily implies continuous change, and the molecule

is incapable of growth or decay, of generation or destruction.

None of the processes of Nature, since the time when Nature began, have

produced the sHghtest difference in the properties of any molecule. We are

therefore unable to ascribe either the existence of the molecules or the identity

of their properties to the operation of any of the causes which we call natural.

On the other hand, the exact equality of each molecule to all others of

the same kind gives it, as Sir John Herschel has well said, the essential

character of a manufactured article, and precludes the idea of its being eternal

and self-existent.

Thus we have been led, along a strictly scientific path, very near to the

point at which Science must stop. Not that Science is debarred from^ studying

the internal mechanism of a molecule which she cannot take to pieces, any

more than from investigating an organism which she cannot put together. But

in tracing back the history of matter Science is arrested when she assures

herself, o°n the one hand, that the molecule has been made, and on the other,

that it has not been made by any of the processes we call natural.

Science is incompetent to reason upon the creation of matter itself out of

nothing. We have reached the utmost limit of our thinking faculties when we

have admitted that because matter cannot be eternal and self-existent it must

have been created.

It is only when we contemplate, not matter in itself, but the form m

which it actually exists, that our mind finds something on which it can lay

hold.
. .

That matter, as such, should have certain fundamental properties—that it

should exist in space and be capable of motion, that its motion should be

persistent, and so on, are truths which may, for anythmg we know, be of
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the kind which metaphysicians CiiU necessary. We may use our knowledge of

such truths for purposes of deduction, but we have no data for speculating as

to their origin.

But that there should be exactly so much matter and no more in every

molecule of hydrogen is a fact of a very different order. We have here a

particular distribution of matter—a collocation—to use the expression of Dr

Chalmers, of things which we have no difficulty in imagining to have been

arranged otherwise.

The form and dimensions of the orbits of the planets, for instance, are not

determined by any law of nature, but depend upon a particular collocation of

matter. The same is the case with respect to the size of the earth, from

which the standard of what is called the metrical system has been derived.

But these astronomical and terrestrial magnitudes are far inferior in scientific

importance to that most fundamental of all standards which forms the base

of the molecular system. Natural causes, as we know, are at work, which

tend to modify, if they do not at length destroy, all the arrangements and

dimensions of the earth and the whole solar system. But though in the course

of ages catastrophes have occurred and may yet occur in the heavens, though

ancient systems may be dissolved and new systems evolved out of their ruins,

the molecules out of which these systems are built—the foundation stones of

the material universe—remain unbroken and unworn.

They continue this day as they were created—perfect in number and

measure and weight, and from the ineffaceable characters impressed on them

we may learn that those aspirations after accuracy in measurement, truth in

statement, and justice in action, which we reckon among our noblest attributes

as men, are ours because they are' essential constituents of the image of Him

who in the beginning created, not only the heaven and the earth, but the

materials of which heaven aid earth consist.

VOL. n. ^^
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[From the Proceedings of the Royal Society, No. 148, 1873.]

LXIII. On Double Refraction in a Viscous Fluid in Motion.

According to Poisson's* theory of the internal friction of fluids, a viscous

fluid behaves as an elastic solid would do if it were periodically liquefied for an

instant and solidified again, so that at each fresh start it becomes for the

moment like an elastic solid free frdin strain. The state of strain of certain

transparent bodies may be investigated by means of their action on polarized

light. This action was observed by Brewster, and was shewn by Fresnel to be

an instance of double refraction.

In 1866 I made some attempts to ascertain whether the state of strain in

a viscous fluid in motion could be detected by its action on polarized light. I

had a cylindrical box with a glass bottom. Within this box a solid cyUnder

could be made to rotate. The fluid to be examined was placed in the annular

space between this cylinder and the sides of the box. Polarized hght was

thrown ap through the fluid parallel to the axis, and the inner cylinder was

then made to rotate. I was unable to obtain any result with solution of gum or

sirup of sugar, though I observed an efiect on polarized light when I compressed

some Canada balsam which had become very thick and almost solid in a bottle.

It is easy, however, to observe the efiect in Canada balsam, which is so

fluid that it very rapidly assumes a level surface after being disturbed. Put

some Canada balsam in a wide-mouthed square bottle; let light, polarized in a

vertical plane, be transmitted through the fluid; observe the light through a.

Nicol's prism, and turn the prism so as to cut ofi" the light; insert a spatula

in the Canada balsam, in a vertical plane passing through the eye. Whenever

the spatula is moved up or down in the fluid, the light reappears on both

sides of the spatula; this continues only so long as the spatula is in motion.

As soon as the motion stops, the light disappears, and that so quickly that I

have hitherto been unable to determine the rate of relaxation of that state of

strain which the light indicates.

If the motion of the spatula in its own plane, instead of being in the plane

* Journal de VEcole Polytechnique, tome xiii. cah. xx. (1329).
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of polarization, is inclined 45* to it, no effect is observed, shewing that the axes

of strain are inclined 45" to the plane of shearing, as indicated by the theory.

I am not aware that this method of rendering visible the state of strain

of a viscous fluid has been hitherto employed ; but it appears capable of furnishing

important information as to the nature of viscosity in different substances.

Among transparent solids there is considerable diversity in their action on

polarized light. If a small portion is cut from a piece of unannealed glass at a

place where the strain is uniform, the effect on polarized light vanishes as soon

as the glass is relieved from the stress caused by the unequal contraction of

the parts surrounding it.

But if a plate of gelatine is allowed to dry under longitudinal tension, a

small piece cut out of it exhibits the same effect on light as it did before,

shewing that a state of strain can exist without the action of stress. A film of

gutta percha which has been stretched in one direction has a similar action on

light. If a circular piece is cut out of such a stretched film and warmed, it

contracts in the direction in which the stretching took place.

The body of a sea-nettle has all the appearance of a transparent jeUy ; and

at one time I thought that the spontaneous contractions of the living animal

might be rendered visible by means of polarized light transmitted through its body.

But I found that even a very considerable pressure applied to the sides of the

sea-nettle produced no effect on polarized light, and I thus found,- what I might

have learned by dissection, that the sea-nettle is not a true jelly, but consists

of cells filled with fluid.

On the other hand, the crystalline lens of the eye, as Brewster obsei-ved,

has a strong action on polarized light when strained either by external pressure

or by the unequal contraction of its parts as it becomes dry.

I have enumerated these instances of the application of polaiized light to

the study of the structure of solid bodies as suggestions with respect to the

application of the same method to liquids so as to determine whether a given

liquid differs from a solid in having a veiy small "rigidity," or in having a

small "time of relaxation"'", or in both ways. Those which, like Canada balsam, act

strongly on polarized light, have probably a small " rigidity," but a sensible " time

of relaxation." Those which do not shew this action are probably much more

"rio-id," and owe their fluidity to the smallness of their "time of relaxation."

* The " time of relaxation " of a substance strained in a given manner is the time required

for the complete relaxation of the strain, supposing the rate of relaxation to remain the same as

at the beginning of this time.



[From tlic Proceedings of the London Mathematical Society, Vol. vi.]

LXIV. On Hamilton's Characteristic Function for a Narrow Beam of Light.

[Read Janv/iry 8th, 1874.]

Hamilton's characteristic function V is an expression for the time of pro-

pagation of light from the point whose co-ordinates are x.^, y,, z^ to the point

whose co-ordinates are x.^, y.,, z.^. It is a function of these six co-ordinates of

the two points. The axes to which the co-ordinates are referred may be

different for the two points.

In isotropic media the differential equation of V may be written

idv\ [dVv fdvy , ,..

where /a is the slowness of propagation at a point in the medium whose co-

ordinates are x, y, z, and is a function of these co-ordinates. If the time of

propagation through the unit of length in vacuum be taken as the unit of

time, then /x is the index of refraction of the medium.

The form of the equation in doubly refracting media, as given by Hamilton,

is not required for our present purpose.

Let OPQR be the path of a ray of light. Let the part OP be in a homo-

geneous medium whose index of refraction is /Xj, and

let QR be in a homogeneous medium whose index ,
°

, n'

of refraction is /x„. Between P and Q the ray may o f^ Icl \r,

pass through any combination of media, singly or

doubly refracting.

Let us consider the characteristic function from a point near to OP in the

first medium to a point near to QR in the second.
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Let the position of the first point be referred to rectangular axes, the

origin of which is at P, and the axis of Zj drawn in the direction PO. The

axes of x^ and y^ may be turned at pleasure round that of Zj into the position

most suitable for our calculations.

Let the position of the second point be referred to Q as origin, to QR
as axis of Zj, and to axes of x^ .and y, the position of which is of course,

independent of that chosen for x^, y^.

Let the ray from the first point C/ {x^, y^, Zj) to the second point R (x^, y^, Zj)

pass through P'(^i, r}^, 0), and Q (^^, rj^, 0).

We have then Vo-R'=V(yp'+Vp^Q+VQ>R

Here F^^^ = /..(/P- = /x, J{x,-$,y+{y,-r),y + z,^

and Fq,^ = 11,0'E' = ,1, J{x, - Q-^ 4- (y, - v^Y + 2/ •

Also

(2).

•(3).

(4).

dV .dV dV tPFdV

d'V _ A-V^,i:,d'V ^'F cPF

F,.^=F-,,+f.^+,.^_ + f,^ + ,.g^^ + if.'^^,

+i,v.
.(5).

.. d'V . d'V
,

. d'V
,

d'V

+ terms involving higher powers and products of i„ r)„ i„ r).

Writing, for the sake of brevity, single symbols for the differential coeflBcients,

we obtain for the value of Fq.^ up to the terms of the second degree inclusive

+ Fp,+/i,+9','?.+/=f.+S','?.+4<».f,'+«.f,'?, + i''.V
(6).

This is the value of Vo'iy+ Vjy^+ Vq^j^,, supposing the course of the ray to be

broken at P' and Q' in an arbitrary manner.
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For the actual course of the ray the value of V^'r- must be stationary as

regards variations of i„ rj„ $,. -q,. Hence, differentiating with respect to these

variables, we obtain the four equations

",+^)f,+ <-\Vi + pii + '111

-f-^-

+ i-q,

+ ST),

+ a, +7U.+ cry, =/^. r"/

y-.
c.£ +U>.+ 7U...= F.T-^^

in

Since OPQR is a ray of the system, the co-ordinates x„ y^; ^„ 17,; ^,, -q,;

x,, y,, vanish together. Hence / = ^i=/j = i/.,
= 0, and if we write A for the deter-

minant

^1 +9 c. P

c, b, +^ r

r a. + '- c,
'

z..

c, h,-\-
/i2

(8).

Then
u, / dA , c?A\,,u, / (7A rfA\i

Substituting in (6), we obtain

(9).

0):
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where ^'
z, z,'A da,'

haMilton's chakactekistic function

dA ^ /Ai' dA
«i _fti i^i' c?^

di
2Zi'A c^Ci

'

Zi'A c/6i

/^,/^2 a=-

j^dA
zJa da,

'

fjL^fij dA

2Zi22A ds
'

2z.^Adc,' ^' z, ziAdb,j

.(11).

This is the most general form of Hamilton's characteristic function for a pair

of points, each of which is near the principal ray. It is a homogeneous

function of the second degree in x,, y,, x,, y„, the coefficients of which are

functions of z^ and z^.

By turning the axes of x, and y, about Zj, and those of x.^ and y, about z^,

we may get rid of two of the ten terms, and so reduce the expression to

eight.

We may, for example, get rid of c, and Cj, and so of Si and g^; but since,

in the theory of pencils having two focal lines, terms may enter which must

be added to 61 and 62, this transformation is not of much use.

It is better to begin by getting rid of g and r, by turning x, and y,

round Zj, through an angle 0,, such that

|tan2^i =
'pr+ ^5

and also turning x, and y^ round z^, through an angle Q^, such that

'pq + TS

(12),

i tan 2^2 = ,(13).

For these new axes the values of q and r are reduced to zero.

As an instance of the use of the characteristic function, let us find the

fdrm of the emergent pencil when that of the incident pencil is given.

The general form of the characteristic function of a pencil, whose axis is the

axis of z, is

af xy y""

Fi = Jr+/x z
2^ 2(7 ^B,

(14),
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as in the Proceedings of the London Mathematical Society/, Vol. iv., p. 337 (1873);

where A, B, C are lines from which, by the construction there given, a and h,

the co-ordinates of the focal lines, and
<f),

the angle which the line a makes

with the plane xz, may be deduced.

The quantities o,, &c., which occur as the coefficients of the characteristic

function, are the reciprocals of lines.

Let

also let

a, = a, +

a„ = a.. +

aj3r

i- A=^'+i;-
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The conditions of conjugate pencils may therefore be written, either

yA=^iPq-yi(ps+qr) + (h'r's I (20),

/3A = IB.q'-2y^qs + a,s^
J

or in a form derived from this by exchanging the suffixes
i
and j.

If the axes of co-ordinates are turned so that q and r vanish,

A=BA-cho^-^y^r.ps-i3Ap"+p's' (21),

and 0,81 =Ap^
"I

yA=-%ps\ (22).

If we write a, = X,p, ^,= Y^s, y, = Z,'Jps\ ,^ .

(h = X,p, A=Y^, y^= Zjps]

then X,, Fi, Z^ will be inverse to X^^ Y^^ Zj, and will satisfy the equations

z,z, + r,r,=i, x,z+z,F,=oJ ^ ^'

Fig. 3.

a s

The relations between the quantities X^, Fj, Z^ and X^, Y^, Zj, are shewn

in the annexed figure (Fig. 2).

Let AR = Xi and RB=Yi in the same straight line, and RO = Z^ perpen-

dicular to AB. With as centre and unity as radius describe a circle.

Draw CR the polar of A, and CA' the polar of B, with respect to this

circle. These lines meet BO and AO in B' and A' respectively. Join A'R
cutting RO in R. Then RR = X,. RA'=Y„ and OR = Z,.
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Since OR is measured downwards, Z, is negative in the case represented

by the figure. It is manifest that X^, F,, and Z, may be found from X^, 5",,

Zj, by the same process.

The relation between the quantities A, D, C and A'', Y, Z is shewn in

Fig. 3.

Let a be one of the first three or the last three of the ten coefficients of

the characteristic function Vp.q..

Since a is the reciprocal of a line, let BP represent the line -

.

Draw PT perpendicular to BP so that PT is to the unit line as a to jp.

Then, if P^=^, the line ATC will cut off from the line BC perpen-

dicular to BA a part BC equal to X For

p A .p p
In this way X may be found when A is known, or A when X is knowii.

The same method gives the relations between B and Y and between C and Z.

The geometrical process for finding the focal lines of the emergent pencil,

when those of the incident pencil are given, is therefore as follows :

—

From the distances a^ and h^ of the focal lines, and the angle
<f>i

between

the first of them and the plane of XjZ^, deduce, by the method given in a

former communication (Vol. iv., p. 337), A^, B^, and C^*.

From A^, B^, C^, find, by the construction of Fig. 3, A'l, Y^, and Z^.

From Ai, Fj, Z^, find, by the construction of Fig. 2, A^j, Fj, and Z„.

From X„ Y„ Z„ find A„ B,, C„

From A^, B^, C^, find a,, 62, <^j.

Thus far we have been considering the most general case of a pencil

passing through any number of media between P and Q, through surfaces of

any form, the media before incidence at P and after emergence at Q being

isotropic. When some of these media are doubly refracting, there may be two

or more emergent pencils corresponding to one incident pencil. Our investigation

is appHcable only to one of these emergent pencils at a time. Each emergent

pencil must be treated separately.

* [Page 337, Vol. u. of this Edition.]
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In certain cases of practical importance the cKaracteristic function may be

greatly simplified. For instance, when the axis ray is refracted in one plane

through the prisms of a spectroscope, the same positions of the axes of x and y

which make (2 and r vanish, also make c^ and Cj vanish. The determinant A may

now be written as the product of two factors

F=FpQ + /iiZi + /x^,

" +^ «-+ ?)-^'

If we write u,= ,'^' '
,
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either apart from the other. In the case of an optical instrument symmetrical

about its axis,

u, = i\, n, = i\, f, = g,, and f, = g, (29).

Let /,, I, be the tangents of the angles which the incident and emergent rays,

projected on the plane of xz, make with the axis of 2,

dV

^^='JV-(z,-u,){z,-u;)-fJ\
^'"^'

dz,

I

{Zr-U,)x,-f,X,
^3^^

{z,-u,){z,-u,)-fj,

If the incident ray is parallel to the axis, l^ = 0, and the equation of the

emergent ray is

(z,-u,)x,-M = (32).

The emergent ray cuts the plane of yz where

z. = u, (33).

This therefore is the position of the second principal focus.

When 2;2 = «2+/2. x, = x, (34),

or the ray is at the same distance from the plane of yz as before incidence.

This gives the position of the second priacipcd plane.

Its distance from the second principal focus is /,, which is called the

second principal focal length.

When z, = u,+f and x, = 0, l, = l (35),

or every ray which passes through this point is equally inclined to the plane

of yz before and after passing through the instrument. This point is called the

second focal centre.

The distance of the emergent ray from the axis of z, when z=z,, is given

by the equation

f^.= {z,-n;)x,-h{{z,-u,){z,-u.;)-fj;\ (36).

When (z.-u^)(z.-u,)-fj. = (37).

the term multiplied by l^ vanishes. Hence all the rays which pass through the

point {x„ z,) pass through (x„ 2,), whatever their inclination to the axis. The

points X,, 2, and a-^, 2, are therefore conjugate foci, and .r, is the image of x,.
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In this case 5 ^ 2^, ^ _/_ ,^^y

or, in words,

—

The distance of the object from the axis is to the distance of

the image from the axis as the distance of the object from the first principal

focus is to the first iwincipal focal length, or as the second principal focal

length is to tJie distance of the image from the second principal focus.

Let Ai be the distance at which an object of diameter x^ must be placed

from the eye that it may subtend an angle equal to that which it subtends

when placed at z.^, and seen through the instrument by an eye at z^,

h, = Y when x, = 0. or h,= ^' (39),

dxidxz

or K=^^{{z,-u,)(z,-u,)-fJi (40).

The quantity h^ is that which occurs in Cotes' Theorem, and to which

Smith gives the name of the " apparent distance."

Differentiating h^ with respect to z^ and z„, we find

d\ _z^ — iu d\ _Zj^ — u^ d% _1 , X

dz,~ f ' dz,~ f ' dz,dz,~f

When the focal length is infinite, the instrument becomes a telescope, and the

characteristic function is

M ^3^ ^ -1- fYl^ix ^X ^
"t" QiTYlU, IX X XF= F, + a,z. + u22;„ + i^-M \' '
,
— rira

'
-^

_{_ g, similar term in y.

Here m is the angular magnification, and u^, u^ are the co-ordinates of any

two conjugate foci. The linear magnification is -^ and the elongation is j

.



[From the Cambridge Philosophical Proceedings, VoL ii.

LXV. On the Relation of Geometrical Optics to other parts of Mathematics

and Physics.

The study of geometrical optics may be made more interesting to the

mathematician by treating the relation between the object and the image by

the methods used in the geometry of homographic figures. The whole theory

of images formed by simple or compound instruments when aberration is not

considered is thus reduced to simple proportion, and this is found very con-

venient in the practical work of arranging lenses for an experiment, in order

to produce a given effect.

As a preparation for physical optics the same elementary problems may be

treated by Hamilton's method of the Characteristic Function. This function

expresses, in terms of the co-ordinates of two points, the time taken by light

in travelling from the one to the other, or more accurately the distance through

which light would travel in a vacuum during this time, which we may call

the reduced path of the light between the two points. The relation between

this reduced path and the quantity which occurs in Cotes' celebrated but little

known theorem, is called by Dr Smith the "apparent distance." The relations

between the "apparent distance" and the positions of the foci conjugate to the

two points, the principal foci and the principal focal lengths, were explained ""
;

and the general form of the characteristic function for a narrow pencil in the

plane of xr was shewn to be

7- F-f ^r +ar -h* ^ <^' ~ ^^ "^'' + ^' ^' ~ ^^ ""' " Vf' ""^"^^ '^'''^

+ &c.,V- ^ + /^r, + /x,n-hi
(n-a,)(r,-a,)-/y:

^'^^•'

[i.e. to the Cambridge Philosophical Society at a meeting when the results of the foregoinj;

paper LXIV. were communicated.]
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where r^, r^ are measured from the instrument in opposite directions along the

axis of the pencil in the media fx,, ft^, respectively, and x„ x, are perpendicular

to the axis.

Oi, a, are the values of r„ r^, for the principal foci, and /, /,, the prin-

cipal focal lengths, and /i/Xj =/j/Xi.

If
n-ch ^ A ^ ^

the last term of V assumes the form - , and an infinite number of possible

paths exist between the points (x^, r,), and {x^, rj, which are therefore con-

jugate foci.

Differentiating V with respect to x^ and x^ we obtain

dx,dx, D ^ {rr-a,){r,-a,)-fj,

D is the quantity in Cotes' Theorems which Dr Smith calls the Apparent

Distance, or the distance at which the object must be placed that it may

subtend the same angle as when viewed through the instrument.

We have also

. dD r dD



[From Nature, Vol. X.]

LXVL Plateau on Soap-Bubbles'''.

On an Etruscan vase in the Louvre figures of children are seen blowing

bubbles. Those children probably enjoyed their occupation just as modern

children do. Our admiration of the beautifid and deUcate forms, growing and

developing themselves, the feeling tlaat it is our breath which is turning dirty

soap-suds into spheres of splendour, the fear lest by an irreverent touch we

may cause the gorgeous vision to vanish with a sputter of soapy water in our

eyes, our wistful gaze as we watch the perfected bubble when it sails away

from the pipe's mouth to join, somewhere in the sky, all the other beautiful

tilings that have vanished before it, assure us that, whatever our nominal age

may be we are of the same family as those Etruscan children.

Here, for instance, we have a book, in two volumes, octavo, written by

a distinguished man of science, and occupied for the most part with the theory

and practice of bubble-blowing. Can the poetry of bubbles survive this? Will

not the lovely visions which have floated before the eyes of untold generations

collapse at the rude touch of Science, and "yield their place to cold material

laws " ? No, we need go no further than this book and its author to learn

that the beauty and mystery of natural phenomena may make such an impres-

sion on a fresh and open mind that no physical obstacle can ever check the

course of thought and study which it has once called forth.

M. Plateau in all his researches seems to have selected for his study those

phenomena which exhibit some remarkable beauty of form or colour. In the

zeal with which he devoted himself to the investigation of the laws of the

subjective impressions of colour, he exposed his eyes to an excess of light, and

* Statique experimentale et theoriqite des Liquides soumis aux seules Forces moUculaires. Par J.

Plateau, Professeur k I'Universite de Gand, <fec. (Paris, Gauthier-Villara ; London, Triibner k Co.;

Gand et Leipzig, F. Clemm. 1873.)

VOL. n. 50
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has ever since been blind. But in spite of this great loss he has continued

for many years to carry on experiments such as those described in this book,

on the forms of liquid masses and films, which he himself can never either see

or handle, but from which he gathers the materials of science as they are

furnished to him by the hands, eyes, and minds of devoted friends.

So perfect has been the co-operation with which these experiments have

been carried out, that there is hardly a single expression in the book to

indicate that the measures which he took and the colours with which he was

charmed were observed by him, not in the ordinary wayj bat through the

mediation of other persons.

Which, now, is the more poetical idea—the Etniscan boy blowing bubbles

for himself, or the bhnd man of science teaching his friends how to blow them,

and making out by a tedious process of question and answer the conditions

of the forms and tints which he can never see 1

But we must now attempt to follow our author as he passes from phe-

nomena to ideas, from experiment to theory.

The surface which forms the boundary between a liquid and its vapour is

the seat of phenomena on the careful study of which depends much of our

future progress in the knowledge of the constitution of bodies. To take the

simplest case, that of a liquid, say water, placed in a vessel which it does not

fill, but which contains nothing else. The water lies at the bottom of the

vessel, and the upper part, originally empty, becomes rapidly
^
filled with the

vapour of water. The temperature and the pressure—the quantities on which

the thermal and statical relations of any body to external bodies depend—are

the same for the water and its vapour, but the energy of a milligramme of

the vapour greatly exceeds that of a milligramme of the water. Hence the energy

of a milligramme of water-substance is much greater when it happens to be in

the upper part of the vessel in the state of vapour, than when it happens

to be in the lower part of the vessel in the state of water.

Now we find by experiment that there is no difference between the phe-

nomena in one part of the liquid and those in another part except in a region

close to the surface and not more than a thousandth or perhaps a millionth

of a millimetre thick. In the vapour also, everything is the same, except

perhaps in a very thin stratum close to the surface. The change in the value

of the energy takes place in the very narrow region between water and vapour.

Hence the energy of a milligramme of water is the same all through the mass
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of the Trater except in a thin stratum close to the surface, where it is some-

what greater ; and the energy of a miUigramme of vapour is the same all

through the mass of vapour except close to the surface, where it is probably

less.

The whole energy of the water is therefore, in the first place, that due

to so many milligrammes of water ; but besides this, since the water close to

the surface has an excess of energy, a correction, depending on this excess,

must be added. Thus we have, besides the energy of the water reckoned per

milligramme, an additional energy to be reckoned per square millimetre of

surface.

The energy of the vapour may be calculated in the same way at so much

per milligramme, with a deduction of so much per square millimetre of surface.

The quantity of vapour, however, which lies within the region in which the

energy is beginning to change its value is so small that this deduction per

square millimetre is always much smaller than the addition which has to be

made on account of the liquid. Hence the whole energy of the system may

be divided into three parts, one proportional to the mass of liquid, one to the

mass of vapour, and the third proportional to the area of the surface which

separates the liquid from the vapour.

If the system is displaced by an external agent in such a way that the

area of the surface of the liquid is increased, the energy of the system is

increased, and the only source of this increase of energy is the work done by

the external agent. There is therefore a resistance to any motion which causes

the extension of the surface of a liquid.

On the other hand, if the liquid moves in such a way that its surface

diminishes, the energy of the system diminishes, and the diminution of energy

appears in the form of work done on the external agent which allows the

surface to diminish. Now a surface which tends to diminish in area, and which

thus tends to draw together any solid framework which forms its boundary,

is said to have surface-tension. Surface-tension is measured by the force acting

on one millimetre of the boundary edge. In the case of water at 20" C, the

tension is, according to M. Quincke, a force of 8*253 milligrammes weight per

millimetre.

M. Plateau hardly enters into the theoretical deduction of the surface-

tension from hypotheses respecting the constitution of bodies. We have there-

fore thought it desirable to point out how the fact of surface-tension may be

50—2
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deduced from the known fact that there is a difference in energy between a

liquid and its vapour, combined with the hypothesis, that as a milHgramme of

the substance passes from the state of a liquid within the liquid mass, to that

of a vapour outside it, the change of its energy takes place, not instantaneously,

but in a continuous manner.

M. van der Waals, whose academic thesis, Over de Continuiteit van den

Gas en Vloeistoftoestand*, is a most valuable contribution to molecular physics,

has attempted to calculate approximately the thickness of the stratum within

which this continuous change of energy is accomplished, and finds it for water

about 0-0000003 millimetre.

"Whatever we may think of these calculations, it is at least manifest that

the only path in which we roay hope to arrive at a knowledge of the size

of the molecules of ordinary matter is to be traced among those phenomena

which come into prominence when the dimensions of bodies are greatly reduced,

as in the superficial layer of a liquid.

But it is in the experimental investigation of the effects of surface-tension

on the form of the surface of a liquid that the vaslue of M. Plateau's book is to

be found. He uses two distinct methods. In the first he prepares a mixture

of alcohol and water which has the same density as olive oil, then introducing

some oil into the mixture and waiting till it has, by absorption of a small

portion of alcohol into itself, become accommodated to its position, he obtains a

mass of oil no longer under the action of gravity, but subject only to the

surface-tension of its boundary. Its form is therefore, when undisturbed,

spherical, but by means of rings, disks, &c., of iron, he draws out or com-

presses his mass of oil into a. number of different figures, the equilibrium and

stability of which are here investigated, both experimentally and theoretically.

The other method is the old one of blowing soap-bubbles. M. Plateau,

however, has improved the art, first by finding out the best kind of soap and

the best proportion of water, and then by mixing his soapy water with

glycerine. Bubbles formed of this liquid will last for hours, and even days.

By forming a frame of iron wire and dipping it into this liquid he forms

a film, the figure of which is that of the surface of minimum area which has

the frame for its boundary. This is the case when the air is free on both

sides of the film. If, however, the portions of air on the two sides of the film

* Leiden: A. W. Sijthoff, 1873.
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are not in continuous communication, the film is no longer the surface of absolute

minimum area, but the surface which, with the given boundary, and inclosing a

given volume, has a minimum area.

M. Plateau has gone at great length into the interesting but difficult ques-

tion of the conditions of the persistence of liquid films. He shews that the

surface of certain liquids has a species of viscosity distinct from the interior

viscosity of the mass. This surface-viscosity is very remarkable in a solution of

saponine. There can be no doubt that a property of this kind plays an impor-

tant part in determining the persistence or collapse of liquid films. M. Plateau,

however, considers that one of the agents of destruction is the surface-tension,

and that the persistence mainly depends on the degree in which the surface-

viscosity counteracts the surface-tension. It is plain, however, that it is rather

the inequality of the surface-tension than the surface-tension itself which acts as

a destroying force.

It has not yet been experimentally ascertained whether the tension varies

according to the thickness of the film. The variation of tension is certainly

insensible in those cases which have been observed.

If, as the theory seems to indicate, the tension diminishes when the thick-

ness of the film diminishes, the film must be unstable, and its actual persistence

would be unaccountable. On the other hand, the theory has not as yet been

able to account for the tension increasing as the thickness diminishes.

One of the most remarkable phenomena of liquid films is undoubtedly the

formation of the black spots, which were described in 1672 by Hooke, under

the name of holes,

Fusinieri has given a very exact account of this phenomenon as he observed

it in a vertical film protected from currents of air. As the film becomes thinner,

owing to the gradual descent of the liquid of which it is formed, certain portions

become thinner than the rest, and begin to shew the colours of thin plates.

These little spots of colour immediately begin to ascend, dragging after them

a sort of train like the tail of a tadpole. These tadpoles, as Fusinieri calls

them, soon begin to accumulate near the top of the film, and to range them-

selves in horizontal bands according to their colours, those %vhich have the

colour corresponding to the smallest thickness ascending highest.

In this w^ay the colours become arranged in horizontal bands in beautiful

gradation, exhibiting all the colours of Newton's scale. When the fmme of the

film is made to oscillate, these bands oscillate like the strata formed by a
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series of liquids of diflferent densities. This shews that the film is subject to

dynamical conditions similar to those of such a liquid system. The liquid is

subject to the condition that the volume of each portion of it is invariable,

and the motion arises from the fact that by the descent of the denser portions

(which is necessarily accompanied by the rise of the rarer portions) the gravi-

tational potential energy of the system is diminished. In the case of the film,

the condition which determines that the descent of the thicker portions shall

entail the rise of the thinner portions must be that each portion of the film

offers a special resistance to an increase or diminution of area. This resistance

probably forms a large part of the superficial viscosity investigated by M. Plateau,

which retards the motion of his magnetic needle, and evidently is far greater

than the viscosity of figure, in virtue of which the film resists a shearing motion.

The coloured bands gradually descend from the top of the film, presenting

at first a continuous gradation of colour, but soon a remarkable black, or nearly

iDlack, band begins to form at the top of the film, and gradually to extend

itself downwards. The lower boundary of this black band is sharply defined.

There is not a continuous gradation of colour according to the arrangement in

Newton's table, but the black appears in immediate contact with the white

or even the yellow of the first order, and M. Fusinieri has even observed it

in contact with bands of the third order.

Nothing can shew more distinctly that there is some remarkable change

in the physical properties of the film, when it is of a thickness somewhat greater

than that of the black portion. And in fact the black part of the film is in

many other respects different from the rest. It is easy, as Leidenfrost tells us,

to pass a solid point through the thicker part of the film, and to withdraw

it, without bursting the film, but if anything touches the black part, the film

is shattered at once. The black portion does not appear to possess the mobility

which is so apparent in the coloured parts. It behaves more like a brittle solid,

such as a Prince Rupert's drop, than a fluid. Its edges are often very irregular,

and when the curvature of the film is made to vary, the black portions some-

times seem to resist the change, so that their surface has no longer the same

continuous curvature as the rest of the bubble. We have thus numerous indi-

cations of the great assistance which molecular science is likely to derive from

the study of liquid films of extreme tenuity.

We have no time or inclination to discuss M. Plateau's work in a critical

spirit. The directions for making the experiments are very precise, and if some-
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times tliey appear tedious on account of repetitions, we must remember that it

is by words, and words alone, that the author can learn the details of the

experiment which he is performing by means of the hands of his friends, and

that the repetition of phrases must in his case take the place of the ordinary

routine of a careful experimenter. The description of the results of mathematical

investigation, which is a most diflScult but at the same time most useful species

of literary composition, is a notable feature of this book, and could hardly be

better done. The mathematical researches of Lindelof, Lamarle, Scherk, Riemann,

&c., on surfaces of minimum area, deserve to be known to others besides pro-

fessed mathematicians, and M. Plateau deserves our thanks for giving us an

intelligible account of them, and still more for shewing us how to make them

visible with his improved soap-suds.

In the speculative part of the book, where the author treats of the causes

of the phenomena, there is of course more room for improvement, as there

always must be when a physicist is pushing his way into the unknown regions

of molecular science. In such matters everything human, at least in our century,

must be very imperfect, but for the same reason any real progress, however

small, is of the greater value.



[From Nature, Vol, x.]

LXVII. Grove's " Correlation of Physical Forces'"''."

There are few instances in which anyone whose life has not been exclu-

sively scientific has made such valuable contributions to science as those of Sir

W. E. Grove. His nitric acid battery, to the invention of which he was led,

not by accident, but by a course of reasoning, which in the year 1839 was as

new as it was original, is a contribution to science the value of which is proved
by its still surviving and continuing in daily use in every laboratory as the

most powerful generator of electric currents, while hundreds of batteries invented

since that of Grove have fallen into disuse, and become extinct in the struggle

for scientific existence.

The gas battery, though not of such practical importance, is still of great

scientific interest, and the collection which we have before us of those contri-

butions to science which took the form of papers, tempts us to indulge in

speculations as to the magnitude of the results which would have accrued

to science if so powerful a mind could have been continuously directed with

undivided energy towards some of the great questions of physics.

But the main feature of the volume is that from which it takes its name,

the essay on the Correlation of Physical Forces, the views contained in which

were first advanced in a lecture at the London Institution in January 1842,

printed by the proprietors, and subsequently more fully developed in a course

of lectures in 1843, published in abstract in the Literary Gazette. This essay

has a value peculiar to itself Though it has long ago accomplished the main

point of its scientific mission to the world, it will always retain its place in

* TIte Correlation of Physical Forces. Sixth edition. With other Contributions to Science. By
the Hon. Sir W. R. Grove, M.A., F.R.S., one of the judges of the Court of Common Pleas. (London

:

Longmans, 1874.)
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the memory of the student of human thought, as one of the documents which

serve for the construction of the history of science. '

It is not by discoveries only, and the registration of them by learned

societies, that science is advanced. The true seat of science is not in the

volume of Transactions, but in the living mind, and the advancement of science

consists in the direction of men's minds into a scientific channel ; whether this

is done by the announcement of a discovery, the assertion of a paradox, the

invention of a scientific phrase, or the exposition of a system of doctrine. It

is for the historian of science to determine the magnitude and direction of the

impulse communicated by either of these means to human thought.

But what we require at any given epoch for the advancement of science

is not merely to set men thinking, but to produce a concentration of thought

in that part of the field of science which at that particular season ought to be

cultivated. In the history of science we find that effects of this kind have often

been produced by suggestive books, which put into a definite, intelligible, and

communicable form, the guiding ideas that are already working in the minds

of men of science, so as to lead them to discoveries, but which they cannot yet

shape into a definite statement.

In the first half of the present century, when what is now called the

principle of the conservation of energy was as yet unknown by name, it "flung

its vague shadow back from the depths of futurity," and those who had greater

or less understanding of the times sketched out with greater or less clearness

their view of the form into which science was shaping itself

Some of these addressed themselves to the advanced cultivators of science,

speaking, of course, in learned phraseology; but others appealed to a larger

audience, and spoke in language which they could understand. Mrs Somerville's

book on the "Connection of the Physical Sciences" was published in 1834, and

had reached its eighth edition in 1849. This fact is enough to shew that there

already existed a widespread desire to be able to form some notion of physical

science as a whole.

But when we examine her book in order to find out the nature of the

connexion of the physical sciences, we are at first tempted to suppose that it is

due to the art of the bookbinder, who has bound into one volume such a quantity

of information about each of them. What we find, in fact, is a series of expo-

sitions of diiferent sciences, but hardly a word about their connexion. The little

that is said about this connexion has reference to the mutual dependence of

vol. II. 51



402 GROVES CORRELATION OF PHYSICAL FORCES.

the different sciences on each other, a knowledge of the elements of one being

essential to the successful prosecution of another. Thus physical astronomy

requires a knowledge of dynamics, and the practical astronomer must learn a

certain amount of optics in order to understand atmospheric refraction and the

adjustment of telescopes. The sciences are also shewn to have a common method,

namely, mathematical analysis ; so that analytical methods invented for the in-

vestigation of one science are often useful in another.

The unity shadowed forth in Mrs Somerville's book is therefore a unity of

the method of science, not a unity of the processes of nature.

Sir W. Grove's essay may be fairly called a popular book, as it has reached

its sixth edition. It is, therefore, not merely a record of the speculations of

the author, but an index of the state of scientific thought among a large number

of readers. It has not the universal facility p.nd occasional felicity of exposition

which distinguish Mrs Somerville's writings. No one could use it as a text-

book of any science, or even as an aid to the cultivation of the art of scientific

conversation. The design of the book is to shew that of the various forms of

energy existing in nature, any one may be transformed into any other, the one

form appearing as the other disappears. This is what is meant in the essay

by the " correlation of the physical forces," and the whole essay is an exposition

of this fact, each of the physical forces in turn being taken as the starting-

point, and employed as the source of all the others.

We are sorry that we are not at present able to refer to the early reviews

of the essay as indicating the reception given to the doctrine by the literary

and scientific public at the time of its original publication. It has certainly

exercised a very considerable effect in moulding the mass of what is called

scientific opinion, that is to say, the influence which determines what a scientific

man shall say when he has to make a statement about a science which he does

not understand. Many things in the essay which were then considered contraiy

to scientific opinion, and were therefore objected to, have since then become

themselves part of scientific opinion, so that the objections now appear unin-

telligible to the rising generation of the scientific public.

Helmholtz's essay "On the Conservation of Force," published in 1847, un-

doubtedly masters a far greater step in science, but the immediate influence

was confined to a small number of trained men of science, and it had little

direct effect on the public mind.

The various papers of Mayer contain matter calculated to awaken an interest
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in the transformation of energy even in persons not exclusively devoted to science,

but they were long unknown in this country, and produced little direct effect,

even in Germany, at the time of their publication.

The rapid development of thennodynamics, and of other applications- of the

principle of the conservation of energy, at the beginning of the second half of

this century, belongs to a later stage of the history of science than that with

which we have to do.

To form a just estimate of the value of Sir W. Grove's work we must

regard it as the instrument by which certain scientific ideas were diffused over

a large area, in language sufficiently appropriate to prevent misapprehension, and

yet sufficiently familiar to be listened to by persons who would recoil with horror

from any statement in which literary convention is sacrificed to precision.

It is worth while, however, to take note of the progress of evolution by

which the words of ordinary language are gradually becoming differentiated and

rendered scientifically precise. The fathers of dynamical science found a number

of words in common use expressive of action and the results of action, such as

force, power, action, impulse, impetus, stress, strain, work, energy, &c. They also

had in their minds a number of ideas to be expressed, and they appropriated

these words as they best could to express these ideas. But the equivalent

words Force Vis, Kraft, came most easily to hand, so that we find them com-

pelled to carry almost all the ideas above mentioned, while the other words

which might have borne a portion of the load were long left out of scientific

language, and retained only their more or less vague meanings as ordinary words.

Thus we have the expressions Vis acceleratrix. Vis motrix, Vis viva, Vis

mortua, and even Vis inertice, in every one of which, except the second and

fourth, the word Vis is used in a sense radically different from that in which

it is used in the other expressions.

Confusion may perhaps be avoided in scientific works w^hen read by scientific

students, by means of a careful appropriation of epithets such as those which

distinguish the meanings of the word Vis, but as soon as science becomes popu-

larised, unless its nomenclature is refonned and arranged upon a better principle,

the ideas of popular science will be more confused than those of so-called popular

ignorance.

Thus the " Physical Forces," whose correlation is discussed in the essay

before us, are Motion, Heat, Electricity, Light, Magnetism, Chemical Affinity, and

"other modes of force." According to the definition of force, as it has been

51—2
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laid down during the last two centuries in treatises on dynamics, not one of

these, except perhaps chemical affinity, can be admitted as a force. According

to that definition, "force is that which produces change of motion, and is

measured by the change of motion produced."

Newton himself reminds us that force exists only so long as it acts. Its

eifects may remain, but the force itself is essentially transitive. Hence, when

we meet with such phrases as. Conservation of Force, Persistence of Force,

and the like, we must suppose the word Force to be used in a sense radically

different from that adopted by scientific men from Newton downwards. In all

these cases, and in the phrase "The Physical Forces" as applied to heat, we

are now, thanks to Dr Thomas Young, able to use the word Energy instead

of Force, for this word, according to its scientific definition as "the capacity

for performing work," is applicable to all these cases. The confusion has extended

even to the metaphorical use of the word Force. Thus, it may be a legitimate

metaphor to speak of the force of public opinion as being brought to bear on

a statesman so as to exert an overpowering pressure upon him, because here

we liave an action tending to produce motion in a particular direction ; but

when we speak of "the Queen's Forces," we use the term in a sense as

unscientific as when we speak of the Physical Forces. The author, in his con-

cluding remarks, points out the confusion of terms which embarrassed him in

his endeavours to enunciate scientific propositions, on account of the imper-

fection of scientific language. This, he tells us, " cannot be avoided without a

neology which I have not the presumption to introduce or the authority to

enforce."

Such a confession, proceeding from so great a master of the art of "putting

thino-s," is a most valuable testimony to the importance of the study and

special cultivation of scientific language; and a comparison of many passages in

the essay with the corresponding statements in more recent books of far inferior

power, will shew how much may be gained by the successful introduction of

appropriate neologies. What appeared mysterious and even paradoxical to the

giant, labouring among rough-hewn words, dwindles into a truism in the eyes

of the child, born heir to the palace of truth, for the erection of w^hich the

giant has furnished the materials.

Thus the appropriation of the word "Mass" to denote the quantity of

matter as defined by the amount of force required to produce a given accelera-

tion, has placed the students of the present day on a very different level from
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those \vho had to puzzle out the meaning of the phrase Vis inertioe by com-

bining the explanation of Vis as force, with that of inertia as laziness. In the

same- way the word " stress " as an equivalent for " action and reaction," and

as a generic name for pressure, tension, &c., will save future generations q, great

deal of trouble ; and the distinction between the possession of energy and the

act of doing work, which is now so familiar to us, would have obviated several

objections to the doctrine of the essay, which are founded on statements in

which the production of one form of energy and the maintenance of another are

treated as if they were operations of the same kind. We read at p. 1G3:

—

Thus, "a voltaic battery, decomposing water in a voltameter, while the same

current is employed at the same time to make (maintain) an electromagnet,

gives nevertheless in the voltameter an equivalent of gas, or decomposes an

equivalent of an electrolyte for each equivalent of decomposition in the battery

cells, and will give the same ratios if the electro-magnet be removed."

Here the maintenance of a magnet is a thing of a different order from

the decomposition of an electrolyte ; the first is maintenance of energy, the other

is doing work. This is well explained in the essay; but if appropriate language

had been used from the first, the objection could never have been put into form.



[From Nature, Vol. x.]

LXVIII. On the application of Kirchhoffs Rules for Electric Circuits to the

Solution of a Geometrical Problem.

The geometrical problem is as follows :—Let it be required to arrange a

system of points so that the straight lines joining them into rows and columns

shall form a network such that the sum of the squares of all these joining

lines shall be a minimum, the first and last points of the first and last row

being any four points given in space. The network may be regarded as a

kind of extensible surface, each thread of which has a tension in each segment

proportioned to the length of the segment. The problem is thus expressed as

a statical problem, but the direct solution would involve the consideration of a

large number of unknown quantities.

This number may be greatly reduced by means of the analogy between

this problem and the . electrical problem of determining the currents and po-

tentials in the case of a network of wire having square meshes, one corner of

which is kept at a unit potential, while that of the other three corners is zero.

This problem having been solved by Kirchhoffs method, the position of any

point P in the geometrical problem with reference to the given points A, B,

C, D, is by finding the values of the potentials p«, Pb, Pc Pa oi the corre-

sponding point in the electric problem when the corners a, 6, c, d respectively

are those of unit potential. The position of P is then found by supposmg

l^a, Pb, Pc, Pd placed at A, B, C, D respectively, and determining P as the

centre of gravity of the four masses.



[From Xature, Vol, x.]

LXIX. Van cler Waals on the Continuiti/ of the Gaseous and Liquid States*.

That the same substance at the same temperature and pressure can exist

in two very difterent states, as a liquid and as a gas, is a fact of the highest

scientific importance, for it is only by the careful study of the difference be-

tween these two states, the conditions of the substance passing from one to the

other, and the phenomena which occur at the surface which separates a liquid

from its vapour, that we can expect to obtain a dynamical theory of liquids.

A dynamical theory of " perfect " gases is already in existence ; that is to say,

we can explain many of the physical properties of bodies when in an extremely

rarefied state by supposing their molecules to be in rapid motion, and that

tliey act on one another only when they come very near one another. A
molecule of a gas, according to this theory, exists in two very diflferent states

during alternate intervals of time. During its encounter with another molecule,

an intense force is acting between the two molecules, and producing changes

in the motion of both. During the time of describing its free path, the mole-

cule is at such a distance from other molecules that no sensible force acts

between them, and the centre of mass of the molecule is therefore moving with

constant velocity and in a straight line.

If we define as a perfect gas a system of molecules so sparsely scattered

that the aggregate of the time which a molecule spends in its encounters with

other molecules is exceedingly small compared with the aggregate of the time

which it spends in describing its free paths, it is not difiicult to work out the

d}-'namical theory of such a system. For in this case the vast majority of tlie

molecules at any given instant are describing their free paths, and only a small

* Over de Continuiteit van den Gas en Vloeistoftoestnnd. Academisch jrroffgchrijl . Door Johannes

Diderik van der "Waals. (Leiden: A. W. Sijthoff, 1873.)
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fraction of them are in the act of encountering each other. We know that

during an encounter action and reaction are equal and opposite, and we assume,

with Clausius, that on an average of a large number of encounters the pro-

portion in which the kinetic energy of a molecule is divided between motion

of translation of its centre of mass and motions of its parts relative to this

point approaches some definite value. This amount of knowledge is by no means

sufficient as a foundation for a complete dynamical theory of what takes place

during each encounter, but it enables us to establish certain relations between

the changes of velocity of two molecules before and after their encounter.

While a molecule is describing its free path, its centre of mass is moving

with constant velocity in a straight line. The motions of parts of the molecule

relative to the centre of mass depend, when it is describing its free path, only

on the forces acting between these parts, and not on the forces acting between

them and other molecules which come into play during an encounter. Hence

the theory of the motion of a system of molecules is very much simplified if

we suppose the space within which the molecules are free to move to be so

large that the number of molecules which at any instant are in the act of

encountering other molecules is exceedingly small compared with the number of

molecules which are describing their free paths. The dynamical theory of such

a system is in complete agreement with the observed properties of gases when

in an extremely rare condition.

But if the space occupied by a given quantity of gas is diminished more

and more, the lengths of the free paths of its molecules will also be diminished,

and the number of molecules which are in the act of encounter will bear a

larger proportion to the number of those which are describing free paths, till at

length the properties of the substance will be determined far more by the

nature of the mutual action between the encountering molecules than by the

nature of the motion of a molecule when describing its free path. And we

actually find that the properties of the substance become very different after

it has reached a certain degree of condensation. In the tarefied state its pro-

perties may be defined with considerable accuracy in terms of the laws of Boyle,

Charles, Gay-Lussac, Dulong and Petit, &c., commonly called the "gaseous

laws." In the condensed state the properties of the substance are entirely

different, and no mode of stating these properties has yet been discovered

having a simplicity and a generality at all approaching to that of the "gaseous

laws." According to the dynamical theory this is to be expected, because in
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the condensed state the properties of the substance depend on the mutual

action of molecules when engaged in close encounter, and this is determined

by the particular constitution of the encountering molecules. We cannot there-

fore extend the dynamical theory from the rarer to the denser state of sub-

stances without at the same time obtaining some definite conception of the

nature of the action between molecules when they are so closely packed that

each molecule is at every instant so near to several others that forces of great

intensity are acting between them.

The experimental data for the study of the mutual action of molecules

are principally of two kinds. In the first place we have the experiments of

Regnault and others on the relation between the density, temperature, and

pressure of various gases. The field of research has been recently greatly

enlarged by Dr Andrews in his exploration of the properties of carbonic acid

at very high pressures. Experiments of this kind, combined with experiments

on specific heat, on the latent heat of expansion, or on the thermometric effect

on gases passing through porous plugs, fiirnish us with the complete theory

of the substance, so far as pure thermodynamics can carry us.

For the further study of molecular action we require experiments on the

rate of difi'usion. There are three kinds of diffusion—that of matter, that of

visible motion, and that of heat. The inter-diff'usion of gases of different kinds,

and the viscosity and thermal conductivity of a gaseous medium, pure or mixed,

enable us to estimate the amount of deviation which each molecule experiences

on account of its encounter wdth other molecules.

M. Van der Waals, in entering on this very difficult inquiry, has shewn

his appreciation of its importance in the present state of science ; many of his

investigations are conducted in an extremely original and clear manner; and

he is continually throwing out new and suggestive ideas ; so that there can be

no doubt that his name will soon be among the foremost in molecular science.

He does not, however, seem to be equally familiar, as yet, with all parts

of the subject, so that in some places, where he has borrowed results from

Clausius and others, he has applied them in a manner which appears to me

erroneous.

He begins with the very remarkable theorem of Clausius, that in stationary-

motion the mean kinetic energy of the system is equal to the mean virial.

As in this country the importance of this theorem seems hardly to be appre-

ciated, it may be as well to explain it a little more fully.

VOL. II. 52
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When the motion of a material system is such that the sum of the

moments of inertia of the system about three axes at right angles to each

other through its centre of mass does not vary by more than small quantities

from a constant value, the system is said to be in a state of stationary motion.

The motion of the solar system satisfies this condition, and so does the motion

of the molecules of a gas contained in a vessel.

The kinetic energy of a particle is half the product of its mass into the

square of its velocity, and the kinetic energy of a system is the sum of the

kinetic energy of its parts.

When an attraction or repulsion exists between two points, half the pro-

duct of this stress into the distance between the two points is called the

Virial of the stress, and is reckoned positive when the stress is an attraction,

and negative when it is a repulsion. The virial of a system is the sum of

the virial of the stresses which exist in it.

If the system is subjected to the external stress of the pressure of the

sides of a vessel in which it is contained, the amount of virial due to this

external stress is three halves of the product of the pressure into the volume

of the vessel.

The virial due to internal stresses must be added to this.

The theorem of Clausius may now be written

—

The left-hand member denotes the kinetic energy.

On the right hand, in the first term, p is the external pressure on unit

of area, and V is the volume of the vessel.

The second term represents the virial arising from the action between every

pair of particles, whether belonging to different molecules or to the same mole-

cule. B is the attraction between the particles, and r is the distance between

them. The double symbol of summation is used because every pair of points

must be taken into account, those between which there is no stress contributing,

of course, nothing to the virial.

As an example of the generality of this theorem, we may mention that

in any framed structure consisting of struts and ties, the sum of the products

of the pressure in each strut into its length, exceeds the sum of the products

of the tension of each tie into its length, by the product of the weight of

the whole structure into the height of its centre of gravity above the founda-
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tions. (See a paper on " Reciprocal Figures, &c." Trans. R. S. Edin., Vol. xxvi.

p. 14. 1870.)*

In gases the virial is very small compared with the kinetic energy. Hence,

if the kinetic energy is constant, the product of the pressure and the volume

remains constant. This is the case for a gas at constant temperature. Hence

we might be justified in conjecturing that the temperature of any one gas is

determined by the kinetic energy of unit of mass.

The theory of the exchange of the energy of agitation from one body to

another is one of the most difficult parts of molecular science. If it were

fully understood, the physical theory of temperature would be perfect. At

present we know the conditions of thermal equilibrium only in the case of

gases in which encounters take place between only a pair of molecules at once.

In this case the condition of thermal equilibrium is that the mean kinetic

energy due to the agitation of the centre of mass of a molecule is the same,

whatever be the mass of the molecule, the mean velocity being consequently

less for the more massive molecules.

With respect to substances of more complicated constitution, we know, as

yet, nothing of the physical condition on which their temperature depends,

though the researches of Boltzmann on this subject are likely to result in some

valuable discoveries.

M. Van der Waals seems, therefore, to be somewhat too hasty in assuming

that the temperature of a substance is in every case measured by the energy

of agitation of its individual molecules, though this is undoubtedly the case

with substances in the gaseous state.

Assuming, however, for the present that the temperature is measured by

the mean kinetic energy of a molecule, we obtain the means of determining the

virial by observing the deviation of the product of the pressure and volume

from the constant value given by Boyle's law.

It appears by Dr Andrews' experiments that when the volume of carbonic

acid is diminished, the temperature remaining constant, the product of the

volume and pressure at first diminishes, the rate of diminution becoming more

and more rapid as the density increases. Now, the virial depends on the

number of pairs of molecules which are at a given instant acting on one

another, and this number in unit of volume is proportional to the square of

the density. Hence the part of the pressure depending on the virial increases

*rVol. n. p. 176.1
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as the square of the density, and since, in the case of carbonic acid, it

diminishes the pressure, it must be of the positive sign, that is, it must arise

from attraction between the molecules.

But if the volume is still further diminished, at a certain point lique-

faction begins, and from this point till the gas is all liquefied no increase of

pressure takes place. As soon, however, as the whole substance is in the liquid

condition, any further diminution of volume produces a great rise of pressure, so

that the product of pressure and volume increases rapidly. This indicates negative

virial, and shews that the molecules are now acting on each other by repulsion.

This is what takes place in carbonic acid below the temperature of 30*92" C.

Above that temperature there is first a positive and then a negative virial,

but no sudden liquefaction.

Similar phenomena occur in all the liquefiable gases. In other gases we are

able to trace the existence of attractive force at ordinary pressures, though the

compression has not yet been carried so far as to shew any repulsive force.

In hydrogen the repulsive force seems to prevail even at ordinary pressures.

This gas has never been liquefied, and it is probable that it never will be

liquefied, as the attractive force is so weak.

We have thus evidence that the molecules of gases attract each other at

a certain small distance, but when they are brought still nearer they repel

each other. This is quite in accordance with Boscovich's theory of atoms as

massive centres of force, the force being a function of the distance, and

changing from attractive to repulsive, and back again several times, as the

distance diminishes. If we suppose that when the force begins to be repulsive

it increases very rapidly as the distance diminishes, so as to become enormous

if the distance is less by a very small quantity than that at which the force

first begins to be repulsive, the phenomena will be precisely the same as those

of smooth elastic spheres.

M. Van der Waals makes his molecules elastic spheres, which, when not in

contact, attract each other. His treatment of the "molecular pressure" arising

from their attraction seems ingenious, and on the whole satisfactory, though he

has not attempted a complete calculation of the attractive virial in terms of

the law of force.

His treatment of the repulsive virial, however, shews a departure from the

principles on which his investigation is founded. He considers the efiect of the

size of the molecules in diminishing the length of their "free paths," and he
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shews that this effect, in the case of very rare gases, is the same as if the

volume of the space in -which the molecules are free to move had been

diminished by four times the sum of the volumes of the molecules themselves.

He then substitutes for V, the volume of the vessel in Clausius' formula, this

volume diminished by four times the molecular volume, and thus obtains the

equation

—

[p+^^(V-h) = R{l + <.t),

a
where 2^ ^ *^® externally applied pressure, y- is the molecular pressure

arising from attraction between the molecules, which varies as the square of

the density, or inversely as the square of the volume. The first factor is thus

what he considers the total effective pressure. V is the volume of the vessel,

and b is four times the volume of the molecules. The second factor is there-

fore the " effective volume " within which the molecules are free to move.

The right-hand member expresses the kinetic energy, represented by the

absolute temperature, multiplied by a quantity, B, constant for each gas.

The results obtained by M. Van der Waals by a comparison of this equa-

tion with the determinations of Regnault and Andrew^s are very striking, and

would almost persuade us that the equation represents the true state of the

case. But though this agreement would be strong evidence in favour of the

accuracy of an empirical formula devised to represent the experimental results,

the equation of M. Van der Waals, professing as it does to be derived from

the dynamical theory, must be subjected to a much more severe criticism.

It appears to me that the equation does not agree with the theorem of

Clausius on which it is founded.

In that theorem p is the pressure of the sides of the vessel, and V is

the volume of the vessel. Neither of these quantities is subject to correction.

The assumption that the kinetic energy is determined by the temperature

is true for perfect gases, and we have no evidence that any other law holds

for gases, even near their liquefying point.

The only source of deviation from Boyle's law is therefore to be looked

for in the term ^SS (^'')» which expresses the virial. The effect of the repul-

sion of the molecules, causing them to act like elastic spheres, is therefore to

be found by calculating the virial of this repulsion.
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Neglecting the effect of attraction, I find that the effect of the impulsive

repulsion reduces the equation of Clausius to the form

—

pV= -IS (mi/) |l - 2 log . (l - 8 ^+ 17 ^ - &c.)j

,

where cr is the density of the molecules and p the mean density of the medium.

The form of this equation is quite different from that of M. Van der

Waals, though it indicates the effect of the impulsive force in increasing the

pressure. It takes no account of the attractive force, a full discussion of which

would carry us into considerable difficulties.

At a constant temperature the effect of the attractive virial is to diminish

the pressm-e by a quantity varying as the square of the density, as long as

the encounters of the molecules are, on the whole, between two at a time,

and not between three or more. The effect of the attraction in deflecting the

paths of the molecules is to make the number of molecules which at any given

instant are at distances between r and r + dr of each other greater than the

number in an equal volume at a greater distance in the proportion of the

velocities corresponding to these distances. As the temperature rises, the volume

being constant, the ratio of these velocities approaches to unity, so that the

distribution of molecules according to distance becomes more uniform, and the

virial is thus diminished.

If there is a virial arising from repulsive forces ' acting through a finite

distance, a rise of temperature will increase the amount of this kind of virial.

Hence a rise of temperature at constant volume will produce a greater

increase of pressure than that given by the law of Charles.

The isothermal lines at higher temperatures will exhibit less of the dimi-

nution of pressure due to attraction, and as the density increases will shew

more of the increase of pressure due to repulsion.

I must not, however, while taking exception to part of the work of

M. Van der Waals, forget to add that to him alone are due the suggestions

which led me to examine the theory of virial more carefully in order to explore

the continuity of the liquid and the gaseous states.

I cannot now enter into the comparison of his theoretical results with the

experiments of Andrews, but I would call attention to the' able manner in

which he expounds the theory of capillarity, and to the remarkable phenomena

of the surface-tension of gases which he tells (p. 38) has been observed by
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Bosscha in tobacco smoke. As tobacco smoke is simply ^va^m air with a slight

excess of carbonic acid carrying solid particles along with it, the change of

properties at the surface of the cloud must be very slight compared with that

at the surface where two really different gases first come together. If, there-

fore, the phenomenon observed by Bosscha is a true instance of surface-tension,

we may expect to discover much more striking phenomena at the meeting-place

of different gases, if we can make our observations before the surface of dis-

continuity has been obliterated by the inter-diffusion of the gases.



[From Cambridge Philosophical Society Proceedings, Vol. ii. 365.]

LXX. On the Centre of Motion of the Eye.

The series of positions which the eye assumes as it is rolled horizontallj

have been investigated by Bonders (Donders and Doijer, Derde Jcmrlijksch

Verslag hetr. het Nede^iandsch Gasthuis voor Ooglijders. Utrecht, 1862), and

recently by Mr J. L. Tupper (Proc. R. S., June 18, 1874). The chief difficulty

in the investigation consists in fixing the head while the eyeball moves.

The only satisfactory method of obtaining a system of co-ordinates fixed with

reference to the skull is that adopted by Helmholtz (Handbuch der Physiolo-

gischen Optik, p. 517), and described in his Croonian Lecture.

A piece of wood, part of the upper surface of which is covered with

warm sealingwax, is placed between the teeth and bitten hard till the sealing-

wax sets and forms a cast of the upper teeth. By inserting the teeth into

their proper holes in the sealingwax the piece of wood may at any time be

placed in a determinate position relatively to the skull.

By this device of Helmholtz the patient is relieved from the pressure of

screws and clamps applied to the skin of his head, and he becomes free

to move his head as he likes, provided he keeps the piece of wood between

his teeth.

If we can now adjust another piece of wood so that it shall always have

a determinate position with respect to the eyeball, we may study the motion

of the one piece of wood with respect to the other as the eye moves about.

For this purpose a small mirror is fixed to a board, and a dot is marked

on the mirror. If the eye, looking straight at the image of its own pupil

in the mirror, sees the dot in the centre of the pupil, the normal to the

mirror through the dot is the visual axis of the eye—a determinate line.

A right-angled prism is fixed to the board near the eye in such a position

that the eye sees the image of its own cornea in profile by reflexion, first
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at the prism, and then at the mirror. A vertical line is drawn with black

sealingwax on the surface of the prism next the eye, and the board is moved

towards or from the eye till this line appears as a tangent to the front of

the cornea, while the dot still is seen to cover the centre of the image of

the pupil. The only way in which the position of the board can now vary

with respect to the eye is by turning round the line of vision as an axis,

and this is prevented by the board being laid on a horizontal platform carried

by the teeth.

If now the eye is brought into two different positions and the board

moved on the platfomi, so as to be always in the same position relative to

the eye, we have to find the centre about which the board might have

turned so as to get from one position to the other.

For this purpose two holes are made in the platform, and a needle thrust

through the holes is made to prick a card fastened to the upper board. We
thus obtain two pairs of points, AB for the first position, and ab for the

second.

The ordinary rule for determining the centre of motion is to draw lines

bisecting Aa and Bb at right angles. The intersection of these is the centre

of motion. This construction fails when the centre of motion is in or near

the line AB, for then the two Unes coincide. In this case we may produce

AB and ab till they meet, and draw a line bisecting the angle externally.

This line will pass through the centre of motion as well as the other two.

and when they coincide it intersects them at right angles.

VOL. II. 53
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LXXI. 0)1 the Dynamical Evidence of the Molecular Constitution of Bodies*.

When any phenomenon can be described as an example of some general

principle which is applicable to other phenomena, that phenomenon is said to be

explained. Explanations, however, are of very various orders, according to the

degree of generality of the principle which is made use of. Thus the person

who first observed the effect of throwing water into a fire would feel a certain

amount of mental satisfaction when he found that the results were always

similar, and that they did not depend on any temporary and capricious anti-

pathy between the water and the fire. This is an explanation of the lowest

order, in which the class to which the phenomenon is referred consists of other

phenomena which can only be distinguished from it by the place and time of

their occurrence, and the principle involved is the very general one that place

and time are not among the conditions which determine natural processes. On

the other hand, when a physical phenomenon can be completely described as a

change in the configuration and motion of a material system, the dynamical

explanation of that phenomenon is said to be complete. We cannot conceive

any further explanation to be either necessary, desirable, or possible, for as soon

as we know what is meant by the words configuration, motion, mass, and force,

we see that the ideas which they represent are so elementary that they cannot

be explained by means of anything else.

The phenomena studied by chemists are, for the most part, such as have

not received a complete dynamical explanation.

Many diagrams and models of compound molecules have been constructed.

These are the records of the efibrts of chemists to imagine configurations of

material systems by the geometrical relations of which chemical phenomena may

* A lecture delivered at the Chemical Society, Feb. 18, by Prof. Clerk-Maxwell, F.R.S.
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be illustrated or explained. No chemist, however, professes to see in these

diagrams anything more than symbolic representations of the various degrees of

closeness with which the difterent components of the molecule are bound

together.

In astronomy, on the other hand, the configurations and motions of the

heavenly bodies are on such a scale that we can ascertain them by direct

observation. Newton proved that the observed motions indicate a continual

tendency of all bodies to approach each other, and the doctrine of universal

gravitation which he established not only explains the observed motions of our

system, but enables us to calculate the motions of a system in which the

astronomical elements may have any values whatever.

When w^e pass from astronomical to electrical science, we can still observe

the configuration and motion of electrified bodies, and thence, following the

strict Newtonian path, deduce the forces with which they act on each other;

but these forces are found to depend on fhe distribution of what wc call

electricity. To form what Gauss called a " construirbar Vorstellung " of the in-

visible process of electric action is the great desideratum in this part of science.

In attempting the extension of dynamical methods to the explanation of

chemical phenomena, we have to fomi an idea of the configuration and motion

of a number of material systems, each of which is so small that it cannot be

directly observed. We have, in fact, to determine, from the observed external

actions of an unseen piece of machinery, its internal construction.

The method which has been for the most part employed in conducting

such inquiries is that of forming an hypothesis, and calculating what would

happen if the hypothesis were true. If these results agree with the actual

phenomena, the hypothesis is said to be verified, so long, at least, as some one

else does not invent another hypothesis which agrees still better with the phe-

nomena.

The reason why so many of our physical theories have been built up by

the method of hypothesis is that the speculatoi-s have not been provided with

methods and terms sufficiently general to express the results of their induction

in its early stages. They w^ere thus compelled either to leave their ideas vague

and therefore useless, or to present them in a form the details of which could

be supplied only by the illegitimate use of the imagination.

In the meantime the mathematicians, guided by that instinct which teaches

them to store up for others the irrepressible secretions of their own minds,
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had developed with the utmost generality the dynamical theory of a material

system.

Of all hypotheses as to the constitution of bodies, that is surely the most

warrantable which assumes no more than that they are material systems, and

proposes to deduce from the observed phenomena just as much information about

the conditions and connections of the material system as these phenomena can

legitimately furnish.

When examples of this method of physical speculation have been properly

set forth and explained, we shall hear fewer complaints of the looseness of the

reasoning of men of science, and the method of inductive philosophy will no

longer be derided as mere guess-work.

It is only a small part of the theory of the constitution of bodies which

has as yet been reduced to the form of accurate deductions from known facts.

To conduct the operations of science in a perfectly legitimate manner, by means

of methodised experiment and strict demonstration, requires a strategic skill

which we must not look for, even among those to whom science is most in-

debted for original observations and fertile suggestions. It does not detract from

the merit of the pioneers of science that their advances, being made on unknown

ground, are often cut oflP, for a time, from that system of communications

with an established base of operations, which is the only security for any per-

manent extension of science.

In studying the constitution of bodies we are forced from the very be-

ginning to deal with particles which we cannot observe. For whatever may be

our ultimate conclusions as to molecules and atoms, we have experimental proof

that bodies may be divided into parts so small that we cannot perceive them.

Hence, if we are careful to remember that the word particle means a small

part of a body, and that it does not involve any hypothesis as to the ultimate

divisibility of matter, we may consider a body as made up of particles, and

we may also assert that in bodies or parts of bodies of measurable dimensions,

the number of particles is very great indeed.

The next thing required is a dynamical method of studying a material

system consisting of an immense number of particles, by forming an idea of their

configuration and motion, and of the forces acting on the particles, and deducing

from the dynamical theory those phenomena which, though depending on the

configuration and motion of the invisible particles, are capable of being observed

in visible portions of the system.
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The dynamical principles necessary for this study were developed by the

fathers of dynamics, from Galileo and Newton to Lagrange and Laplace ; but

the special adaptation of these principles to molecular studies has been to a

great extent the work of Prof Clausius of Bonn, who has recently laid us

under still deeper obligations by giving us, in addition to the results of his

elaborate calculations, a new dynamical idea, by the aid of which I hope we

shall be able to establish several important conclusions without much symbolical

calculation.

The equation of Clausius, to which I must now call your attention, is of

the following form :

Here p denotes the pressure of a fluid, and V the volume of the vessel

which contains it. The product pV, in the case of gases at constant tempera-

ture, remains, as Boyle's Law tells us, nearly constant for different volumes

and pressures. This member of the equation, therefore, is the product of two

quantities, each of which can be directly measured.

The other member of the equation consists of two terms, the first depending

on the motion of the particles, and the second on the forces with which they

act on each other.

The quantity T is the kinetic energy of the system, or, in other words,

that part of tke energy which is due to the motion of the parts of the

system.

The kinetic energy of a particle is half the product of its mass into the

square of its velocity, and the kinetic energy of the system is the sum of the

kinetic energy of its parts.

In the second term, r is the distance between any two particles, and /^

is the attraction between them. (If the force is a repulsion or a pressure, B
is to be reckoned negative.)

The quantity ^Rr, or half the product of the attraction into the distance

across which the attraction is exerted, is defined by Clausius as the virial of

the attraction. (In the case of pressure or repulsion, the virial is negative.)

The importance of this quantity was first pointed out by Clausius, who, by

giving it a name, has greatly facilitated the application of his method to phy-

sical exposition.

The virial of the system is the sum of the virials belonging to every pair

of particles which exist in the system. This is expressed by the double sum
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tl{\Rr), which indicates that the value of ^Rr is to be found for every pair

of particles, and the results added together.

Clausius has established this equation by a very simple mathematical pro-

cess, with which I need not trouble you, as we are not studying mathematics

to-night. We may see, however, that it indicates two causes which may affect

the pressure of the fluid on the vessel which contains it: the motion of its

particles, which tends to increase the pressure, and the attraction of its particl'es,

which tends to increase the pressure.

We may therefore attribute the pressure of a fluid either to the motion

of its particles or to a repulsion between them.

Let us test by means of this result of Clausius the theory that the pres-

sure of a gas arises entirely from the repulsion which one particle exerts on

another, these particles, in the case of gas in a fixed vessel, being really at rest.

In this case the virial must be negative, and since by Boyle's Law the

product of pressure and volume is constant, the virial also must be constant,

whatever the volume, in the same quantity of gas at constant temperature.

It follows from this that Rr, the product of the repulsion of two particles

into the distance between them, must be constant, or in other words that the

repulsion must be inversely as the distance, a law which Newton has shewn

to be inadmissible in the case of molecular forces, as it would make the action

of the distant parts of bodies greater than that of contiguous parts. In fact,

we have only to observe that if Rr is constant, the virial of every pair of

particles must be the same, so that the virial of the system must be propor-

tional to the number of pairs of particles in the system—that is, to the

square of the number of particles, or in other words to the square of the

quantity of gas in the vessel. The pressure, according to this law, would not

be the same in different vessels of gas at the same density, but would be

greater in a large vessel than in a small one, and greater in the open air than

in any ordinary vessel.

The pressure of a gas cannot therefore be explained by assuming repulsive

forces between the particles.

It must therefore depend, in whole or in part, on the motion of the particles.

If we suppose the particles not to act on each other at all, there will be

no virial, and the equation will be reduced to the fonn
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If M is the mass of the whole quantity of gas, and c is the mean square of

the velocity of a particle, we may write the equation—

•

or in words, the product of the volume and the pressure is one-third of the

mass multiplied by the mean square of the velocity. If we now assume, what

we shall afterwards prove by an independent process, that the mean square of

the velocity depends only on the temperature, this equation exactly represents

Boyle's Law.

But ue know that most ordinary gases deviate from Boyle's Law, especially

at low temperatures and great densities. Let us see whether the hypothesis

of forces between the particles, which we rejected when brought forward as the

sole cause of gaseous pressure, may not be consistent with experiment when

considered as the cause of this deviation from Boyle's Law.

When a gas is in an extremely rarefied condition, the number of particles

within a given distance of any one particle will be proportional to the density

of the gas. Hence the virial arising from the action of one particle on the

rest will vary as the density, and the whole virial in unit of volume will vary

as the square of the density.

Calling the density p, and dividing the equation by V, we get

—

where yl is a quantity which is nearly constant for small densities.

Now, the experiments of Regnault shew that in most gases, as the density

increases the pressure falls below the value calculated by Boyle's Law. Hence

the virial must be positive ; that is to say, the mutual action of the particles

must be in the main attractive, and the effect of this action in diminishing

the pressure must be at first very nearly as the square of the density.

On the other hand, when the pressure is made still greater the substance

at length reaches a state in which an enormous increase of pressure produces

but a very small increase of density. This indicates that the virial is now

negative, or, in other words, the action between the particles is now, in the

main, repulsive. We may therefore conclude that the action between two par-

ticles at any sensible distance is quite insensible. As the particles approach

each other the action first shews itself as an attraction, which reaches a maxi-

mum, then diminishes, and at length becomes a repulsion so great that no

attainable force can reduce the distance of the particles to zero.
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The relation between pressure and density arising from such an action

between the particles is of this kind.

As the density increases from zero, the pressure at first depends almost

entirely on the motion of the particles, and therefore varies almost exactly as

the pressure, according to Boyle's Law. As the density continues to increase,

the effect of the mutual attraction of the particles becomes sensible, and this

causes the rise of pressure to be less than that given by Boyle's Law. If

the temperature is low, the effect of attraction may become so large in pro-

portion to the effect of motion that the pressure, instead of always rising as

the density increases, may reach a maximum, and then begin to diminish.

At length, however, as the average distance of the particles is still further

diminished, the effect of repulsion will prevail over that of attraction, and the

pressure will increase so as not only to be greater than that given by Boyle's

Law, but so that an exceedingly small increase of density will produce an

enormous increase of pressure.

Hence the relation between pressure and volume may be represented by

the curve ABCDEFG, where the horizontal ordinate represents the volume,

and the vertical ordinate represents the pressure.

As the volume diminishes, the pressure increases up to the point C, then

diminishes to the point E, and finally increases without limit as the volume

diminishes.

We have hitherto supposed the experiment to be conducted in such a

way that the density is the same in every part of the medium. This, how-

ever, is impossible in practice, as the only condition we can impose on the

medium from without is that the whole of the medium shall be contained
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within a certain vessel. Hence, if it is possible for the medium to arrange

itself so that part has one density and part another, we cannot prevent it from

doing so.

Now the points B and F represent two states of the medium in which

the pressure is the same but the density very different. The whole of the

medium may pass from the state B to the state F, not through the inter-

mediate states CDF, but by small successive portions passing directly from the

state B to the state F. In this way the successive states of the medium as

a whole will be represented by points on the straight line BF, the point B
representing it when entirely in the rarefied state, and F representing it when

entirely condensed. This is what takes place when a gas or vapour is liquefied.

Under ordinaiy circumstances, therefore, the relation between pressure and

vokune at constant temperature is represented by the broken line ABFG. If,

however, the medium when liquefied is carefully kept from contact with vapour,

it may be preserved in the liquid condition and brought into states represented

by the portion of the curve betw^een F and F. It is also possible that methods

mav be devised whereby the vapour may be prevented from condensing, and

brought into states represented by points in BC.

The portion of the hypothetical curve from C to E represents states which

are essentially unstable, and which cannot therefore be realised.

Now let us suppose the medium to pass from B to F along the hypo-

thetical curve BCDEF in a state always homogeneous, and to return along

the straight line FB in the form of a mixture of liquid and vapour. Since

the temperature has been constant throughout, no heat can have been trans-

formed into work. Now the heat transformed into work is represented by the

excess of the area FDE over BCD. Hence the condition which determines

the maximum pressure of the vapour at given temperature is that the line

BF cuts ofi" equal areas from the curve above and below.

The higher the temperature, the greater the part of the pressure which

depends on motion, as compared with that which depends on forces between

the particles. Hence, as the temperature rises, the dip in the curve becomes

less marked, and at a certain temperature the curve, instead of dipping, merely

becomes horizontal at a certain point, and then slopes upward as before. This

point is called the critical point. It has been determined for carbonic acid

by the masterly researches of Andrews. It corresponds to a definite temperature,

pressure and density.

VOL. II. ^^
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At higher temperatures the curve slopes upwards throughout, and there is

nothing corresponding to Uquefaction in passing from the rarest to the densest

state.

The molecular theory of the continuity of the liquid and gaseous states

forms the subject of an exceedingly ingenious thesis by Mr Johannes Diderick

van der Waals'"', a graduate of Leyden. There are certain points in which I

think he has fallen into mathematical errors, and his final result is certainly

not a complete expression for the interaction of real molecules, but his attack

on this difficult question is so able and so brave, that it cannot fail to give

a notable impulse to molecular science. It has certainly directed the attention

of more than one inquker to the study of the Low-Dutch language in which

it is written.

The purely themiodynamical relations of the different states of matter do

not belong to our subject, as they are independent of particular theories about

molecules. I must not, however, omit to mention a most important American

contribution to this part of thermodynamics by Prof. Willard Gibbsf, of Yale

College, U.S., who has given us a remarkably simple and thoroughly satisfactory

method of representing the relations of the different states of matter by means

of a model. By means of this model, problems which had long resisted the

efforts of myself and others may be solved at once.

Let us now return to the case of a highly rarefied gas in which the

pressure is due entirely to the motion of its particles. It is easy to calculate

the mean square of the velocity of the particles from the equation of Clausius,

since the volume, the pressure, and the mass are all measurable quantities.

Supposing the velocity of every particle the same, the velocity of a molecule

of oxygen would be 461 metres per second, of nitrogen 492, and of hydrogen

1844, at the temperature of O'C.

The explanation of the pressure of a gas on the vessel which contains it

by the impact of its particles on the surface of the vessel has been suggested

at various times by various writers. The fact, however, that gases are not ob-

served to disseminate themselves through the atmosphere wdth velocities at all

approaching those just mentioned, remained unexplained, till Clausius, by a

* Over de continuiteit van den gas en vloeistoftoestand. (Leiden : A. W. Sijtlioff, 1873.)

t " A method of geometrical representation of the thermodynamic properties of substances by means

of surfaces." Transactions of the Connecticut Academy of Arts and Sciences, Vol. ii. Part 2.
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thorough study of the motions of an immense number of particles, developed

the methods and ideas of modern molecular science.

To him we are indebted for the conception of the mean length of the

path of a molecule of a gas between its successive encounters with other

molecules. As soon as it was seen how each molecule, after describing an

exceedingly short path, encounters another, and then describes a new path in

a quite different direction, it became evident that the rate of diffusion of gases

depends not merely on the velocity of the molecules, but on the distance they

travel between each encounter.

I shall have more to say about the special contributions of Clausius to

molecular science. The main facfjj however, is, that he opened up a new field

of mathematical physics by shewing how to deal mathematically with moving

systems of innumerable molecules.

Clausius, in his earlier investigations at least, did not attempt to determine

whether the velocities of all the molecules of the same gas are equal, or whether,

if unequal, there is any law according to which they are distributed. He

therefore, as a first hypothesis, seems to have assumed that the velocities are

equal. But it is easy to see that if encounters take place among a great

number of molecules, their velocities, even if originally equal, will become un-

equal, for, except under conditions which can be only rarely satisfied, two

molecules having equal velocities before their encounter will acquire unequal

velocities after the encounter. By distributing the molecules into groups ac-

cording to their velocities, we may substitute for the impossible task of following

every individual, molecule through all its encounters, that of registering the

increase or decrease of the number of molecules in the different groups.

By following this method, which is the only one available either experi-

mentally or mathematically, we pass from the methods of strict dynamics to

those of statistics and probability.

When an encounter takes place between two molecules, they are transferred

from one pair of groups to another, but by the time that a great many en-

counters have taken place, the number which enter each group is, on an average,

neither more nor less than the number which leave it during the same time.

When the system has reached this state, the numbers in each group must be

distributed according to some definite law.

As soon as I became acquainted with the investigations of Clausius, I

endeavoured to ascertain this law.

54—2
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The result which I published in 1860 has since been subjected to a more

strict investigation by Dr Ludwig Boltzmann, who has also applied his method

to the study of the motion of compound molecules. The mathematical investi-

gation, though, like all parts of the science of probabilities and statistics, it is

somewhat diflScult, does not appear faulty. On the physical side, however, it

leads to consequences^ some of which, being manifestly true, seem to indicate

that the hypotheses are well chosen, while others seem to be so irreconcilable

with known experimental results, that we are compelled to admit that some-

thing essential to the complete statement of the physical theory of molecular

encounters must have hitherto escaped us.

I must now attempt to give you some account of the present state of these

investigations, without, however, entering into their mathematical demonstration.

I must begin by stating the general law of the distribution of velocity

among molecules of the same kind.

If we take a fixed point in this diagram and draw from this point a line

representing in direction and magnitude the velocity of a molecule, and make

a dot at the end of the line, the position of the dot will indicate the state of

motion of the molecule.

If we do the same for all the other molecules, the diagram will be dotted

all over, the dots being more numerous in certain places than in others.

The law of distribution of the dots may be shewn to be the same as that

which prevails among errors of observation or of adjustment.

The dots in the diagram before you may be taken to represent the velocities

of molecules, the different observations of the position of the same star, or the

bullet-holes round the bull's-eye of a target, all of which are distributed in the

same manner.

The velocities of the molecules have values ranging from zero to infinity,

so that in speaking of the average velocity of the molecules we must define

what we mean.

The most useful quantity for purposes of comparison and calculation is called

the "velocity of mean square." It is that velocity whose square is the average

of the squares of the velocities of all the molecules.

This is the velocity given above as calculated from the properties of different

gases. A molecule moving with the velocity of mean square has a kinetic

energy equal to the average kinetic energy of aU the molecules in the medium,

and if a single mass equal to that of the whole quantity of gas were moving
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with this velocity, it would have the same kinetic energy as the gas actually

has, only it would be in a visible form and directly available for doing work.

If in the same vessel there are different kinds of molecules, some of greater

maas than others, it appears from this investigation that their velocities will be

so distributed that the average kinetic energy of a molecule will be the same,

whether its mass be great or small.

Diagram of Velocities.

Here we have perhaps the most important apphcation which has yet been

made of dynamical methods to chemical science. For, suppose that we have

two tmses in the same vessel. The ultimate distribution of agitation among the

molecules is such that tlie average kinetic energy of an individual molecule is

the same in either gas. This ultimate state is also, as we know, a state of

equal temperature. Hence the condition that two gases shall have the same

temperature is that the average kinetic energy of a single molecule shall be the

same in the two gases.
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Now, we have already shewn that the pressure of a gas is two-thirds of the

kinetic energy in unit of volume. Hence, if the pressure as well as the tem-

perature be the same in the two gases, the kinetic energy per unit of volume

is the same, as well as the kinetic energy per molecule. There must, therefore,

be the same number of molecules in unit of volume in the two gases.

This result coincides with the law of equivalent volumes established by Gray

Lussac. This law, however, has hitherto rested on purely chemical evidence,

the relative masses of the molecules of different substances having been deduced

from the proportions in which the substances enter into chemical combination.

It is now demonstrated on dynamical principles. The molecule is defined as

that small portion of the substance which moves as one lump during the motion

of agitation. This is a purely dynamical definition, independent of any experi-

ments on combination.

The density of a gaseous medium, at standard temperature and pressure,

is proportional to the mass of one of its molecules »as thus defined.

We have thus a safe method of estimating the relative masses of molecules

of different substances when in the gaseous state. This method is more to be

depended on than those founded on electrolysis or on specific heat, because our

knowledge of the conditions of the motion of agitation is more complete than

our knowledge of electrolysis, or of the internal motions of the constituents of

a molecule.

I must now say something about these internal motions, because the greatest

difficulty which the kinetic theory of gases has yet encountered belongs to this

part of the subject.

We have hitherto considered only the motion of the centre of mass of the

molecule. We have now to consider the motion of the constituents of the

molecule relative to the centre of mass.

If we suppose that the constituents of a molecule are atoms, and that each

atom is what is called a material point, then each atom may move in three

different and independent ways, corresponding to the three dimensions of space,

so that the number of variables required to determine the position and con-

figuration of all the atoms of the molecule is three times the number of atoms.

It is not essential, however, to the mathematical investigation to assume

that the molecule is made up of atoms. All that is assumed is that the position

and configuration of the molecule can be completely expressed by a certain

number of variables.
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Let us call this number n.

Of these variables, three are required to determine the position of the

centre of mass of the molecule, and the remaining n — 3 to determine its con-

figuration relative to its centre of mass.

To each of the n variables corresponds a different kind of motion.

The motion of translation of the centre of mass has three components.

The motions of the parts relative to the centre of mass have ^? — 3 com-

ponents.

The kinetic energy of the molecule may be regarded as made up of two

parts—that of the mass of the molecule supposed to be concentrated at its

centre of mass, and that of the motions of the parts relative to the centre

of mass. The first part is called the energy of translation, the second that of

rotation and vibration. The sum of these is the whole energy of motion of the

molecule.

The pressure of the gas depends, as we have seen, on the energy of translation

alone. The specific heat depends on the rate at which the whole energy, kinetic

and potential, increases as the temperature rises.

Clausius had long ago pointed out that the ratio of the increment of the

whole energy to that of the energy of translation may be determined if we

know by experiment the ratio of the specific heat at constant pressure to that

at constant volume.

He did not however, attempt to determine a pnori the ratio of the two

parts of the energy, though he suggested, as an extremely probable hypothesis,

that the average values of the two parts of the energy in a given substance

always adjust themselves to the same ratio. He left the numerical value of this

ratio to be determined by experiment.

In 1860 I investigated the ratio of the two parts of the energy on the

hypothesis that the molecules are elastic bodies of invariable form. I found, to

my great surprise, that whatever be the shape of the molecules, jn'ovided they

are not perfectly smooth and spherical, the ratio of the two parts of tlie energy

must be always the same, the two parts being in fact equal.

This result is confirmed by the researches of Boltzmann, who has worked

out the general case of a molecule having n variables.

He finds that while the average energy of translation is the same for

molecules of all kinds at the same temperature, the whole energy of motion

is to the energy of translation as n to 3.
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For a rigid body n = 6, which makes the whole energy of motion twice the

energy of translation.

But if the molecule is capable of changing its form under the action of

impressed forces, it must be capable of storing up potential energy, and if the

forces are such as to ensure the stability of the molecule, the average potential

energy will increase when the average energy of internal motion increases.

Hence, as the temperature rises, the increments of the energy of translation,

the energy of internal motion, and the potential energy are as 3, (n — 3), and e

respectively, where e is a positive quantity of unknown value depending on the

law of the force which binds together the constituents of the molecule.

When the volume of the substance is maintained constant, the effect of

the application of heat is to increase the whole energy. We thus find for the

specific heat of a gas at constant volume

—

where jPo ^^^ ^o Q-^® ^^ pressure and volume of unit of mass at zero centi-

grade, or 273" absolute temperature, and J is the dynamic equivalent of heat.

The specific heat at constant pressure is

In gases whose molecules have the same degree of complexity the value of

n is the same, and that of e may be the same.

If this is the case, the specific heat is inversely as the specific gravity,

according to the law of Dulong and Petit, which is, to a certain degree of

approximation, verified by experiment.

But if we take the actual values of the specific heat as found by Regnault

and compare them with this formula, we find that n + e for air and several

other gases cannot be more than 4*9. For carbonic acid and steam it is greater.

We obtain the same result if we compare the ratio of the calculated specific

heats

2 + ?i + r

11 +

e

with the ratio as detennined by experiment for various gases, namely, 1-408.
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And here we are brought face to face with the greatest difficulty which

the molecular theory has yet encountered, namely, the interpretation of the

equation 7i + ^ = 4 •9

.

If we suppose that the molecules are atoms—mere material points, incapable

of rotatory energy or internal motion—then n is 3 and e is zero, and the ratio

of the specific heats is 1'66, which is too great for any real gas.

But we learn from the spectroscope that a molecule can execute vibrations

of constant period. It cannot therefore be a mere material point, but a system

capable of changing its form. Such a system cannot have less than six variables.

This would make the greatest value of the ratio of the specific heats r33, which

is too small for hydrogen, oxygen, nitrogen, carbonic oxide, nitrous oxide, and

hydrochloric acid.

But the spectroscope tells us that some molecules can execute a great many

different kinds of vibrations. They must therefore be systems of a very con-

siderable degree of complexity, having far more than six variables. Now, every

additional variable introduces an additional amount of capacity for internal

motion without affecting the external pressure. Every additional variable, there-

fore, increases the specific heat, whether reckoned at constant pressure or at

constant volume.

So does any capacity which the molecule may have for storing up energy

in the potential form. But the calculated specific heat is already too great

when we suppose the molecule to consist of two atoms only. Hence every

additional degree of complexity which we attribute to the molecule can only

increase the difficulty of reconciling the observed with the calculated value of

the specific heat.

I have now put before you what I consider to be the greatest difficulty

yet encountered by the molecular theory. Boltzmann has suggested that we
are to look for the explanation in the mutual action between the molecules

and the aetherial medium which surrounds them. I am afraid, however, that

if we call in the help of this medium, we shall only increase the calculated

specific heat, which is already too great.

The theorem of Boltzmann may be applied not only to determine t]ie dis-

tribution of velocity among the molecules, but to determine the distribution of

the molecules themselves in a region in which they are acted on by external

forces. It tells us that the density of distribution of the molecules at a point

where the potential energy of a molecule Is i/>, is proportional to e~«« where 6 is

VOL. n. 55
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the absolute temperature, and /c is a constant for all gases. It follows from

this, that if several gases in the same vessel are subject to an external force

like that of gravity, the distribution of each gas is the same as if no other

gas were present. This result agrees with the law assumed by Dalton, according

to which the atmosphere may be regarded as consisting of two independent

atmospheres, one of oxygen, and the other of nitrogen ; the density of the

oxygen diminishing faster than that of the nitrogen, as we ascend.

This would be the case if the atmosphere were never disturbed, but the

effect of winds is to mix up the atmosphere and to render its composition more

uniform than it would be if left at rest.

Another consequence of Boltzmann's theorem is, that the temperature tends

to become equal throughout a vertical column of gas at rest.

In the case of the atmosphere, the effect of wind is to cause the tem-

perature to vary as that of a mass of air would do if it were carried vertically

upwards, expanding and cooling as it ascends.

But besides these results, which I had already obtained by a less elegant

method and published in 1866, Boltzmann's theorem seems to open up a path

into a region more purely chemical. For if the gas consists of a number of

similar systems, each of which may assume different states having different

amounts of energy, the theorem tells us that the number in each state is

proportional to e'*^ where xjj is the energy, 6 the absolute temperature, and k a

constant.

It is easy to see that this result ought to be applied to the theory of

the states of combination which occur in a mixture of different substances. But

as it is only during the present week that I have made any attempt to do

so, I shall not trouble you with my crude calculations.

I have confined my remarks to a very small part of the field of molecular

investigation. I have said nothing about the molecular theory of the diffusion

of matter, motion, and energy, for though the results, especially in the diffusion

of matter and the transpiration of fluids are of great interest to many chemists,

and though from them we deduce important molecular data, they belong to a

part of our study the data of which, depending on the conditions of the en-

counter of two molecules, are necessarily very hypothetical. I have thought it

better to exhibit the evidence that the parts of fluids are in motion, and to

describe the manner in which that motion is distributed among molecules of

different masses.
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To shew that all the molecules of the same substance are equal in mass,

we may refer to the methods of dialysis introduced by Graham, by which two

gases of different densities may be separated by percolation through a porous

plug.

If in a single gas there were molecules of different masses, the same process

of dialysis, repeated a sufficient number of times, would furnish us with two

portions of the gas, in one of which the average mass of the molecules would

be greater than in the other. The density and the combining weight of these

two portions would be different. Now, it may be said that no one has carried

out this experiment in a sufficiently elaborate manner for every chemical sub-

stance. But the processes of nature are continually carrying out experiments

of the same kind ; and if there were molecules of the same substance nearly

alike, but differing slightly in mass, the greater molecules would be selected in

preference to form one compound, and the smaller to form another. But hy-

drogen is of the same density, whether V7e obtain it from water or from a

hydrocarbon, so that neither oxygen nor carbon can find in hydrogen molecules

greater or smaller than the average.

The estimates which have been made of the actual size of molecules are

founded on a comparison of the volumes of bodies in the liquid or solid state,

with their volumes in the gaseous state. In the study of molecular volumes

we meet with many difficulties, but at the same time there are a sufficient

number of consistent results to make the study a hopeful one.

The theory of the possible vibrations of a molecule has not yet been studied

as it ought, with the help of a continual comparison between the dynamical

theory and the evidence of the spectroscope. An intelligent student, armed

with the calculus and the spectroscope, can hardly fail to discover some important

fact about the internal constitution of a molecule.

The observed transparency of gases may seem hardly consistent with the

results of molecular investigations.

A model of the molecules of a gas consisting of marbles scattered at dis-

tances bearing the proper proportion to their diameters, would allow very little

light to penetrate through a hundred feet.

But if we remember the small size of the molecules compared with the

length of a wave of light, we may apply certain theoretical investigations of

Lord Eaylelgh's about the mutual action between weaves and small spheres,

which shew that the transparency of the atmosphere, if affected only by the
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presence of molecules, would be far greater than we have any reason to believe

it to be.

A much more difficult investigation, which has hardly yet been attempted,

relates to the electric properties of gases. No one has yet explained why dense

gases are such good insulators, and why, when rarefied or heated, they permit

the discharge of electricity, whereas a perfect vacuum is the best of all insulators.

It is true that the diffusion of molecules goes on faster in a rarefied gas,

because the mean path of a molecule is inversely as the density. But the

electrical difference between dense and rare gas appears to be too great to be

accounted for in this way.

But while I think it right to point out the hitherto unconquered difficulties

of this molecular theory, I must not forget to remind you of the numerous

facts which it satisfactorily explains. We have already mentioned the gaseous

laws, as they are called, which express the relations between volume, pressure,

and temperature, and Gay Lussac's very important law of equivalent volumes.

The explanation of these may be regarded as complete. The law of molecular

specific heats is less accurately verified by experiment, and its full explanation

depends on a more perfect knowledge of the internal structure of a molecule

than we as yet possess.

But the most important result of these inquiries is a more distinct con-

ception of thermal phenomena. In the first place, the temperature of the

medium is measured by the average kinetic energy of translation of a single

molecule of the medium. In two media placed in thermal communication, the

temperature as thus measured tends to become equal.

In the next place, we learn how to distinguish that kind of motion which

we call heat from other kinds of motion. The peculiarity of the motion called

heat is that it is perfectly irregular ; that is to say, that the direction and

magnitude of the velocity of a molecule at a given time cannot be expressed as

depending on the present position of the molecule and the time.

In the visible motion of a body, on the other hand, the velocity of the

centre of mass of all the molecules in any visible portion of the body is the

observed velocity of that portion, though the molecules may have also an irregular

depending agitation on account of the body being hot.

In the transmission of sound, too, the different portions of the body have

a motion which is generally too minute and too rapidly alternating to be directly

observed. But in the motion which constitutes the physical phenomenon of sound,
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the velocity of each portion of the medium at any time can be expressed as

depending on the position and the time elapsed ; so that the motion of a medium
during the passage of a sound-wave is regular, and must be distinguished from

that which we call heat.

If, however, the sound-wave, instead of travelling onwards in an orderlv

manner and leaving the medium behind it at rest, meets with resistances which
fritter away its motion into irregular agitations, this irregular molecular motion

becomes no longer capable of being propagated swiftly in one direction as sound,

but lingers in the medium in the form of heat till it is communicated to

colder parts of the medium by the slow process of conduction.

The motion which we call light, though still more minute and rapidly

alternating than that of sound, is, 4ike that of sound, perfectly regular, and
therefore is not heat. What was formerly called Radiant Heat is a phenomenon
physically identical with light.

When the radiation arrives at a certain portion of the medium, it enters

it and passes through it, emerging at the other side. As long as the medium
TS engaged in transmitting the radiation it is in a certain state of motion,

but as soon as the radiation has passed through it, the medium returns to its

former state, the motion being entirely transferred to a new portion of the

medium.

Now, the motion which we call heat can never of itself pass from one

body to another unless the first body is, during the whole process, hotter than

the second. The motion of radiation, therefore, which passes entirely out of one

portion of the medium and enters another, cannot be properly called heat.

We may apply the molecular theory of gases to test those hypotheses about

the luminiferous aether which assume it to consist of atoms or molecules.

Those who have ventured to describe the constitution of the luminiferous

aether have sometimes assumed it to consist of atoms or molecules.

The application of the molecular theory to such hypotheses leads to rather

startling results.

In the first place, a molecular aether would be neither more nor less than

a gas. We may, if we please, assume that its molecules are each of them
equal to the thousandth or the millionth part of a molecule of hydrogen, and

that they can traverse freely the interspaces of all ordinary molecules. But, as

we have seen, an equilibrium will establish itself between the agitation of the

ordinary molecules and those of the aether. In other words, the aether and the
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l)odies in it will tend to equality of temperature, and the aether will be subject

to the ordinary gaseous laws as to pressure and temperature.

Among other properties of a gas, it will have that established by Dulong

and Petit, so that the capacity for heat of unit of volume of the aether

must be equal to that of unit of volume of any ordinary gas at the same

pressure. Its presence, therefore, could not fail to be detected in our experi-

ments on specific heat, and we may therefore assert that the constitution of

the aether is not molecular.



[From the Proceedings of the London Mathematical Society, Vol. vi. No. 83.]

LXXII. On the Application of Hamilton's Characteristic Function to the Theory

of an Optical Instrument symmetrical about its axis.

[Read April 8th, 1875.]

When a ray of light passes from the point [x^, y^, z^ to the point

(a-.,, ?/o, 2.) through any series of media, the Hne-integral V=jfids may be defined

as the distance which Hght would travel in vacuum in the same time as it

travels from {x^, y^, z^) to (a-,, y,, 2.),

Calling this the reduced distance between {x^, y,, z^) and {x.„ y„, z„), Hamil-

ton's Characteristic Function may be defined as the value of the reduced distance

between two points expressed in terms of the co-ordinates of these points.

It is not necessary that the co-ordinates of the two points should be

referred to the same system of axes. In treating of optical instruments we
shall reckon z^ and z.^ in opposite directions along the axis, and from different

planes of reference. We shall, however, make the axes of x^ and x^ parallel to

each other in what follows.

Let a ray from the point Pi{Xi, 0, c,) pass through the first plane of

reference at the point R^ {a^, 6,, 0), through the second plane of reference at

Ri(a., Z>2, 0), and reach the point P.,{x.,, 0, z.,);

then, putting F^R^- = (x^ — a,)" + h," + z^ = ?-;|

and Pj{} = (a-, - a,Y+ h.^ + z; = r.;i
(1).
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and the characteristic function from R, to R,= V (a function of a,, h„ a„ b^),

the reduced path from F^ to P, is

U=fi,r,+ V+ix,r, (2).

This quantity is stationary with respect to variations of a^, \, a,, \; therefore,

difierentiating with respect to these variables, we get

dcCi

a,-x.dV . b,dV
iL^ + -7— = 0, i^s— + ^r = ^

(3).

If Pj and P.2 are conjugate foci for rays in the plane of xz, the reduced

path is stationary in passing from one ray to the next by simultaneous variation

of fli and ttj.

Hence [^ (^
- ^^) + U] '^«.+^^.='

wi
1 {cL-x,y\ d

5^]^^^
d'V , ,

da^da^

.(4).

EHminating da^ and da^ from these equations, and putting 6 for the angle

between the ray and the axis, we find

da^ / \da
(5),

an equation connecting the values of r, and r^ for conjugate primary focal lines

formed by rays in the plane of xz.

For rays in a plane perpendicular to that of xz, we obtain the relation

of i\ and r/ for the secondary focal lines, by passing from one ray to the next

by simultaneous variation of \ and \,

ffjL ,
d'V\,, ^ d'V

db, =

whence
I. cfV]/^ d'V\ (d'VV
r:
+

db:-) W db,' 1
~ \db,dhj

(6),

(7).
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The form of this equation differs from that for the primary focal lines

only by the omission of cos' 0, and by substituting h for a.

From these equations we obtain the following values of the cardinal points

of the ray in the primary and secondary plane :

Let
d^V

dh{

d'V

daydcL

'
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Let their curvatures be concave towards the instrument, their radii being

/(*, and B, respectively, then,

^'-j^iS^^-ih'"-' ^-/(5+^)-.l+^=
<^^'-

We must now insert these values in equation (5), but, for the sake of

simplicity, we shall suppose the planes of reference to pass through the principal

foci.

We now find /, =% /. =| (15),

^'=lf'-m- ''=^-& '^'''

1 +a i +a

Hamilton's function for a symmetrical instrument is of the form

V= 1 2( {a,' + ?>r) + 33 {a,a, + 6,6,) + ^S (a; + 6/)

+ i« («/ + h:Y + ih (a,a, + hAY + ic (a./+ 6/)^

+p (a,a, + hA) (a,' + hS} + ^q («r + h:) («/ + &/)

+ r(a: + h:){a,cu + hj).;) (18).

Differentiating, and making 6, and h, zero, we find

A = ^ + Saa,' + 6ra,a,+ {b + q) a/ \

B^^ + dra: + (2h + 2q)a,a,+ SpaA (19),

C=(s + [h + q)a,' + 6pa,a,+ 3ca/ )

yl' = 21 + aa{ + 2ra,a„ + qa.-\

B' = '^ + ra,' + ha,a,+2^a.^
[

(^^)'

C = ^ + qa: + 2iJaa.; + ccC J

If the planes of reference pass through the principal foci,

21 = and 6 = 0' (21)-

Substituting hi equations (5) and (7), and putting

^-(a-^)H ^W%^7 ^-L
- '

! (22).

''
J

'-±P^}-ah-n^ {-^3),

"^=n:^i)^'<^'-'^
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we find -^ +—f,=3U+ W for the primary image (24),

_
_l

= U-\- W for the secondary image (25).

The condition of distinctness is U=0.

That the image of a flat object may be flat as well as distinct,

U=0 and Tr=0 (26).

Form of the Cliaracteristic Function for a Spherical Refracting Surface.

Let the planes of reference pass through the I
_—Sl___^^^

principal foci.

* J— L ^^^^p.

Let BC=s be the radius, then
I

'*' \ '"'
1

P, „ a., h„ -f^^

If the co-ordinates of P^ are a^, \,

P „ a, h, z,

and if P,P = r, and PP, = r„ then

V=ii,r, + fj.,r„

under the condition that V is stationary with respect to variations of a and

b, when
a- + h' + {s- z)- = ST.

This gives the following values of a and 6

:

a = «! -1- Oj + X/tj + \a, + &c.,

h = h,-\-h,+ \A + K\ + &c.,

when

K = ^^V. {mi ii^' - 1^^. + /^.') («i' + Z>i') + 2/^if^.' («.«» + ^i^») + /^»'(«^' + ^'')} '•

56—2
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Avhence we get, as the value of V to terms of the fourth order,

+ 4ft, ifJir + 2/xjx,= + fx/) («i«2 + 1>A) (a/ + Z>o;)

+ /x,/x, (7/xr - 6/x^a+ 7ft/) (otx^ + ?>/) («/ + ?>/)

+ 4/x, (ft,^ + 2fx,%+ ft./) (a/ + 6/) (aA + &i?>.)

Hence the coefficients m the general equations (18), (19), (20), (22), (23) are

us follows :

21 = 0,
^=f^l^^^, 6 = 0,

^2-f^l
« = i^^Fr(3/^r + K)^ Z> = 2^r7f^(/.r + ;./), c = i

f^^-H-i

s>. sV,/x,
(/^/+3ft/).

/A/-/^i

S>,/X/
^ =i^^(^>'+2W^ + i-^')-



[From the Eacyclopoedia BHtannica.]

LXXIII. Atom.

Atom (dTOfio<;) is a body which cannot be cut in two. The atomic theory

is a theory of the constitution of bodies, which asserts that they are made up

of atoms. The opposite theory is that of the homogeneity and continuity of

bodies, and asserts, at least in the case of bodies having no apparent organisa-

tion, such, for instance, as water, that as we can divide a drop of water into

two parts which are each of them drops of water, so we have reason to beheve

that these smaller drops can be divided again, and the theory goes on to assert

that there is nothing in the nature of things to hinder this process of division

from being repeated over and over again, times without end. This is the

doctrine of the infinite divisibility of bodies, and it is in direct contradiction

with the theory of atoms.

The atomists assert that after a certain number of such divisions the parts

would be no longer divibible, because each of them would be an atom. The

advocates of the continuity of matter assert that the smallest conceivable body

has parts, and that whatever has parts may be divided.

In ancient times Democritus was the founder of the atomic theory, while

Anaxagoi-as propounded that of continuity, under the name of the doctrine of

homoeomeria ('0/ioto/xepia), or of the similarity of the parts of a body to the

whole. The arguments of the atomists, and their replies to the objections of

Anaxagoras, are to be found in Lucretius.

In modern times the study of nature has brought to light many properties

of bodies which appear to depend on the magnitude and motions of their

ultimate constituents, and the question of the existence of atoms has once more

become conspicuous among scientific inquiries.

We shall begin by stating the opposing doctrines of atoms and of con-

tinuity before giving an outline of the' state of molecular science as it now

exists. In the earliest times the most ancient philosophers whose speculations
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are known to us seem to have discussed the ideas of number and of continuous

magnitude, of space and time, of matter and motion, with a native power of

thought which has probably never been surpassed. Their actual knowledge,

however, and their scientific experience were necessarily limited, because in their

days the records of human thought were only beginning to accumulate. It is

probable that the first exact notions of quantity were founded on the considera-

tion of number. It is by the help of numbers that concrete quantities are

practically measured and calculated. Now, number is discontinuous. We pass

from one number to the next per saltam. The magnitudes, on the other hand,

which we meet with in geometry, are essentially continuous. The attempt to

apply numerical methods to the comparison of geometrical quantities led to the

doctrine of incommensurables, and to that of the infinite divisibility of space.

Meanwhile, the same considerations had not been applied to time, so that in

the days of Zeno of Elea time was still regarded as made up of a finite number

of "moments," while space was confessed to be divisible without limit. This

was the state of opinion when the celebrated arguments against the possibility

of motion, of which that of Achilles and the tortoise is a specimen, were

propounded by Zeno, and such, apparently, continued to be the state of opinion

till Aristotle pointed out that time is divisible without limit, in precisely the

same sense that space is. And the slowness of the development of scientific

ideas may be estimated from the fact that Bayle does not see any force in

this statement of Aristotle, but continues to admire the paradox of Zeno.

(Bayle's Dictionary, art. "Zeno".) Thus the direction of true Scientific progress

was for many ages towards the recognition of the infinite divisibility of space

and time.

It was easy to attempt to apply similar arguments to matter. If matter

is extended and fills space, the same mental operation by which we recognise

the divisibility of space may be applied, in imagination at least, to the matter

which occupies space. From this point of view the atomic doctrine might be

reo-arded as a relic of the old numerical way of conceiving magnitude, and the

opposite doctrine of the infinite divisibility of matter might appear for a time

the most scientific. The atomists, on the other hand, asserted very strongly

the distinction between matter and space. The atoms, they said, do not fill

up the universe; there are void spaces between them. If it were not so,

Lucretius tells us, there could be no motion, for the atom which gives way

first must have some empty place to move into.
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"Quapropter locus est intactvis, inane, vacansque.

Quod si non csset, nulla ratione moveri

Res possent; uanniue, ofScium quod corporis exstat,

Officere atque obstare, id in omni tempore adesset

Omnibus : baud igitur quicquam procedere posset,

Priucipium quouiam cedendi nulla daret res." De Rerum Xatura, I. 335.

The opposite school mahitained then, as they have always done, that there

is no vacuum—that every part of space is full of matter, that there is a

universal plenum, and that all motion is like that of a fish in the \vater,

which yields in front of the fish hecause the fit-h leaves room for it behind.

"Cedere squamigeris latices nitentibus aiunt

Et liquidas aperire vias, quia post loca pisces

Linquant, quo possint cedentes confluere undae." i. 373.

In modern times Descartes held that, as it is of the essence of matter to

be extended in length, breadth, and thickness, so it is of the essence of

extension to be occupied by matter, for extension cannot be an extension of

nothing.

" Ac proinde si quseratur quid fiet, si Deus auferat omne corpus quod in aliquo vase continetur,

et nullum aliud in ablati locum venire permittat? respondendum est, vasis latera sibi invicem hoc ipso

fore contigua. Cum enim inter duo corpora nihil iuterjacet, necesse est ut se mutuo tangant, ac

manifeste repugnat ut distent, sive ut inter ipsa sit distantia, et tamen ut ista distantia sit nihil
;

quia omnis distantia est modus extensionis, et ideo sine substantia extensa esse non potest."

Princijna, II. 18.

This identification of extension with substance runs through the whole of

Descartes's works, and it forms one of the ultimate foundations of the system

of Spinoza. Descartes, consistently with this doctrine, denied the existence of

atoms as parts of matter, which by their own nature are indivisible. He seems

to admit, however, that the Deity might make certain particles of matter

indivisible in this sense, that no creature should be able to divide them. These

particles, however, would be still divisible by their own nature, because the

Deity cannot diminish his own power, and therefore must retain his power of

dividing them. Leibnitz, on the other hand, regarded his monad as the ultimate

element of everything.

There are thus two modes of thinking about the constitution of bodies,

which have had their adherents both in ancient and in modern times. They

correspond to the two methods of regarding quantity—the arithmetical and the

geometrical. To the atomist the true method of estimating the quantity of
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matter In a body is to count the atoms in it. The void spaces between the

atoms count for nothing. To those who identify matter with extension, the

volume of space occupied by a body is the only measure of the quantity of

matter in it.

Of the different forms of the atomic theory, that of Boscovich may be taken

as an example of the purest monadism. According to Boscovich matter is made

up of atoms. Each atom is an indivisible point, having position in space, capable

of motion in a continuous path, and possessing a certain mass, whereby a certain

amount of force is required to produce a given change of motion. Besides this

the atom is endowed with potential force, that is to say, that any two atoms

attract or repel each other with a force depending on their distance apart. The

law of this force, for all distances greater than say the thousandth of an inch,

is an attraction varying as the inverse square of the distance. For smaller

distances the force is an attraction for one distance and a repulsion for another,

accordinor to some law not vet discovered. Boscovich himself, in order to obviate

the possibilitv of two atoms ever being in the same place, asserts that the

ultimate force is a repulsion which increases without limit as the distance

diminishes without limit, so that two atoms can never coincide. But this

seems an unwarrantable concession to the vulgar opinion that two bodies cannot

co-exist in the same place. This opinion is deduced from our experience of the

behaviour of bodies of sensible size, but we have no experimental e^'idence that

two atoms mav not sometimes coincide. For instance, if oxygen and hydrogen

combine to form water, we have no experimental evidence that the molecule of

oxygen is not in the very same place with the two molecules of hydrogen. Many

persons cannot get rid of the opinion that all matter is extended in length,

breadth, and depth. This is a prejudice of the same kind with the last, arising

from our experience of bodies consisting of immense multitudes of atoms. The

system of atoms, according to Boscovich, occupies a certain region of space in

virtue of the forces acting between the component atoms of the system and

any other atoms when brought near them. Xo other system of atoms can

occupv the same region of space at the same time, because, before it could do

so, the mutual action of the atoms would have caused a repulsion between the

two systems insuperable by any force which we can command. Thus, a number

of soldiers with firearms may occupy an extensive region to the exclusion of

the enemy's armies, though the space filled by their bodies is but small. In

this way Boscovich explained the apparent extension of bodies consisting of
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atoms, each of which is devoid of extension. According to Boscovich's theory,

all action between bodies is action at a distance. There is no such thing in

nature as actual contact between two bodies. When two bodies are said in

ordinary language to be in contact, all that is meant is that they are so near

together that the repulsion between the nearest pairs of atoms belonging to

the two bodies is very great.

Thus, in Boscovich's theory, the atom has continuity of existence in time

and space. At any instant of time it is at some point of space, and it is never

in more than one place at a time. It passes from one place to another along

a continuous path. It has a definite mass which cannot be increased or di-

minished. Atoms are endowed with the power of acting on one another by

attraction or repulsion, the amount of the force depending on the distance

between them. On the other hand, the atom itself has no parts or dimensions.

In its geometrical aspect it is a mere geometrical point. It has no extension

in space. It has not the so-called property of Impenetrability, for two atoms

may exist in the same place. This we may regard as one extreme of the

various opinions about the constitution of bodies.

The opposite extreme, that of Anaxagoras—the theory that bodies apparently

homogeneous and continuous are so in reality—is, in its extreme form, a theory

incapable of development. To explain the properties of any substance by this

theory is impossible. We can only admit the observed properties of such sub-

stance as ultimate facts. There is a certain stage, however, of scientific progress

in which a method corresponding to this theory is of service. In hydrostatics,

for instance, we define a fluid by means of one of its known properties, and

from this definition we make the system of deductions which constitutes the

science of hydrostatics. In this way the science of hydrostatics may be built

upon an experimental basis, without any consideration of the constitution of a

fluid as to whether it is molecular or continuous. In like manner, after the

French mathematicians had attempted, with more or less ingenuity, to construct

a theory of elastic solids from the hypothesis that they consist of atoms in

equilibrium under the action of their mutual forces, Stokes and othere shewed

that all the results of this hypothesis, so far at least as they agreed with

facts, might be deduced from the postulate that elastic bodies exist, and from

the hypothesis that the smallest portions into which we can divide them are

sensibly homogeneous. In this way the principle of continuity, which is the

basis of the method of Fluxions and the whole of modern mathematics, may
VOL. II. 57
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be applied to the analysis of problems connected with material bodies by-

assuming them, for the purpose of this analysis, to be homogeneous. AH that

is required to make the results applicable tr the real case is that the smallest

portions of the substance of which we take any notice shall be sensibly of the

same kind. Thus, if a railway contractor has to make a tunnel through a hill

of gravel, and if one cubic yard of the gravel is so like another cubic yard

that for the purposes of the conti-act they may be taken as equivalent, then,

in estimating the work required to remove the gravel from the tunnel, he may,

without fear of error, make his calculations as if the gravel were a continuous

substance. But if a worm has to make his way through the gravel, it makes

the greatest possible difference to him whether he tries to push right against

a piece of gravel, or directs his course through one of the intervals between

the pieces ; to him, therefore, the gravel is by no means a homogeneous and

continuous substance.

In the same way, a theory that some particular substance, say water, is

homogeneous and continuous may be a good working theory up to a certain

point, but may fail when we come to deal with quantities so minute or so

attenuated that their heterogeneity of structure comes into prominence. Whether

this heterogeneity of structure is or is not consistent with homogeneity and

continuity of substance is another question.

The extreme form of the doctrine of continuity is that stated by Descartes,

who maintains that the whole universe is equally full of matter, and that this

matter is all of one kind, having no essential property besides that of extension.

All the properties which we perceive in matter he reduces to its parts being

movable among one another, and so capable of all the varieties which we can

perceive to follow from the motion of its parts {Principia, ii. 23). Descartes's

own attempts to deduce the different qualities and actions of bodies in this way

are not of much value. More than a century was required to invent methods

of investigating the conditions of the motion of systems of bodies such as

Descartes imagined. But the hydrodynamical discovery of Helmholtz that a

vortex in a perfect liquid possesses certain permanent characteristics, has been

appHed by Sir W. Thomson to form a theory of vortex atoms in a homogeneous,

incompressible, and frictionless liquid, to which we shall return at the proper

time.
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Outline of Modern Molecular Science, and in particular of the Molecular Theoiy

of Gases.

We begin by assuming that bodies are made up of parts, each of which

is capable of motion, and that these parts act on each other in a manner

consistent with the principle of the conservation of energy. In making these

assumptions, we are justified by the facts that bodies may be divided into

smaller parts, and that all bodies with which we are acquainted are conservative

systems, which would not be the case unless their parts were also conservative

systems.

We may also assume that these small parts are in motion. This is the

most general assumption we can make, for it includes, as a particular case, the

theory that the small parts are at rest. The phenomena of the diffusion of

gases and liquids through each other shew that there may be a motion of the

small parts of a body which is not perceptible to us.

We make no assumption with respect to the nature of the small parts

—

whether they are all of one magnitude. We do not even assume them to have

extension and figure. Each of them must be measured by its mass, and any

two of them must, like visible bodies, have the power of acting on one another

when they come near enough to do so. The properties of the body, or medium,

are determined by the configuration and motion of its small parts.

The first step in the investigation is to determine the amount of motion

which exists among the small parts, independent of the visible motion of the

medium as a whole. For this purpose it is convenient to make use of a

general theorem in dynamics due to Clausius.

When the motion of a material system is such that the time average of

the quantity S (mx") remains constant, the state of the system is said to be

that of stationary motion. When the motion of a material system is such that

the sum of the moments of inertia of the system, about three axes at right

angles through its centre of mass, never varies by more than small quantities

from a constant value, the system is said to be in a state of stationary motion.

The kinetic energy of a particle is half the product of its mass into the

square of its velocity, and the kinetic energy of a system is the sum of the

kinetic energy of all its parts.

57—2
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When an attraction or repulsion exists between two points, half the

product of this stress into the distance between the two points is called the

%irial of the stress, and is reckoned positive when the stress is an attraction,

and negative when it is a repulsion. The virial of a system is the sum of

the virials of the stresses which exist in it. If the system is subjected to

the external stress of the pressure of the sides of a vessel in which it is

contained, this stress will introduce an amount of virial fpF, where p is the

pressure on unit of area and V is the volume of the vessel.

The theorem of Clausius may now be stated as follows :—In a material

system in a state of stationary motion the time-average of the kinetic energy

is equal to the time-average of the virial. In the case of a fluid enclosed in a

VGSSGi

^S(m?)=tpF+iSS(i2r),

where the first term denotes the kinetic energy, and is half the sum of

the product of each mass into the mean square of its velocity. In the

second term, p is the pressure on unit of surface of the vessel, whose volume

is F, and the third term expresses the virial due to the internal actions

between the parts of the system. A double symbol of summation is used,

because every pair of parts between which any action exists must be taken

into account. We have next to shew that in gases the principal part of the

pressure arises from the motion of the small parts of the medium, and not

from a repulsion between them.

In the fii'st place, if the pressure of a gas arises from the repulsion of

its parts, the law of repulsion must be inversely as the distance. For, con-

sider a cube filled with the gas at pressure p, and let the cube expand till

each side is n times its former length. The pressure on unit of surface ac-

cording to Boyle's law is now —3 , and since the area of a face of the cube

is rf times what it was, the whole pressure on the face of the cube is - of

its original value. But since everything has been expanded synunetrically, the

distance between corresponding prrts of the air is now n times what it was,

and the force is n times less than it was. Hence the force must vary inversely

as the distance.

But Newton has shewn (Principia, Book i. Prop. 93) that this law is

inadmissible, as it makes the efiect of the distant parts of the medium on a
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particle greater than that of the neighbouring parts. Indeed, we should arrive

at the conclusion that the pressure depends not only on the density of the air

but on the form and dimensions of the vessel which contains it, which we
know not to be the case.

If, on the other hand, we suppose the pressure to arise entirely frorii the

motion of the molecules of the gas, the interpretation of Boyle's law becomes

very simple. For, in this case

The first term is the product of the pressure and the volume, which ac-

cording to Boyle's law is constant for the same quantity of gas at the same

temperature. The second term is two-thirds of the kinetic energy of the system,

and we have every reason to believe that in gases when the temperature is

constant the kinetic energy of unit of mass is also constant. If we admit

that the kinetic energy of unit of mass is in a given gas proportional to the

absolute temperature, this equation is the expression of the law of Charles as

well as of that of Boyle, and may be written

—

pV=Ee,

where $ is the temperature reckoned from absolute zero, and R is & constant.

The fact that this equation expresses with considerable accuracy the relation

between the volume, pressure, and temperature of a gas when in an extremely

rarified state, and that as the gas is more and more compressed the deviation

from this equation becomes more apparent, shews that the pressure of a gas is

due almost entirely to the motion of its molecules when the gas is rare, and

that it is only when the density of the gas is considerably increased that the

effect of direct action between the molecules becomes apparent.

The effect of the direct action of the molecules on each other depends on

the number of pairs of molecules which at a given instant are near enough to

act on one another. The number of such pairs is proportional to the square

of the number of molecules in unit of volume, that is, to the square of the

density of the gas. Hence, as long as the medium is so rare that the encounter

between two molecules is not affected by the presence of others, the deviation

from Boyle's law will be proportional to the square of the density. If the

action between the molecules is on the whole repulsive, the pressure wOl be

greater than that given by Boyle's law. If it is, on the whole, attractive, the

pressure will be less than that given by Boyle's law. It appears, by the ex-
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periments of Regnault and others, that the pressure does deviate from Boyle's

law when the density of the gas is increased. In the case of carbonic acid

and other gases which are easily liquefied, this deviation is very great. In aU

cases, however, except that of hydrogen, the pressure is less than that given

by Boyle's law, shewing that the virial is on the whole due to attractive forces

between the molecules.

Another kind of evidence as to the nature of the action between the

molecules is furnished by an experiment made by Dr Joule. Of two vessels,

one was exhausted and the other filled with a gas at a pressure of 20 atmo-

spheres ; and both were placed side by side in a vessel of water, which was

constantly stirred. The temperature of the whole was observed. Then a com-

munication was opened between the vessels, the compressed gas expanded to

twice its volume, and the work of expansion, which at first produced a strong

current in the gas, was soon converted into heat by the internal friction of

the gas. When all was again at rest, and the temperature uniform, the

temperature was again observed. In Dr Joule's original experiments the ob-

served temperature was the same as before. In a series of experiments, con-

ducted by Dr Joule and Sir W. Thomson on a different plan, by which the

thermal effect of free expansion can be more accurately measured, a slight

cooling effect was observed in all the gases examined except hydrogen. Since

the temperature depends on the velocity of agitation of the molecules, it

appears that when a gas expands without doing external work the velocity of

agitation is not much affected, but that in most cases it is slightly diminished.

Now, if the molecules during their mutual separation act on each other, their

velocity will increase or diminish according as the force is repulsive or attractive.

It appears, therefore, from the experiments on the free expansion of gases,

that the force between the molecules is small but, on the whole, attractive.

Having thus justified the hypothesis that a gas consists of molecules in

motion, which act on each other only when they come very close together

during an encounter, but which, during the intervals between their encounters

which constitute the greater part of their existence, are describing free paths,

and are not acted on by any molecular force, we proceed to investigate the

motion of such a system.

The mathematical investigation of the properties of such a system of

molecules in motion is the foundation of molecular science. Clausius was the

first to express the relation between the density of the gas, the length of
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the free paths of its molecules, and the distance at which they encounter

each other. He assumed, however, at least in his earher investigations, that

the velocities of all the molecules are equal. The mode in which the veloci-

ties are distributed was first investigated by the present writer, who shewed

that in the moving system the velocities of the molecules range from zero to

infinity, but that the number of molecules whose velocities lie within given

limits can be expressed by a formula identical with that which expresses in the

theory of errors the number of errors of observation lying within corresponding

limits. The proof of this theorem has been carefully investigated by Boltz-

mann*, who has strengthened it where it appeared weak, and to whom the method

of taking into account the action of external forces is entirely due.

The mean kinetic energy of a molecule, however, has a definite value, which

is easily expressed in terms of the quantities which enter into the expression

for the distribution of velocities. The most important result of this investi-

gation is that when several kinds of molecules are in motion and acting on

one another, the mean kinetic energy of a molecule is the same whatever be

its mass, the molecules of greater mass having smaller mean velocities. Now,

when gases are mixed their temperatures become equal. Hence we conclude

that the physical condition which determines that the temperature of two

gases shall be the same is that the mean kinetic energies of agitation of the

individual molecules of the two gases are equal. This result is of great im-

portance in the theory of heat, though we are not yet able to establish any

similar result for bodies in the liquid or solid state.

In the next place, we know that in the case in which the whole pressure

of the medium is due to the motion of its molecules, the pressure on unit

of area is numerically equal to two-thirds of the kinetic energy in unit of

volume. Hence, if equal volumes of two gases are at equal pressures the

kinetic energy is the same in each. If they are also at equal temperatures

the mean kinetic energy of each molecule is the same in each. If, therefore,

equal volumes of two gases are at equal temperatures and pressures, the

number of molecules in each is the same, and therefore, the masses of the two

kinds of molecules are in the same ratio as the densities of the gases to

which they belong.

This statement has been believed by chemists since the time of Gay-

Lussac, who first established that the weights of the chemical equivalents of

* SUzungsberichte der K. K. Akad., Wien, Sth Oct. 1868.
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different substances are proportional to the densities of these substances when in

the form of gas. The definition of the word molecule, however, as employed

in the statement of Gay-Lussac's law is by no means identical with the defi-

nition of the same word as in the kinetic theory of gases. The chemists

ascertain by experiment the ratios of the masses of the different substances in

a compound. From these they deduce the chemical equivalents of the different

substances, that of a particular substance, say hydrogen, being taken as unity.

The only evidence made use of is that furnished by chemical combinations. It

is also assumed, in order to account for the facts of combination, that the reason

why substances combine in definite ratios is that the molecules of the substances

are in the ratio of their chemical equivalents, and that what we call combination

is an action which takes place by a union of a molecule of one substance to

a molecule of the other.

This kind of reasoning, when presented in a proper form and sustained by

proper evidence, has a high degree of cogency. But it is purely chemical

reasoning ; it is not dynamical reasoning. It is founded on chemical experience,

not on the laws of motion.

Our definition of a molecule is purely dynamical. A molecule is that

minute portion of a substance which moves about as a whole, so that its

parts, if it has any, do not part company during the motion of agitation of

the gas. The result of the kinetic theory, therefore, is to give us information

about the relative masses of molecules considered as moving bodies. The con-

sistency of this information with the deductions of chemists from the phenomena

of combination, greatly strengthens the evidence in favour of the actual existence

and motion of gaseous molecules.

Another confirmation of the theory of molecules is derived from the experi-

ments of Dulong and Petit on the specific heat of gases, from which they

deduced the law which bears their name, and which asserts that the specific

heats of equal weights of gases are inversely as their combining weights, or, in

other words, that the capacities for heat of the chemical equivalents of different

gases are equal. We have seen that the temperature is determined by the

kinetic energy of agitation of each molecule. The molecule has also a certain

amount of energy of internal motion, whether of rotation or of vibration, but

the hypothesis of Clausius, that the mean value of the internal energy always

bears a proportion fixed for each gas to the energy of agitation, seems highly

probable and consistent with experiment. The whole kinetic energy is there-
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fore equal to the energy of agitation multiplied by a certain factor. Thus the

energy communicated to a gas by heating it is divided in a certain proportion

between the energy of agitation and that of the internal motion of each

molecule. For a given rise of temperature the energy of agitation, say of a

million molecules, is increiised by the same amount whatever be the gas. The

heat spent in raising the temperature is measured by the increase of the

whole kinetic energy. The thermal capacities, therefore, of equal numbers of

molecules of diflferent gases are in the ratio of the factors by which the energy

of agitation must be multiplied to obtain the whole energy. As this factor

appears to be nearly the same for all gases of the same degree of atomicity,

Dulong and Pet it's law is true for such gases.

Another result of this investigation is of considerable importance in rela-

tion to certain theories ''', which assume the existence of aethers or rare media

consisting of molecules very much smaller than those of ordinary gases. Ac-

cording to our result, such a medium would be neither more nor less than a gas.

Supposing its molecules so small that they can penetrate between the molecules

of solid substances such as glass, a so-called vacuum would be full of this

rare gas at the observed temperature, and at the pressure, whatever it may

be, of the aetherial medium in space. The specific heat, therefore, of the

medium in the so-called vacuum will be equal to that of the same volume of

any other gas at the same temperature and pressure. Now, the purpose for

which this molecular aether is assumed in these theories is to act on bodies by

its pressure, and for this purpose the pressure is generally assumed to be ven,-

great. Hence, according to these theories, we should find the specific heat of

a so-called vacuum very considerable compared with that of a quantity of air

filling the same space.

We have now made a certain definite amount of progress towards a com-

plete molecular theory of gases. We know the mean velocity of the molecules

of each gas in metres per second, and we know the relative masses of the

molecules of difierent gases. We also know that the molecules of one and the

same gas are all equal in mass. For if they are not, the method of dialysis,

as employed by Graham, would enable us to separate the molecules of smaller

mass from those of greater, as they would stream through porous substances

with greater velocity. We should thus be able to separate a gas, say hydrogen,

into two portions, having difierent densities and other physical properties,

* See Gustav Hausemann, Die Atorne und ihre Bewegungeru 1871. (H. G. Mayer.)
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different combining weights, and probably different chemical properties of other

kinds. As no chemist has yet obtained specimens of hydrogen differing in this

way from other specimens, we conclude that all the molecules of hydrogen

are of sensibly the same mass, and not merely that their mean mass is a statis-

tical constant of great stability.

But as yet we have not considered the phenomena which enable us to

form an estimate of the actual mass and dimensions of a molecule. It is to

Clausius that we owe the first definite conception of the free path of a molecule

and of the mean distance travelled by a molecule between successive encounters.

He shewed that the number of encounters of a molecule in a given time is

proportional to the velocity, to the number of molecules in unit of volume,

and to the square of the distance between the centres of two molecules when

they act on one another so as to have an encounter. From this it appears

that if we call this distance of the centres the diameter of a molecule, and

the volume of a sphere having this diameter the volume of a molecule, and

the sura of the volumes of all the molecules the molecular volume of the gas,

then the diameter of a molecule is a certain multiple of the quantity obtained

by diminishing the free path in the ratio of the molecular volume of the gas

to the whole volume of the gas. The numerical value of this multiple differs

slightly, according to the hypothesis we assume about the law of distribution

of velocities. It also depends on the definition of an encounter. When the

molecules are regarded as elastic spheres we know what is meant by an

encounter, but if they act on each other at a distance by attractive or

repulsive forces of finite magnitude, the distance of their centres varies during

an encounter, and is not a definite quantity. Nevertheless, the above state-

ment of Clausius enables us, if we know the length of the mean path and

the molecular volume of gas, to form a tolerably near estimate of the diameter

of the sphere of the intense action of a molecule, and thence of the number

of molecules in unit of volume and the actual mass of each molecule. To

complete the investigation we have, therefore, t© determine the mean path and

the molecular volume. The first numerical estimate of the mean path of a

gaseous molecule was made by the present writer from data derived from the

internal friction of air. There are three phenomena which depend on the

length of the free path of the molecules of a gas. It is evident that the

greater the free path the more rapidly will the molecules travel from one

part of the medium to another, because their direction will not be so often
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altered by encounters with other molecules. If the molecules In diffeient parts

of the medium are of different kinds, their progress from one part of the

medium to another can be easily traced by analysing portions of the medium taken

from different places. The rate of diffusion thus found furnishes one method

of estimating the length of the free path of a molecule. This kind of diffusion

goes on not only between the molecules of different gases, but among the

molecules of the same gas, only in the latter case the results of the diffusion

cannot be traced by analysis. But the diffusing molecules carry with them

in their free paths the momentum and the energy which they happen at a

given instant to have. The diffusion of momentum tends to equalise the

apparent motion of different parts of the medium, and constitutes the pheno-

menon called the internal friction or viscosity of gases. The diffusion of energy

tends to equalise the temperature of different parts of the medium, and

constitutes the phenomenon of the conduction of heat in gases.

These three phenomena—the diffusion of matter, of motion, and of heat

in gases—have been experimentally investigated,—the diffusion of matter by

Graham and Loschmidfc, the diffusion of motion by Oscar Meyer and Clerk

Maxwell, and that of heat by Stefan.

These three kinds of experiments give results which in the present im-

perfect state of the theory and the extreme difficulty of the experiments,

especially those on the conduction of heat, may be regarded as tolerably con-

sistent with each other. At the pressure of our atmosphere, and at the

temperature of melting ice, the mean path of a molecule of hydrogen is about

the 10,000th of a millimetre, or about the fifth part of a wave-length of

green light. The mean path of the molecules of other gases is shorter than

that of hydrogen.

The determination of the molecular volume of a gas is subject as yet to

considerable uncertainty. The most obvious method is that of compressing the

gas till it assumes the liquid form. It seems probable, from the great resist-

ance of liquids to compression, that their molecules are about the same

distance from each other as that at which two molecules of the same substance

in the gaseous form act on each other during an encounter. If this is the

case, the molecular volume of a gas is somewhat less than the volume of the

liquid into which it would be condensed by pressure, or, in other words, the

density of the molecules is somewhat greater than that of the liquid.

Now, we know the relative weights of different molecules with great
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accuracy, and, from a knowledge of the mean path, we can calculate their

relative diameters approximately. From these we can deduce the relative

densities of different kinds of molecules. The relative densities so calculated

have been compared by Lorenz Meyer with the observed densities of the liquids

into which the gases may be condensed, and he finds a remarkable correspond-

ence between them. There is considerable doubt, however, as to the relation

between the molecules of a liquid and those of its vapour, so that till a

larger number of comparisons have been made, we must not place too much

reliance on the calculated densities of molecules. Another, and perhaps a more

refined, method is that adopted by M. Van der Waals, who deduces the

molecular volume from the deviations of the pressure from Boyle's law as the

gas is compressed.

The first numerical estimate of the diameter of a molecule was that made

by Loschmidt in 1865 from the mean path and the molecular volume. Inde-

pendently of him and of each other, Mr Stoney, in 1868, and Sir W. Thomson,

in 1870, published results of a similar kind—those of Thomson being deduced

not only in this way, but from considerations derived fi-om the thickness of

soap bubbles, and from the electric action between zinc and copper.

The diameter and the mass of a molecule, as estimated by these methods,

are, of course, very small, but by no means infinitely so. About two millions

of molecules of hydrogen in a row would occupy a millimetre, and about two

hundred million million million of them would weigh a milligramme. These

numbers must be considered as exceedingly rough guesses ; they must be

corrected by more extensive and accurate experiments as science advances

;

but the main result, which appears to be well established, is that the deter-

mination of the mass of a molecule is a legitimate object of scientific research,

and that this mass is by no means immeasurably small.

Loschmidt illustrates these molecular measurements by a comparison with

the smallest magnitudes visible by means of a microscope. Nobert, he tells us,

can draw 4000 lines in the breadth of a millimetre. The intervals between

these lines can be observed with a good microscope. A cube, whose side is

the 4000th of a millimetre, may be taken as the minimum visibile for observers

of the present day. Such a cube would contain from 60 to 100 million

molecules of oxygen or of nitrogen ; but since the molecules of organised

substances contain on an average about 50 of the more elementary atoms, we

may assume that the smallest organised particle visible under the microscope



ATOM. 461

contains about two million molecules of organic matter. At least half of every

living organism consists of water, so that the smallest living being visible

under the microscope d6e3 not contain more than about a million organic

molecules. Some exceedingly simple organism may be supposed built up of

not more than a million similar molecules. It is impossible, however, to conceive

so small a number sufficient to form a being furnished with a whole system

of specialised organs.

Thus molecular science sets us face to face with physiological theories.

It forbids the physiologist from imagining that structural details of infinitely

small dimensions can furnish an explanation of the infinite variety which exists

in the properties and functions of the most minute organisms.

A microscopic germ is, we know, capable of development into a highly

organised animal. Another germ, equally microscopic, becomes, when developed,

an animal of a totally different kind. Do all the differences, infinite in number,

which distinguish the one animal from the other, arise each from some dif-

ference in the structure of the respective germs ? Even if we admit this as

possible, we shall be called upon by the advocates of Pangenesis to admit

still greater marvels. For the microscopic germ, according to this theory, is

no mere individual, but a representative body, containing members collected

from every rank of the long-drawn ramification of the ancestral tree, the number

of these members being amply sufficient not only to furnish the hereditarj'

characteristics of every organ of the body and every habit of the animal from

birth to death, but also to afford a stock of latent gemmules to be passed

on in an inactive state from germ to germ, till at last the ancestral peculiarity

which it represents is revived in some remote descendant.

Some of the exponents of this theory of heredity have attempted to elude

the difficulty of placing a whole world of wonders within a body so small

and so devoid of visible structure as a germ, by using the phrase structureless

germs*. Now, one material system can difier from another only in the con-

figuration and motion which it has at a given instant. To explain differences

of function and development of a germ without assuming differences of structure

is, therefore, to admit that the properties of a germ are not those of a purely

material system.

The evidence as to the nature and motion of molecules, with which we

have hitherto been occupied, has been derived from experiments upon gaseous

* See F. Galton, "On Blood Relationship," Proc. Roy. Soc, June 13, 1872.



462 ATOM.

media, the smallest sensible portion of which contains millions of millions of

molecules. The constancy and uniformity of the properties of the gaseous

medium is the direct result of the inconceivable irregularity of the motion of

agitation of its molecules. Any cause which could introduce regularity into the

motion of agitation, and marshal the molecules into order and method in their

evolutions, might check or even reverse that tendency to diffusion of matter,

motion, and energy, which is one of the most invariable phenomena of nature,

and to which Thomson has given the name of the dissipation of energy.

Thus, when a sound-wave is passing through a mass of air, this motion

is of a certain definite type, and if left to itself the whole motion is passed on

to other masses of air, and the sound-wave passes on, leaving the air behind

it at rest. Heat, on the other hand, never passes out of a hot body except

to enter a colder body, so that the energy of sound-waves, or any other form

of energy which is propagated so as to pass wholly out of one portion of

the medium and into another, cannot be called heat.

We have now to turn our attention to a class of molecular motions, which

are as remarkable for their regularity as the motion of agitation is for its

irregularity.

It has been found, by means of the spectroscope, that the light emitted

by incandescent substances is different according to their state of condensation.

When they are in an extremely larefied condition the spectrum of their light

consists of a set of sharply-defined bright lines. As the substance approaches

a denser condition the spectrum tends to become continuous, either by the

lines becoming broader and less defined, or by new lines and bands appearing

between them, till the spectrum at length loses all its characteristics and

l)ecomes identical with that of solid bodies when raised to the same tem-

i:)erature.

Hence the vibrating systems, which are the source of the emitted light,

must be vibrating in a different manner in these two cases. When the spectrum

consists of a number of bright lines, the motion of the system must be com-

pounded of a corresponding number of types of harmonic vibration.

In order that a bright line may be sharply defined, the vibratory motion

which produces it must be kept up in a perfectly regular manner for some

hundreds or thousands of vibrations. If the motion of each of the vibrating

bodies is kept up only during a small number of vibrations, then, however

regular may be the vibrations of each body while it lasts, the resultant dis-
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turbance of the luminiferous medium, when analysed by the prism, will be

Ibund to contain, besides the part due to the regular vibrations, other motions,

depending on the starting and stopping of each particular vibrating body,

which will become manifest as a diffused luminosity scattered over the whole

length of the spectrum. A spectrum of bright lines, therefore, indicates that

the vibrating bodies when set in motion are allowed to vibrate in accordance

with the conditions of their internal structure for some time before they are

again interfered with by external forces.

It appears, therefore, from spectroscopic evidence that each molecule of u

rarefied gas is, during the greater part of its existence, at such a distance

from all other molecules that it executes its vibrations in an undisturbed and

regular manner. This is the same conclusion to which we were led by con-

siderations of another kind at p. 452.

We may therefore regard the bright lines in the spectrum of a gas as

the result of the vibrations executed by the molecules while describing their

free paths. When two molecules separate from one another after an encounter,

each of them is in a state of vibration, arising from the unequal action on

dijBferent parts of the same molecule during the encounter. Hence, though the

centre of mass of the molecule describing its free path moves with uniform

velocity, the parts of the molecule have a vibratory motion with respect to

the centre of mass of the whole molecule, and it is the disturbance of the

luminiferous medium communicated to it by the vibrating molecules which

constitutes the emitted light.

We may compare the vibrating molecule to a bell. When struck, the

bell is set in motion. This motion is compounded of harmonic vibrations of

many difi(erent periods, each of which acts on the air, producing notes of as

many different pitches. As the bell communicates its motion to the air, these

vibrations necessarily decay, some of them faster than others, so that the

sound contains fewer and fewer notes, till at last it is reduced to the funda-

mental note of the bell''. If we suppose that there are a great many bells

precisely similar to each other, and that they are struck, first one and then

another, in a perfectly irregular manner, yet so that, on an average, as many
bells are struck in one second of time as in another, and also in such a wav

* Part of the energy of motion is, in tbe case of the bell, dissipated in the substjxnce of the bell

in virtue of the viscosity of the metal, and assumes the form ot heat, but it is not necessaiy, for the

purpose of illustration, to take this cause of the decay of vibrations into account.
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that, on an average, any one bell is not again struck till it has ceased to

vibrate, then the audible result will appear a continuous sound, composed of

the sound emitted by bells in all states of vibration, from the clang of the

actual stroke to the final hum of the dying fundamental tone.

But now let the number of bells be reduced while the same number of

strokes are given in a second. Each bell will now be struck before it has

ceased to vibrate, so that in the resulting sound there will be less of the

fundamental tone and more of the original clang, till at last, when the peal is

reduced to one bell, on which innumerable hammers are continually plying

then- strokes all out of time, the sound will become a mere noise, in which

no musical note can be distinguished.

In the case of a gas we have an immense number of molecules, each of

which is set in vibration when it encounters another molecule, and continues

to vibrate as it describes its free path. The molecule is a material system,

the parts of which are connected in some definite way, and from the fact that

the bright lines of the emitted light have always the same wave-lengths, we

learn that the vibrations corresponding to these lines are always executed in

the same periodic time, and therefore the force tending to restore any part of

the molecule to its position of equilibrium in the molecule must be propor-

tional to its displacement relative to that position.

From the mathematical theory of the motion of such a system, it appears

that the whole motion may be analysed into the following parts, which may

be considered each independently of the others :—In the first place, the centre

of mEiss of the system moves with uniform velocity in a straight line. This

velocity may have any value. In the second place, there may be a motion of

rotation, the angular momentum of the system about its centre of mass re-

maining during the free path constant in magnitude and direction. This angular

momentum may have any value whatever, and its axis may have any direction.

In the third place, the remainder of the motion is made up of a number of

component motions, each of which is an harmonic vibration of a given type.

In each type of vibration the periodic time of vibration is determined by the

nature of the system, and is invariable for the same system. The relative

amount of motion in different parts of the system is also determinate for each

type, but the absolute amount of motion and the phase of the vibration of

each type are determined by the particular circumstances of the last encounter,

and may vary in any manner from one encounter to another.
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The values of the periodic times of the different types of vibration are

given by the roots of a certain equation, the form of which depends on the

nature of the connections of the system. In certain exceptionally simple cases,

as, for instance, in that of a uniform string stretched between two fixed points,

the roots of the equation are connected by simple arithmetical relations, and

if the internal structure of a molecule had an analogous kind of simplicity, we

might expect to find in the spectrum of the molecule a series of bright lines,

whose wave-lengths are in simple arithmetical ratios.

But if we suppose the molecule to be constituted according to some dif-

ferent type, as, for instance, if it is an elastic sphere, or if it consists of a

finite number of atoms kept in their places by attractive and repulsive forces,

the roots of the equation will not be connected with each other by any simple

relations, but each may be made to vary independently of the others by a

suitable change of the connections of the system. Hence, we have no right to

expect any definite numerical relations among the wave-lengths of the bright

lines of a gas.

The bright lines of the spectrum of an incandescent gas are therefore due

to the harmonic vibrations of the molecules of the gas during their free paths.

The only effect of the motion of the centre of mass of the molecule is to

alter the time of vibration of the light as received by a stationary observer.

When the molecule is coming towards the observer, each successive impulse

will have a shorter distance to travel before it reaches his eye, and therefore

the impulses will appear to succeed each other more rapidly than if the mole-

cule were at rest, and the contrary will be the case if the molecule is receding

from the observer. The bright line corresponding to the vibration will there-

fore be shifted in the spectrum towards the blue end when the molecule is

approaching, and towards the red end when it is receding from the observer.

By observations of the displacement of certain lines in the spectrum, Dr Huggins

and others have measured the rate of approach or of recession of certain stars

with respect to the earth, and Mr Lockyer has determined the rate of motion

of tornadoes in the sun. But Lord Rayleigh has pointed out that according

to the dynamical theory of gases the molecules are moving hither and thither

with so great velocity that, however nan'ow and sharply-defined any bright line

due to a single molecule may be, the displacement of the line towards the

blue by the approaching molecules, and towards the red by the receding mole-

cules, will produce a certain amount of widening and blurring of the line in

VOL. II. 51)
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the spectrum, so that there is a limit to the sharpness of definition of the

lines of a gas. The widening of the lines due to this cause will be in pro-

portion to the velocity of agitation of the molecules. It will be greatest for

the molecules of smallest mass, as those of hydrogen, and it will increase with

the temperature. Hence the measurement of the breadth of the hydrogen lines,

such as C or i^ in the spectrum of the solar prominences, may furnish evidence

that the temperature of the sun cannot exceed a certain value.

On the Theory of Vortex Atoms.

The equations which form the foundations of the mathematical theory of

fluid motion were fully laid down by Lagrange and the great mathematicians

of the end of last century, but the number of solutions of cases of fluid

motion which had been actually worked out remained very small, and almost

all of these belonged to a particular type of fluid motion, which has been

since named the irrotational type. It had been shewn, indeed, by Lagrange,

that a perfect fluid, if its motion is at any time irrotational, will continue in

all time coming to move in an irrotational manner, so that, by assuming that

the fluid was at one time at rest, the calculation of its subsequent motion may

be very much simplified.

It was reserved for Helmholtz to point out the very remarkable properties

of rotational motion in a homogeneous incompressible fluid devoid of all viscosity.

We must first define the physical properties of such a fluid. In the first place,

it is a material substance. Its motion is continuous in space and time, and

if we follow any portion of it as it moves, the mass of that portion remains

invariable. These properties it shares with all material substances. In the next

place, it is incompressible. The form of a given portion of the fluid may change,

but its volume remains invariable ; in other words, the density of the fluid

remains the same during its motion. Besides this, the fluid is homogeneous, or

the density of all parts of the fluid is the same. It is also continuous, so

that the mass of the fluid contained within any closed surface is always exactly

proportional to the volume contained within that surface. This is equivalent

to asserting that the fluid is not made up of molecules; for, if it were, the

mass would vary in a discontinuous manner as the volume increases continuously,

because first one and then another molecule would be included within the closed
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surface. Lastly, it is a perfect fluid, or, in other words, the stress between

one portion and a contiguous portion is always normal to the surface which

separates these portions, and this whether the fluid is at rest or in motion.

We have seen that in a molecular fluid the interdiSusion of the molecules

causes an interdifiusion of motion of different parts of the fluid, so that

the action between contiguous parts is no longer normal but in a direction

tending to diminish their relative motion. Hence the perfect fluid cannot be

molecular.

All tha.t is necessary in order to form a correct mathematical theory of

a material system is that its properties shall be clearly defined and shall be

consistent with each other. This is essential ; but whether a substance having

such properties actually exists is a question which comes to be considered

only when we propose to make some practical application of the results of the

mathematical theory. The properties of our perfect liquid are clearly defined

and consistent with each other, and from the mathematical theory we can

deduce remarkable results, some of which may be illustrated in a rough way

by means of fluids which are by no means perfect in the sense of not being

viscous, such, for instance, as air and water.

The motion of a fluid is said to be irrotational when it is such that if a

spherical portion of the fluid were suddenly solidified, the solid sphere so formed

would not be rotating about any axis. When the motion of the fluid is rota-

tional the axis and angular velocity of the rotation of any small part of the

fluid are those of a small spherical portion suddenly solidified.

The mathematical expression of these definitions is as follows :—Let it, v, ic

be the components of the velocity of the fluid at the point {x, y, z), and let

_dv dw n_dw du _du _dv , .

°'~dz~d[y* '^~dx dz' dy dx

then a, /3, y are the components of the velocity of rotation of the fluid at the

point (x, y, 2). The axis of rotation is in the direction of the resultant of

a, ^, and 7, and the velocity of rotation, w, is measured by this resultant.

A line drawn in the fluid, so that at every point of the line

\dx _\ dy _ 1 ^ _ L /o\

ads ~^ ds yds w

where s is the length of the line up to the point x, y, %, is called a vortex

59—2
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line. Its direction coincides at every point with that of the axis of rotation

of the fluid.

We may now prove the theorem of Helmholtz, that the points of the

fluid which at any instant lie in the same vortex line continue to lie in the

same vortex line during the whole motion of the fluid.

The equations of motion of a fluid are of the form

hu dp dV ^ r_K

when p is the density, which in the case of our homogeneous incompressible

fluid we may assume to be unity, the operator ^ represents the rate of varia-

tion of the symbol to which it is prefixed at a point which is carried for^vard

with the fluid, so that

hu du du du dii ,,.

Si
= di+''di+''7hj+'"d^

(*>•

j) is the pressure, and V is the potential of external forces. There are two

other equations of similar form in y and z. Difierentiating the equation in y

with respect to z, and that in z with respect to y, and subtracting the second

from the first, we find

dzTt~d^Tt~^ ^ ^

Performing the difierentiations and remembering equations (1) and also the

condition of incompressibility,

du dv dw _ //,v

dx dy dz

r, , ha. du ^du du ,„^
-'' fi"'^

St=''di+^Ty+yTz (')•

Now, let us suppose a vortex line drawn in the fluid so as always to

begin at the same particle of the fluid. The components of the velocity of this

point are u, v, w. Let us find those of a point on the moving vortex line at

a distance ds from this point where

ds = (odcr (8).
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The co-ordinates of this point are

x-\-ada; y + fid(r, z + yda- (9),

and the components of its velocity are

u+"'d(T, v+^da, iv+^da- (10).

Consider the first of these components. In virtue of equation (7) we may

write it

„ + ^<«i^+|'^c;cr +gW- (11)-

du dx 1 _ du dy , ,
du dz , /,n\

dx da- dy da dz da

or w + -i- c?cr (13).
da-

But this represents the value of the component u of the velocity of the fluid

itself at the same point, and the same thing may be proved of the other

components.

Hence the velocity of the second point on the vortex line is identical

with that of the fluid at that point. In other words, the vortex line swims

along with the fluid, and is always formed of the same row of fluid particles.

The vortex line is therefore no mere mathematical symbol, but has a physical

existence continuous in time and space.

By differentiating equations (1) with respect to x, y, and z respectively,

and adding the results, we obtain the equation

—

^ +^ +^ = (14).
dx dy dz

This is an equation of the same form with (6), which expresses the con-

dition of flow of a fluid of invariable density. Hence, if we imagine a fluid,

quite independent of the original fluid, w^hose components of velocity are a, ^, y,

this imaginary fluid will flow without altering its density.

Now, consider a closed curve in space, and let vortex lines be drawn in

both directions from every point of this curv^e. These vortex lines will form

a tubular surface, which is called a vortex tube or a vortex filament. Since the

imaginary fluid flows along the vortex lines without change of density, the
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quantity which in unit of time flows through any section of the same vortex

tube must be the same. Hence, at any section of a vortex tube the product

of the area of the section into the mean velocity of rotation is the same.

This quantity is called the strength of the vortex tube.

A vortex tube cannot begin or end within the fluid; for, if it did, the

imaginary fluid, whose velocity components are a, ^, y, would be generated from

nothing at the beginning of the tube, and reduced to nothing at the end of it.

Hence, if the tube has a beginning and an end, they must lie on the surface

of the fluid mass. If the fluid is infinite the vortex tube must be infinite, or

else it must return into itself.

We have thus arrived at the following remarkable theorems relating to a

finite vortex tube in an infinite fluid:—(1) It returns into itself, forming a

closed ring. We may therefore describe it as a vortex ring. (2) It always

consists of the same portion of the fluid. Hence its volume is invariable. (3)

Its strength remains always the same. Hence the velocity of rotation at any

section varies inversely as the area of that section, and that of any segment

varies du'ectly as the length of that segment. (4) No part of the fluid which

is not originally in a state of rotational motion can ever enter into that state,

and no part of the fluid whose motion is rotational can ever cease to move

rotationally. (5) No vortex tube can ever pass through any other vortex tube,

or through any of its own convolutions. Hence, if two vortex, tubes are linked

together, they can never be separated, and if a single vortex tube is knotted

on itself, it can never become untied. (6) The motion at any instant of every

part of the fluid, including the vortex rings themselves, may be accurately

represented by conceiving an electric current to occupy the place of each vortex

ring, the strength of the current being proportional to that of the ring. The

magnetic force at any point of space will then represent in direction and mag-

nitude the velocity of the fluid at the corresponding point of the fluid.

These properties of vortex rings suggested to Sir William Thomson* the

possibility of founding on them a new form of the atomic theory. The con-

ditions which must be satisfied by an atom are—permanence in magnitude,

capability of internal motion or vibration, and a sufficient amount of possible

characteristics to account for the difference between atoms of different kinds.

The small hard body imagined by Lucretius, and adopted by Newton, was

invented for the express purpose of accounting for the permanence of the pro-

* "On Vortex Atoms," Proc. Roy, Soc. Edin., 18th February, 1867.
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perties of bodies. But it fails to account for the vibrations of a molecule as

revealed by the spectroscope. We may indeed suppose the atom elastic, but

this is to endow it with the very property for the explanation of which, as

exhibited in aggregate bodies, the atomic constitution was originally assumed.

The massive centres of force imagined by Boscovich may have more to recom-

mend them to the mathematician, who has no scruple in supposing them to be

invested with the power of attracting and repelling according to any law of the

distance which it may please him to assign. Such centres of force are no

doubt in their own nature indivisible, but then they are also, singly, incapable

of vibration. To obtain vibrations we must imagine molecules consisting of

many such centres, but, in so doing, the possibility of these centres being

separated altogether is again introduced. Besides, it is in questionable scientific

taste, after using atoms so freely to get rid of forces acting at sensible dis-

tances, to make the whole function of the atoms an action at insensible distances.

On the other hand, the vortex ring of Helmholtz, imagined as the true

form of the atom by Thomson, satisfies more of the conditions than any atom

hitherto imagined. In the first place, it is quantitatively permanent, as regards

its volume and its strength,—two independent quantities. It is also qualita-

tively permanent as regards its degree of implication, whether " knottedness
'

on itself or "linkedness" with other vortex rings. At the same time, it is

capable of infinite changes of form, and may execute vibrations of different

periods, as we know that molecules do. And the number of essentially dif-

ferent implications of vortex rings may be very great without supposing the

degree of implication of any of them very high.

But the greatest recommendation of this theory, from a philosophical point

of view, is that its success in explaining phenomena does not depend on the

ingenuity with which its contrivers "save appearances," by introducing first one

hypothetical force and then another. When the vortex atom is once set in

motion, all its properties are absolutely fixed and determined by the laws of

motion of the primitive fluid, which are fully expressed in the fundamental

equations. The disciple of Lucretius may cut and carve his solid atoms in the

hope of getting them to combine into worlds; the follower of Boscovich may

imagine new laws of force to meet the requirements of each new phenomenon

;

but he who dares to plant his feet in the path opened up by Helmholtz and

Thomson has no such resources. His primitive fluid has no other properties than

inertia, invariable density, and perfect mobility, and the method by whicli the



472 ATOM.

motion of this fluid is to be traced is pure mathematical analysis. The diffi-

culties of this method are enormous, but the glory of surmounting them would

be unique.

There seems to be little doubt that an encounter between two vortex

atoms would be in its general character similar to those which we have already

described. Indeed, the encounter between two smoke rings in air gives a very

lively illustration of the elasticity of vortex rings.

But one of the first, if not the very first desideratum in a complete theory

of matter is to explain—first, mass, and second, gravitation. To explain mass

may seem an absurd achievement. "We generally suppose that it is of the essence

of matter to be the receptacle of momentum and energy, and even Thomson,

in his definition of his primitive fluid, attributes to it the possession of mass.

But according to Thomson, though the primitive fluid is the only true matter,

yet that which we call matter is not the primitive fluid itself, but a mode

of motion of that primitive fluid. It is the mode of motion which constitutes

the vortex rings, and which furnishes us with examples of that permanence and

continuity of existence which we are accustomed to attribute to matter itself.

The primitive fluid, the only true matter, entirely eludes our perceptions when

it is not endued with the mode of motion which converts certain portions of

it into vortex rings, and thus renders it molecular.

In Thomson's theory, therefore, the mass of bodies requires explanation. We
have to explain the inertia of what is only a mode of motion, and inertia is

a property of matter, not of modes of motion. It is true that a vortex ring

at any given instant has a definite momentum and a definite energy, but to

shew that bodies built up of vortex rings would have such momentum and

energy as we know them to have is, in the present state of the theory, a

very difiicult task>

It may seem hard to say of an infant theory that it is bound to explain

gravitation. Since the time of Newton, the doctrine of gravitation has been

admitted and expounded, till it has gradually acquired the character rather of

an ultimate fact than of a fact to be explained.

It seems doubtful whether Lucretius considers gravitation to be an essential

property of matter, as he seems to assert in the very remarkable lines

—

"Nam si tantundem est in lanse glomere, quantum

Corporis in plumbo est, tantundem pendere par est

:

Corporis officium est quoniam premere omnia deorsum."

—

De Rerv.m Natura, i, 3G1.
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If this is the true opinion of Lucretius, and if the downward flight of the

atoms arises, in liis view, from their own gravity, it seems very doubtful whether

he attributed the weight of sensible bodies to the impact of the atoms. The

latter opinion is that of Le Sage, of Geneva, propounded in his Liicrkce New-

tonien, and in his Traite cle Physique Mecanique, published, along with a second

treatise of his own, by Pierre Prevost, of Geneva, in 1818*. The theory of

Le Sage is that the gravitation of bodies towards each other is caused by the

impact of streams of atoms flying in all directions through space. These atoms

he calls ultramundane corpuscules, because he conceives them to come in all

directions from regions far beyond that part of the system of the world which

is in any way known to us. He supposes each of them to be so small that

a collision with another ultramundane corpuscule is an event of very rare occur-

rence. It is by striking against the molecules of gross matter that they dis-

charge their function of drawing bodies towards each other. A body placed by
itself in free space and exposed to the impacts of these corpuscules would be

bandied about by them in all directions, but because, on the whole, it receives

as many blows on one side as on another, it cannot thereby acquire any sensible

velocity. But if there are two bodies in space, each of them will screen the

other from a certain proportion of the corpuscular bombardment, so that a

smaller number of corpuscules will strike either body on that side which is next

the other body, while the number of corpuscules which strike it in other direc-

tions remains the same.

Each body will therefore be urged towards the other by the effect of the

excess of the impacts it receives on the side furthest from the other. If we
take account of the impacts of those corpuscules only which come directly from
infinite space, and leave out of consideration those which have already struck

mundane bodies, it is easy to calculate the result on the two bodies, supposing

their dimensions small compared with the distance between them.

The force of attraction would vary directly as the product of the areas of

the sections of the bodies taken normal to the distance and inversely as the

square of the distance between them.

Now, the attraction of gravitation varies as the product of the masses of

the bodies between which it acts, and inversely as the square of the distance

between them. If, then, we can imagine a constitution of bodies such that

* See also Constitution de la Matiere, &c., par le P. Leray, Paris, 18G9.

VOL. II.
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the effective areas of the bodies are proportional to their masses, we shall make

the two laws coincide. Here, then, seems to be a path leading towards an

explanation of the law of gravitation, which, if it can be shewn to be in

other respects consistent with facts, may turn out to be a royal road into the

very arcana of science.

Le Sage himself shews that, in order to make the effective area of a body,

in virtue of which it acts as a screen to the streams of ultramundane cor-

puscules, proportional to the mass of the body, whether the body be large or

small, we must admit that the size of the solid atoms of the body is exceed-

ingly small compared with the distances between them, so that a very small

proportion of the corpuscules are stopped even by the densest and largest bodies.

We may picture to ourselves the streams of corpuscules coming in every direc-

tion, like light from a uniformly illuminated sky. We may imagine a material

body to consist of a congeries of atoms at considerable distances from each other,

and we may represent this by a swarm of insects flying in the air. To an

observer at a distance this swarm will be visible as a slight darkening of the

sky in a certain quarter. This darkening will represent the action of the

material body in stopping the flight of the corpuscules. Now, if the proportion

of light stopped by the swarm is very small, two such swarms will stop nearly

the same amount of light, whether they are in a line with the eye or not, but

if one of them stops an appreciable proportion of light, there will not be so

much left to be stopped by the other, and the effect of two swarms in a line

with the eye will be less than the sum of the two effects separately.

Now, we know that the effect of the attraction of the sun and earth on

the moon is not appreciably different when the moon is eclipsed than on other

occasions when full moon occurs without an eclipse. This shews that the number

of the corpuscules which are stopped by bodies of the size and mass of the

earth, and even the sun, is very small compared with the number which pass

straight through the earth or the sun without striking a single molecule. To

the streams of corpuscules the earth and the sun are mere systems of atoms

scattered in space, which present far more openings than obstacles to their recti-

linear flight.

Such is the ingenious doctrine of Le Sage, by which he endeavours to

explain universal gravitation. Let us try to form some estimate of this con-

tinual bombardment of ultramundane corpuscules which is being kept up on all

sides of us.
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We have seen that the sun stops but a very small fraction of the cor-

puscules which enter it. The earth, being a smaller body, stops a still smaller

proportion of them. The proportion of those which are stopped by a small

body, say a 1 lb. shot, must be smaller still in an enormous degree, because its

thickness is exceedingly small compared with that of the earth.

Now, the weight of the ball, or its tendency towards the earth, is produced,

according to this theory, by the excess of the impacts of the corpuscules which

come from above over the impacts of those which come from below, and have

passed through the earth. Either of these quantities is an exceedingly small

fraction of the momentum of the whole number of corpuscules which pass through

the ball in a second, and their difference is a small fraction of either, and yet

it is equivalent to the weight of a pound. The velocity of the corpuscules

must be enormously greater than that of any of the heavenly bodies, other-

wise, as may easily be shewn, they would act as a resisting medium opposing

the motion of the planets. Now, the energy of a moving system is half the

product of its momentum into its velocity. Hence the energy of the corpuscules,

which by their impacts on the ball during one second urge it towards the earth,

must be a number of foot-pounds equal to the number of feet over which a

corpuscule travels in a second, that is to say, not less than thousands of millions.

But this is only a small fraction of the energy of all the impacts which the

atoms of the ball receive from the innumerable streams of corpuscules which fall

upon it in all directions.

Hence the rate at which the energy of the corpuscules is spent in order

to maintain the gravitating property of a single pound, is at least millions of

millions of foot-pounds per second.

What becomes of this enormous quantity of energy ? If the corpuscules,

after striking the atoms, fly off with a velocity equal to that which they had

before, they will carr\^ their energy away with them into the ultramundane

regions. But if this be the case, then the corpuscules rebounding from the body

in any given direction will be both in number and in velocity exactly equiva-

lent to those which are prevented from proceeding in that direction by being

deflected by the body, and it may be shewn that this will be the case what-

ever be the shape of the body, and however many bodies may be present in

the field. Thus, the rebounding corpuscules exactly make up for those which

are deflected by the body, and there will be no excess of the impacts on any

other body in one direction or another.

60—2
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The explanation of gravitation, therefore, falls to the ground if the cor-

puscules are like perfectly elastic spheres, and rebound with a velocity of

separation equal to that of approach. If, on the other hand, they rebound with

a smaller velocity, the effect of attraction between the bodies will no doubt

be produced, but then we have to find what becomes of the energy which

the molecules have brought with them but have not carried away.

K any appreciable fraction of this energy is communicated to the body in

the form of heat, the amount of heat so generated would in a few seconds

raise it, and in like manner the whole material universe, to a white heat.

It has been suggested by Sir W. Thomson that the corpuscules may be

so constructed as to carry off their energy with them, provided that part of

their kinetic energy is transformed, during impact, from energy of translation

to energy of rotation or vibration. For this purpose the corpuscules must be

material systems, not mere points. Thomson suggests that they are vortex

atoms, which are set into a state of vibration at impact, and go off with a

smaller velocity of translation, but in a state of violent vibration. He has also

suggested the possibility of the vortex corpuscule regaining its swiftness and

losing part of its vibratory agitation by communion with its kindred cor-

puscules in mfinite space.

We have devoted more space to this theory than it seems to deserve,

because it is ingenious, and because it is the only theory of the cause of

gravitation which has been so far developed as to be capable of being attacked

and defended. It does not appear to us that it can account for the tem-

perature of bodies remaining moderate while their atoms are exposed to the

bombardment. The temperature of bodies must tend to approach that at

which the average kinetic energy of a molecule of the body would be equal

to the average kinetic energy of an ultramundane corpuscule.

Now, suppose a plane surface to exist which stops all the corpuscules.

The pressure on this plane will be p = NMu'^ where M is the mass of a cor-

puscule, N the number in unit of volume, and u its velocity normal to the

plane. Now, we know that the very greatest pressure existing in the universe

must be much less than the pressure
i^,

which would be exerted against a body

which stops all the corpuscules. We are also tolerably certain that N, the

number of corpuscules which are at any one time within unit of volume, is,

small compared with the value of N for the molecules of ordmary bodies.

Hence, Mu'^ must be enomious compared with the corresponding quantity for
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ordinary bodies, and it follows that the impact of the corpuscules would raise

all bodies to an enormous temperature. We may also observe that according

to this theory the habitable universe, which we are accustomed to regard as

the scene of a magnificent illustration of the conservation of energy as the

fundamental principle of all nature, is in reality maintained in working order

only by an enormous expenditure of external power, which would be nothing

less than ruinous if the supply were drawn from anywhere else than from the

infinitude of space, and which, if the contrivances of the most eminent mathe-

maticians should be found in any respect defective, might at any moment tear

the whole universe atom from atom.

We must now leave these speculations about the nature of molecules and

the cause of gravitation, and contemplate the material universe as made up of

molecules. Every molecule, so far as we know, belongs to one of a definite

number of species. The list of chemical elements may be taken as repre-

senting the known species which have been examined in the laboratories.

Several of these have been discovered by means of the spectroscope, and more

may yet remain to be discovered in the same way. The spectroscope has also

been applied to analyse the Hght of the sun, the brighter stars, and some of

the nebulae and comets, and has shewn that the character of the light

emitted by these bodies is similar in some cases to that emitted by terres-

trial molecules, and in others to light from which the molecules have absorbed

certain rays. In this way a considerable number of coincidences have been

traced between the systems of lines belonging to particular terrestrial sub-

stances and con-esponding lines in the spectra of the heavenly bodies.

The value of the evidence furnished by such coincidences may be estimated

by considering the degree of accuracy with which one such coincidence may be

observed. The interval between the two lines which form Fraunhofer's line D
is about the five hundredth part of the interval between B and G on Kirch

-

hoff's scale. A discordance between the positions of two lines amounting to

the tenth part of this interval, that is to say, the five thousandth part of

the length of the bright part of the spectrum, would be very perceptible in

a spectroscope of moderate powder. We may define the power of the spectro-

scope to be the number of times which the smallest measurable inten.'al is

contained in the length of the visible spectrum. Let us denote this by 79. In

the case we have supposed p will be about 5000.

If the spectrum of the sun contains n lines of a certain degree of inten-
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sity, the probability that any one line of the spectrum of a gas will coincide

with one of these n lines is

1 - - = - 1
7^ + &c.

and when p is large compared with n, this becomes nearly - . If there are

r lines in the spectrum of the gas, the probability that each and every one

shall coincide with a line in the solar spectrum is approximately — . Hence,

in the case of a gas whose spectrum contains several lines, we have to com-

pare the results of two hypotheses. If a large amount of the gas exists in

the sun, we have the strongest reason for expecting to find all the r lines in

the solar spectrum. If it does not exist, the probability that r lines out of

the n observed lines shaU coincide with the lines of the gas is exceedingly

small. If, then, we find all the r lines in their proper places in the solar

spectrum, we have very strong grounds for believing that the gas exists in the

sun. The probability that the gas exists in the sun is greatly strengthened

if the character of the lines as to relative intensity and breadth is found to

correspond in the two spectra.

The absence of one or more lines of the gas in the solar spectrum tends

of course to weaken the probability, but the amount to be deducted from the

probability must depend on what we know of the variation in the relative

intensity of the lines when the temperature and the pressure of the gas are

made to vary.

Coincidences observed, in the case of several terrestrial substances, with

several systems of lines in the spectra of the heavenly bodies, tend to increase

the evidence for the doctrine that terrestrial substances exist in the heavenly

bodies, while the discovery of particular lines in a celestial spectrum which do

not coincide with any line in a terrestrial spectrum does not much weaken

the general argument, but rather indicates either that a substance exists in the

heavenly body not yet detected by chemists on earth, or that the temperature

of the heavenly body is such that some substance, undecomposable by our

methods, is there split up into components unknown to us in their separate

state.

We are thus led to believe that in widely-separated parts of the visible

universe molecules exist of various kinds, the molecules of each kind having
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their various periodf? of vibration either identical, or so nearly identical that our

spectroscopes cannot distinguish them. We might argue from this that these

molecules are alike in all other respects, as, for instance, in mass. But it is

sufficient for our present purpose to observe that the same kind of molecule,

say that of hydrogen, has the same set of periods of vibration, whether ^^•e

procure the hydrogen from water, from coal, or from meteoric iron, and that

light, having the same set of periods of vibration, comes to us from the sun,

from Sirlus, and from Arcturus.

The same kind of reasoning which led us to believe that hydrogen exists

in the sun and stars, also leads us to believe that the molecules of hydrogen

in all these bodies had a common origin. For a material system capable of

vibration may have for its periods of vibration any set of values whatever.

The probability, therefore, that two material systems, quite independent of each

other, shall have, to the degree of accuracy of modern spectroscopic measure-

ments, the same set of periods of vibration, is so very small that we are

forced to believe that the two systems are not independent of each other.

When, instead of two such systems, we have innumerable multitudes all

having the same set of periods, the argument is immensely strengthened.

Admitting, then, that there is a real relation between any two molecules

of hydrogen, let us consider what this relation may be.

We may conceive of a mutual action between one body and another

tending to assimilate them. Two clocks, for instance, will keep time with each

other if connected by a wooden rod, though they have different rates if thev

were disconnected. But even if the properties of a molecule were as capable

of modification as those of a clock, there is no physical connection of a suffi-

cient kind between Sirius and ArctuiTis.

There are also methods by which a large number of bodies differing froni

each other may be sorted into sets, so that those in each set more or less

resemble each other. In the manufacture of small shot this is done by making

the shot roll down an inclined plane. The largest specimens acquire the greatest

velocities, and are projected farther than the smaller ones. In this way the

various pellets, which differ both in size and in roundness, are sorted into

different kinds, those belonging to each kind being nearly of the same size,

and those which are not tolerably spherical being rejected altogether.

If the molecules were originally as various as these leaden pellets, and

were afterwards sorted into kinds, we should have to account for the dis-
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appearance of all the molecules which did not fall under one of the very limited

number of kinds known to us ; and to get rid of a number of indestructible

bodies, exceeding by far the number of the molecules of all the recognised

kinds, would be one of the severest labours ever proposed to a cosmogonist.

It is well known that living beings may be grouped into a certain number

of species, defined with more or less precision, and that it is difficult or im-

possible to find a series of individuals forming the links of a continuous chain

between one species and another. In the case of living beings, however, the

generation of individuals is always going on, each individual differing more or

less from its parents. Each individual during its whole life is undergoing

modification, and it either survives and propagates its species, or dies early,

accordingly as it is more or less adapted to the circumstances of its environ-

ment. Hence, it has been found possible to frame a theory of the distribution

of organisms into species by means of generation, variation, and discriminative

destruction. But a theory of evolution of this kind cannot be appHed to the

case of molecules, for the individual molecules neither are born nor die, they

have neither parents nor offepring, and so far from being modified by their en-

vironment, we find that two molecules of the same kind, say of hydrogen,

have the same properties, though one has been compounded with carbon and

buried in the earth as coal for untold ages, while the other has been " oc-

cluded " in the iron of a meteorite, and after unknown wanderings in the

heavens has at last fallen into the hands of some terrestrial chemist.

The process by which the molecules become distributed into distinct species

is not one of which we know any instances going on at present, or of which

we have as yet been able to form any mental representation. If we suppose

that the molecules known to us are built up each of some moderate number

of atoms, these atoms being all of them exactly alike, then we may attribute

the limited number of molecular species to the limited number of ways in

which the primitive atoms may be combined so as to form a permanent system.

But though this hypothesis gets rid of the difficulty of accounting for the

independent origin of different species of molecules, it merely transfers the diffi-

culty from the known molecules to the primitive atoms. How did the atoms

come to be all alike in those properties which axe in themselves capable of

assuming any value ?

If we adopt the theory of Boscovich, and assert that the primitive atom

is a mere centre of force, having a certain definite mass, we may get over the
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difficulty about the equality of the mass of all atoms by laying it down as

a doctrine which cannot be disproved by experiment, that mass is not a

quantity capable of continuous increase or diminution, but that it is in its

own nature discontinuous, like number, the atom being the unit, and all masses

being multiples of that unit. We have no evidence that it is possible for the

ratio of two masses to be an incommensurable quantity, for the incommen-

surable quantities in geometry are supposed to be traced out in a continuous

medium. If matter is atomic, and therefore discontinuous, it is unfitted for

the construction of perfect geometrical models, but in other respects it may

fulfil its functions.

But even if we adopt a theory js'hich makes the equality of the mass of

different atoms a result depending on the nature of mass rather than on any

quantitative adjustment, the correspondence of the periods of vibration of actual

molecules is a fact of a different order.

"We know that radiations exist having periods of vibration of every value

between those corresponding to the limits of the visible spectrum, and probably

far beyond these limits on both sides. The most powerful spectroscope can

detect no gap or discontinuity in the spectrum of the light emitted by incan-

descent lime.

The period of vibration of a luminous particle is therefore a quantity which

in itself is capable of assuming any one of a series of values, which, if not

mathematically continuous, is such that consecutive observed values differ from

each other by less than the ten thousandth part of either. There is, therefore,

nothing in the nature of time itself to prevent the period of vibration of a

molecule from assuming any one of many thousand different observable values.

That which determines the period of any particular kind of vibration is the

relation which subsists between the corresponding type of displacement and the

force of restitution thereby called into play, a relation involving constants of

space and time as well as of mass.

It is the equality of these space- and time-constants for all molecules of

the same kind which we have next to consider. We have seen that the very

different circumstances in which different molecules of the same kind have been

placed have not, even in the course of many ages, produced any appreciable

difference in the values of these constants. If, then, the various processes of

nature to which these molecules have been subjected since the world began

have not been able in all that time to produce any appreciable difference

VOL. 11. 61
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between the constants of one molecule and those of another, we are forced

to conclude that it is not to the operation of any of these processes that the

uniformity of the constants is due.

The formation of the molecule is therefore an event not belonging to that

order of nature under which we live. It is an operation of a kind which is

not, so far as we are aware, going on on earth or in the sun or the stars,

either now or since these bodies began to be formed. It must be referred to

the epoch, not of the formation of the earth or of the solar system, but of

the establishment of the existing order of nature, and till not only these

worlds and systems, but the very order of nature itself is dissolved, we have
no reason to expect the occurrence of any operation of a similar kind.

In the present state of science, therefore, we have strong reasons for be-

lieving that in a molecule, or if not in a molecule, in one of its component
atoms, we have something which has existed either from eternity or at least

from times anterior to the existing order of nature. But besides this atom,

there are immense numbers of other atoms of the same kind, and the constants

of each of these atoms are incapable of adjustment by any process now in

action. Each is physically independent of all the others.

Whether or not the conception of a multitude of beings existing from all

eternity is in itself self-contradictory, the conception becomes palpably absurd

when we attribute a relation of quantitative equality to all these beings. "We

are then forced to look beyond them to some common cause or common origin

to explain why this singular relation of equality exists, rather than any one

of the infinite number of possible relations of inequality.

Science is incompetent to reason upon the creation of matter itself out

of nothing. We have reached the utmost limit of our thinking faculties when
we have admitted that, because matter cannot be eternal and self-existent, it

must have been created. It is only when we contemplate not matter in itself,

but the form in which it actually exists, that our mind finds something on

which it can lay hold.

That matter, as such, should have certain fundamental properties, that it

should have a continuous existence in space and time, that all action should

be between two portions of matter, and so on, are truths which may, for

aught we know, be of the kind which metaphysicians call necessaiy. We may
use our knowledge of such truths for purposes of deduction, but we have no

data for speculating on their origin.
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But the equality of the constants of the molecules is a fact of a very

different order. It arises from a particular distribution of matter, a collocation.

to use the expression of Dr Chalmers, of things which we have no difficulty in

imagining to have been arranged otherwise. But many of the ordinary instances

of collocation are adjustments of constants, which are not only arbitrary in

their own nature, but in which variations actually occur; and when it is

pointed out that these adjustments are beneficial to living beings, and are

therefore instances of benevolent design, it is replied that those variations

which are not conducive to the growth and multiplication of living beings

tend to their destruction, and to the removal thereby of the evidence of any

adjustment not beneficial.

The constitution of an atom, however, is such as to render it, so far as

we can judge, independent of all the dangers arising from the struggle for

existence. Plausible reasons may, no doubt, be assigned for believing that if

the constants had varied from atom to atom through any sensible range, the

bodies formed by aggregates of such atoms would not have been so well fitted

for the construction of the world as the bodies which actually exist. But as

we have no experience of bodies formed of such variable atoms this must remain

a bare conjecture.

Atoms have been compared by Sir J. Herschel to manufactured articles,

on account of their uniformity. The uniformity of manufactured articles may

be traced to very diflerent motives on the part of the manufacturer. In

certain cases it is found to be less expensive as regards trouble, as well as

cost, to make a great many objects exactly alike than to adapt each to its

special requirements. Thus, shoes for soldiers are made in large numbers without

any designed adaptation to the feet of particular men. In another clai>s of

cases the uniformity is intentional, and is designed to make the manufactured

article more valuable. Thus, Whitworth's bolts are made in a certain number

of sizes, so that if one bolt is lost, another may be got at once, and accurately

fitted to its place. The identity of the arrangement of the words in the

different copies of a document or book is a matter of great practical importance,

and it is more perfectly secured by the process of printing than by that of

manuscript copying.

In a third class not a part only but the whole of the value of the object

arises from its exact conformity to a given standard. Weights and measures

belong to this class, and the existence of many well-adjusted material standards

61—2
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of weight and measure in any country furnishes evidence of the existence of
a system of law regulating the transactions of the inhabitants, and enjoining

in all professed measures a conforaiity to the national standard.

There are thus three kinds of usefulness in manufactured articles—cheap-
ness, serviceableness, and quantitative accuracy. Which of these was present
to the mind of Sir J. Herschel we cannot now positively affirm, but it was
at least as likely to have been the last as the first, though it seems more
probable that he meant to assert that a number of exactly similar things cannot
be each of them eternal and self-existent, and must therefore have been made,
and that he used the phrase "manufactured article" to suggest the idea of
their being made in great numbers.



[From the Eiicyclopcedia Britannica.

LXXIV. Attraction.

That the different parts of a material system influence each other's mo-

tions is a matter of daily observation. In some cases we cannot discover any

material connection extending from the one body to the other. We call these

cases of action at a distance, to distinguish them from those in which we can

trace a continuous material bond of union between the bodies. The mutual

action between two bodies is called stress. When the mutual action tends to

bring the bodies nearer, or to prevent them from separating, it is called tension

or attraction. When it tends to separate the bodies, or to prevent them from

approaching, it is called pressure or repulsion. The names tension and pressure

are used when the action is seen to take place through a medium. Attraction

and repulsion are reserved for cases of action at a distance. The configuration

of a material system can always be defined in terms of the mutual distances

of the parts of the system. Any change of configuration must alter one or

more of these distances. Hence the force which produces or resists such a

change may be resolved into attractions or repulsions between those parts of

the system whose distance is altered.

There has been a great deal of speculation as to the cause of such forces,

one of them, namely, the pressure between bodies in contact, being supposed

to be more easily conceived than any other kind of stress. Many attempts

have therefore been made to resolve cases of apparent attraction and repulsion

at a distance into cases of pressure. At one time the possibility of attraction

at a distance was supposed to be refuted by asserting that a body cannot act

where it is not, and that therefore all action between different portions of

matter must be by direct contact. To this it was replied that we have no

evidence that real contact ever takes place between two bodies, and that, in

fact, when bodies are pressed against each other and in apparent contact, we
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may sometimes actually measure the distance between them, as when one piece

of glass is laid on another, in which case a considerable pressure must be ap-

plied to bring the surfaces near enough to shew the black spot of Newton's

rings, which indicates a distance of about a ten thousandth of a millimetre. If,

in order to get rid of the idea of action at a distance, we imagine a ma-

terial medium through which the action is transmitted, all that we have done

is to substitute for a single action at a great distance a series of actions at

smaller distances between the parts of the medium, so that we cannot even

thus get rid of action at a distance.

The study of the mutual action between the parts of a material system

has, in modem times, been greatly simplified by the introduction of the idea

of the energy of the system. The energy of the system is measured by the

amount of work which it can do in overcoming external resistances. It depends

on the present configuration and motion of the system, and not on the manner

in which the system has acquired that configuration and motion. A complete

knowledge of the manner in which the energy of the system depends on its

configuration and motion, is sufficient to determine all the forces acting between

the parts of the system. For instance, if the system consists of two bodies,

and if the energy depends on the distance between them, then if the energy

increases when the distance increases, there must be attraction between the

bodies, and if the energy diminishes when the distance increases, there must

be repulsion between them. In the case of two gravitating masses m and m'

71X11%
at a distance r, the part of the energy which depends on r is ;— . We

may therefore express the fact that there is attraction between the two bodies

by saying that the energy of the system consisting of the two bodies increases

when their distance increases. The question, therefore, Why do the two bodies

attract each other ? may be expressed in a different form. Why does the

energy of the system increase when the distance increases ?

But we must bear in mind that the scientific or science-producing value of

the efforts made to answer these old standing questions is not to be measured

by the prospect they afford us of ultimately obtaining a solution, but by their

effect in stimulating men to a thorough investigation of nature. To propose a

scientific question presupposes scientific knowledge, and the questions which

exercise men's minds in the present state of science may very likely be such

that a little more knowledge would shew us that no answer is possible. The
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scientific value of the question, How do bodies act on one another at a dis-

tance ? is to be found in the stimulus it has given to investigations into the

properties of the intervening, medium.

Newton, in his Principia, deduces from the observed motions of the hea-

venly bodies the fact that they attract one another according to a definite law.

This he gives as a result of strict dynamical reasoning, and by it he shews

how not only the more conspicuous phenomena, but all the apparent irregu-

larities of the celestial motions are the calculable results of a single principle.

In l\is Principia he confines himself to the demonstration and development of

this great step in the science of the mutual action of bodies. He says nothing

there about the means by which bodies gravitate towards each other. But his

mind did not rest at this point. We know that he did not believe in the

direct action of bodies at a distance.

"It is inconceivable that inanimate brute matter should, without the mediation of something els*'

which is not material, operate upon and affect other matter without mutual contact, as it must do

if gi-avitation in the sense of Epicurus be essential and inherent in it...That gravity should be innate,

inherent, and essential to matter, so that one body can act upon another at a distance, through a

vacuum, without the mediation of anything else, by and through which their action and force may be

conveyed from one to another, is to me so great an absurdity, that T believe no man, who has in

philosophical matters a competent faculty of thinking, can ever fall into it."

—

Letter to Bentley.

And we also know that he sought for the mechanism of gravitation in the

properties of an sethereal medium difi*used over the universe.

" It appears, from his letters to Boyle, that this was his opinion early, and if he did not publish

it sooner it proceeded from hence only, that he found he was not able, from experiment and obser-

vation, to give a satisfactory account of this medium and the manner of its operation in producing

the chief phenomena of nature*."

In his Optical Queries, indeed, he shews that if the pressure of this

medium is less in the neighbourhood of dense bodies than at great distances

from them, dense bodies wUl be drawn towards each other, and that if the

diminution of pressure is inversely as the distance from the dense body the

law will be that of gravitation. The next step, as he points out, is to account

for this inequality of pressure in the medium ; and as he was not able to do

this, he left the explanation of the cause of gravity as a problem to succeeding

ages. As regards gravitation the progress made towards the solution of the

problem since the time of Newton has been almost imperceptible. Faraday

* Maclaurin's account of Sir Isaac Newton's discoveries.
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shewed that the transmission of electric and magnetic forces is accompanied by-

phenomena occurring in every part of the intervening medium. He traced the

Hnes of force through the medium ; and he ascribed to them a tendency to

shorten themselves and to separate from their neighbours, thus introducing the

idea of stress in the medium in a different form from that suggested by Newton

;

for, whereas Newton's stress was a hydrostatic pressure in every direction,

Faraday's is a tension along the lines of force, combined with a pressure in

all normal directions. By shewing that the plane of polarisation of a ray of

light passing through a transparent medium in the direction of the magnetic

force is made to rotate, Faraday not only demonstrated the action of magnetism

on light, but by using light to reveal the state of magnetisation of the medium,

he " illuminated," to use his own phrase, " the lines of magnetic force."

From this phenomenon Thomson afterwards proved, by strict dynamical

reasoning, that the transmission of magnetic force is associated with a rotatory

motion of the small parts of the medium. He shewed, at the same time, how
the centrifugal force due to this motion would account for magnetic attraction.

A theory of this kind is worked out in greater detail in Clerk Maxwell's

Treatise on Electricity and Magnetism. It is there shewn that, if we assume

that the medium is in a state of stress, consisting of tension along the lines

of force and pressure in all directions at right angles to the lines of force,

the tension and the pressure being equal in numerical value and proportional

to the square of the intensity of the field at the given point,* the observed

electrostatic and electromagnetic forces will be completely accounted for.

The next step is to account for this state of stress in the medium. In

the case of electromagnetic force we avail ourselves of Thomson's deduction

from Faraday's discovery stated above. We assume that the small parts of the

medium are rotating about axes parallel to the lines of force. The centrifugal

force due to this rotation produces the excess of pressure perpendicular to the

lines of force. The explanation of electrostatic stress is less satisfactory, but

there can be no doubt that a path is now open by which we may trace to

the action of a medium all forces which, like the electric and magnetic forces,

vary inversely as the square of the distance, and are attractive between bodies

of different names, and repulsive between bodies of the same names.

The force of gravitation is also inversely as the square of the distance,

but it differs from the electric and magnetic forces in this respect, that the bodies

between which it acts cannot be divided into two opposite kinds, one positive
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and the other negative, but are in respect of gravitation all of the same kind,

and that the force between them is in every case attractive. To account for

such a force by means of stress in an intervening medium, on the plan adopted

for electric and magnetic forces, we must assume a stress of an opposite kind

from that already mentioned. We must suppose that there is a pressure in

the direction of the lines of force, combined with a tension in all directions

at right angles to the lines of force. Such a state of stress would, no doubt,

account for the observed effects of gravitation. We have not, however, been

able hitherto to imagine any physical cause for such a state of stress. It is

easy to calculate the amount of this stress which would be required to account

for the actual effects of gravity at the surface of the earth. It would require

a pressure of 37,000 tons weight on the square inch in a vertical direction,

combined with a tension of the same numerical value in all horizontal directions.

The state of stress, therefore, which we must suppose to exist in the invisible

medium, is 3000 times greater than that which the strongest steel could sup-

port.

Another theory of the mechanism of gravitation, that of Le Sage, who

attributes it to the impact of "ultramundane corpuscles," has been already

discussed in the article Atom, supra, p. 473.

Sir William Thomson''" has shewn that if we suppose all space filled with \

a uniform incompressible fluid, and if we further suppose either that material

bodies are always generating and emitting this fluid at a constant rate, the

fluid flowing off to infinity, or that material bodies are always absorbing and

annihilating the fluid, the deficiency flowing in from infinite space, then, in

either of these cases, there would be an attraction between any two bodies

inversely as the square of the distance. If, however, one of the bodies were

a generator of the fluid and the other an absorber of it, the bodies would repel

each other.

Here, then, we have a hydrodynamical illustration of action at a distance,

which is so far promising that it shews how bodies of the same kind may

attract each other. But the conception of a fluid constantly flowing out of a

body without any supply from without, or flowing into it without any way

of escape, is so contradictory to all our experience, that an hypothesis, of

which it is an essential part, cannot be called an explanation of the phenomenon

of gravitation.

* Proceedings of the Royal Society of Ediiiburgh, 7th Feb. 1870.

VOL. II. G2
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Dr Robert Hooke, a man of singular inventive power, in 1671 endea-

voured to trace the cause of gravitation to waves propagated in a medium.

He found that bodies floating on water agitated by waves were drawn towards

the centre of agitation'"'. He does not appear, however, to have followed up

this observation in such a way as to determine completely the action of waves

on an immersed body.

Professor Challis has investigated the mathematical theory of the effect of

waves of condensation and rarefaction in an elastic fluid on bodies immersed

in the fluid. He found the difficulties of the investigation to be so great that

he has not been able to arrive at numerical results. He concludes, however,

that the effect of such waves would be to attract the body towards the centre

of agitation, or to repel it from that centre, according as the wave's length

is very large or very small compared with the dimensions of the body. Prac-

tical illustrations of the effect of such waves have been given by Guyot, Schell-

bach, Guthrie, and Thomson t.

A tuning-fork is set in vibration, and brought near a delicately suspended

light body. The body is immediately attracted towards the tuning-fork. If the

tuning-fork is itself suspended, it is seen to be attracted towards any body

placed near it.

Sir W. Thomson has shewn that this action can in all cases be explained

by the general principle that in fluid motion the average pressure is least

where the average energy of motion is greatest. Now, the wave-motion is

greatest nearest the tuning-fork, the pressure is therefore least there ; and the

suspended body being pressed unequally on opposite sides, moves from the side

of greater pressure to the side of less pressure, that is towards the tuning-fork.

He has also succeeded in producing repulsion in the case of a small body

lighter than the surrounding medium.

It is remarkable that of the three hypotheses, which go some way towards

a physical explanation of gravitation, every one involves a constant expenditure

of work. Le Sage's hypothesis of ultramundane corpuscles does so, as we have

shewn in the article Atom. That of the generation or absorption of fluid

requires, not only constant expenditure of work in emitting fluid under pressure,

but actual creation and destruction of matter. That of waves requires some

agent in a remote part of the universe capable of generating the waves.

* Posthumous Works, edited by R. Waller, pp. xiv. and 184

t Philosophical Magazine, June, 1871.
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Accoixling to such hypotheses we must regard the processes of nature not

as illustrations of the great principle of the conservation of energy, hut as

instances in which, hy a nice adjustment of powerful agencies not subject to

this principle, an apparent conservation of energy is maintained. Hence, we are

forced to conclude that the explanation of the cause of gravitation is not to

be found in any of these hypotheses.

62—
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LXXV. 0}i Bows method of drawing diagrams in graphical statics uith

illustrations from Peaucellier's linkage.

The use of Diagrams is a particular instance of that method of sjrmbols

which is so powerful an aid in the advancement of science.

A diagram differs from a picture in this respect, that in a diagram no

attempt is made to represent those features of the actual material system which

are not the special objects of our study.

Thus when we are studying the internal equilibrium of a particular piece

of a structure or a machine, we require to know its shape and dimensions, and

the specification of these may often be made easier by means of a drawing of

tlie piece.

But when we are studying the equilibrium of a framework composed of

such pieces jointed together, in which each piece acts only by tension or by

pressure between its extremities, it is not necessary to know whether a particular

piece is straight or curved or what may be the form of its section. In order,

therefore, to exhibit the structure of the frame in the most elementary manner

we may draw it as a skeleton in which the different joints are connected by

straio-ht lines. The tension or pressure of each piece may be indicated on such

a diagram by numbers attached to the line which represents that piece in the

diagram. The stresses in the frame would thus be indicated in a way which

is geometrical as regards the position and direction of the forces, but arithmetical

as regards their magnitude.

But a purely geometrical representation of a force has been made use of

from the earliest beginnings of mechanics as a science. The force is represented

by a straight hne drawn from the point of application of the force, in the

direction of the force, and containing as many units of length as there are
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units of force in the force. The end of the hne is marked by an arrow-head

to shew in which direction the force acts.

According to this method each force is dra n in its proi)er position in

the diagram wliicli represents the configuration of the system. Such a diagram

might be useful as a record of the results of calculation of the magnitude of

the forces, but it would be of no use in enabling us to test the correctness

of the calculation. It would be of less use than the diagram in which the

magnitudes of the forces were indicated by numbers.

But we have a geometrical method of testing the equilibrium of any set

of forces acting at a point by drawing in series a set of lines parallel and

proportional to these forces. If these lines form a closed polygon the forces

are in equilibrium. We might thus form a set of polygons of forces, one for

each joint of the frame. But in so doing we give up the principle of always

drawing the line representing a force from its point of application, for all the

sides of a polygon cannot pass through the same point as the forces do.

We also represent every stress twice over, for it appears as a side of both

the polygons corresponding to the two joints between which it acts.

But if we can arrange the polygons in such a way that the sides of any

two polygons which represent the same force coincide with each other, we mav
form a diagram in which every stress is represented in direction and magnitude,

though not in position, by a single line, which is the common boundary of the

two polygons which represent the points of concourse of the pieces of the frame.

Here we have a pure diagram of forces, in which no attempt is made to

represent the configuration of the material system, and in which every Ibrce

is not only represented in direction and magnitude by a straight line, but the

equilibrium of the forces is manifest by inspection, for we have only to examine

whether each polygon is closed or not.

The relations between the diagram of the frame and the diagram of stress

are as follows

:

To every piece in the frame corresponds a line in the diagram of stress

which represents in magnitude and direction the stress acting on that piece.

To every joint of the frame corresponds a closed polygon in the diagmm,

and the forces acting at that joint are represented by the sides of the polygon

taken in a certain cyclical order. The cyclical order of the sides of two adjacent

polygons is such that their common side is traced in opposite directions in

going round the tAvo polygons.
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When to every point of concourse of the lines in the diagram of stress

corresponds a closed polygon in the skeleton of the frame, the two diagrams

are said to be reciprocal.

The first extensions of the method of diagrams of forces to other cases

than that of the funicular polygon were given by Eankine in his Applied

Mechanics (1857).

The method was independently applied to a large number of cases by

Mr W. P. Taylor, a practical draughtsman in the office of the well-known con-

tractor Mr J. B. Cochrane. I pointed out the reciprocal properties of the

diagram in 1864, and in 1870 shewed the relations of this method to Airy's

function of stress and other mathematical methods.

Prof. Fleeming Jenkin has given a number of applications of the method

to practice. Trans. R, S. E., Vol. xxv.

Cremona"'" has deduced the construction of the reciprocal figures from the

theory of the two linear components of a wrench.

Culmann in his Oraphische Statik makes great use of diagrams of forces,

some of which, however, are not reciprocal.

M. Maurice Levy in his Statique GmpUqm (Paris, 1874) has treated the

whole subject in an elementary and complete manner.

Mr E. H. Bow, C.E., F.R.S.E., in a recent work On the Economics of

Construction in relation to Framed Structures (Spon, 1873), has materially

simplified the process of drawing a diagram of stress reciprocal to. a given frame

acted on by any system of equilibrating external forces.

Instead of lettering the joints of the frame as is generally done, or the

pieces of the frame as was my own custom, he places a letter in each of

the polygonal areas enclosed by the pieces of the frame, and also in each of

the divisions of the surrounding space as separated by the lines of action of

the external forces.

When one piece of the frame crosses another, the point of intersection is

treated as if it were a real joint, and the stresses of each of the intersecting

pieces are represented twdce in the diagram of stress, as the opposite sides of the

parallelogram which represents the forces at the point of intersection. Thus

the point V in figures 1 and 3, p. 495, is represented by the parallelogram

BDCE in figure 2, and the point A in figure 2 is represented by the

parallelogram PRQS in figures 1 and 3.

* Le figure reciprocity nella statlca grafica (Milano, 1872).
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PeauceUier's linkage consists of the four equal pieces forming the jointed

rhombus PQRS togetlier with two exjual arms OS and OH.

Fuf 1

When these arras are longer than the sides of the rhombus tlie hnkagc

is said to be positive; when they are shorter the linkage is said to be negative.

When PeauceUier's linkage is employed as a machine it is acted on by

three forces, applied respectively at the fulcrum O, and the two tracing poles

Q and .S.
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These three forces, if in equilibrium, must meet in some point T. We
may therefore suppose them to be stresses in three new pieces OT, QT, ST,

which will complete the frame.

Let us suppose that both and T are outside the rhombus, and that

OS intersects PT in the point V, and let us apply Bow's method to construct

the diagram of stress reciprocal to this frame.

If we letter the areas as follows, putting

A for the rhombus PEQS,

B for the triangle PSV,

C for the triangle OTV,

D for the quadrilateral ORPV,

E for the quadrilateral QSVT,

and F for the space outside the frame,

then, in the diagram of stress, the stresses of the four sides of the rhombus

will meet in A, and since the opposite sides of the rhombus are parallel, the

lines EA and AD will be in one straight line, and the lines BA and AF
will also be in a straight line.

Also since in the frame the pieces OR and OS are equal, the angles

ORP, PSV are equal, and the corresponding angles FDA, ABE must be equal,

and therefore the quadrilateral BEFD can be inscribed in a circle, and therefore

the angles FEA, DBA are equal, and the corresponding angles in the frame

TQS, SPV are equal, and therefore PT is equal to QT.

If, therefore, is in one diagonal of the rhombus, T must be in the

other diagonal.

The diagram of stress is completed by drawing EC parallel to BD, and

DC parallel to BE, and joining FC.

This diagram therefore consists of a parallelogram BDCE, a diagonal ED,

a point F in the circle passing through FBD, and four lines drawn from F
to the angles of the parallelogram.

If we now begin with the diagram of stress, and proceed to construct a

frame reciprocal to it, the form of the frame will be different according to the

cyclical direction in which the sides of the rhombus PRQS are lettered. If

in the one case we have the points and T both outside the rhombus as

in fig. 1, in the other and T will both be within the rhombus as in fig. 3.
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The stresses in the corresponding pieces of fig. 1 and fig. 3 are all equal iC

they are equal in any pair of them.

If in the frames represented in fig. 1 and fig. 'A, we consider that the

pieces OS and TP cross one another at V without intersecting, we have six

points 0, P, Q, R, S, T joined by nine lines. Now in general if p points in

a plane are joined by 2^-3 lines the figure is simply stiff, that is to say

the form of the figure is determined by the lengths of the lines, and there are

no necessary relations between the lengths of the lines.

But in Peaucellier's linkage the length of any line, as OT, is determined

when those of the other eight are given. For if a is the length of a side

of the rhombus, h the length of either arm OR or OS, c the length of either

arm TP or TQ, then if OT=d,

d' = h' + c--a\

Hence if any one of the nine pieces of the linkage be removed, the motion

of the remaining eight will be the same as before, and a given stress in any

one of the nine will produce stresses in each of the other eight which are

detenninate in magnitude when the configuration of the linkage is given, though

they alter during the motion of the linkage.

VOL. XL 63



[From the Proceedings of the Cambridge Philosophical Society, Vol. ii., 1876.]

LXXVI. On the Equilibrium of Heterogeneous Substances.

The thermodynamical problem of the equilibrium of heterogeneous substances

was first attacked by Kirchofi" in 1855, who studied the properties of mixtures

of sulphuric acid with water, and the density of the vapour in equilibrium with

the mixture. His method has recently been adopted by C. Neumann in his

Vorlesungen iiber die mechanische Theorie der Wdrme (Leipzig, 1875). Neither

of these writers, however, makes use of two of the most valuable concepts in

Thermodynamics, namely, the intrinsic energy and the entropy of the substance.

It is probably for this reason that their methods do not readily give an

explanation of those states of equilibrium which are stable in themselves, but

which the contact of certain substances may render unstable.

I therefore wish to point out to the Society the methods adopted by

Professor J. Willard Gibbs of Yale College, published in the Transactions of

the Academy of Sciences of Connecticut, which seem to me to throw a new

light on Thermodynamics.

He considers the intrinsic energy (e) of a homogeneous mass consisting of

n kinds of component matter to be a function of n + 2 variables, namely, the

volume of the mass v, its entropy t}, and the n masses, m„ m^...m^, of its

component substances.

Each of these variables represents a physical quantity, the value of which,

for a material system, is the sum of its values for the parts of the system.

By differentiating the energy with respect to each of these variables (con-

sidered as independent), we obtain a set of n + 2 differential coefficients which

represent the intensity of various properties of the substance. Thus,
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— = —p^ where p is the pressure of the substance

;

-~ = 0, where 6 is the temperature on the thermodynamic scale
;

-J

— = /Lii, where /i, is the potential of the component (??i,) with respect to the

compound mass.

Each of the component substances has therefore a potential with respect

to the whole mass.

The idea of the potential of a substance is, I believe, due to Prof. Gibbs.

His definition is as follows :

—

If to any homogeneous mass we suppose an infinitesimal quantity of any

substance to be added, the mass remaining homogeneous, and its entropy and

volume remaining unchanged, the increase of the energy of the mass, divided

by the mass of the substance added, is the potential of that substance in the

mass considered.

The condition of the stable equilibrium of the mass is expressed by Prof.

Gibbs in either of the two following w^ays :

I. Fo7' the equilibrium of any isolated system it is necessary and sufficient

that in all possible variations of the state of the system which do not alter its

energy, the variation of its entropy shall either vanish or be negative.

II. For the equilibrium of any isolated system it is necessary and sufficient

that in all possible variations of the state of the system which do not alter its

entropy, the variation of the energy shall either vanish or be positive.

The variations here spoken of must not involve the transportation of any

matter through any finite distance.

It follows from this that the quantities 6, p, /Xi.../in niust have the same

values in all parts of the mass. For if not, heat will flow from places of

higher to places of lower temperature, the mass as a whole will move from

places of higher to places of low^er pressure, and each of the several component

substances will pass from places where its potential is higher to places where

it is lower, if it can do so continuously.

Hence Prof. Gibbs shews that if 0, P, 3/i...J/„ are the values of 6,]), fti--/A,.

for a given phase of the compound, and if the quantity

A'= £ — 0r; + Pf — Mjn^ — kc. — Mjn^,

G3—

2
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is zero for the given fluid, and is positive for every other phase of the same

components, the condition of the given fluid will be stable.

If this condition holds for all variations of the variables the fluid will be

absolutely stable, but if it holds only for small variations but not for certain

finite variations, then the fluid will be stable when not in contact with matter

in any of those phases for which K is positive, but if matter in any one of

these phases is in Contact with it, its equiUbrium will be destroyed, and a

portion will pass into the phase of the substance with which it is in contact.

Thus in Professor F. Guthrie's experiments, a solution of chloride of calcium

of 37 per cent, was cooled to a temperature somewhat below - 37* C. without

solidification.

In this state, however, the contact of three different sohds determines three

diflerent kinds of soHdification. A piece of ice causes ice to separate from the

fluid, A piece of the cryohydrate of chloride of calcium determines the formation

of cryohydrate from the fluid, and the anhydrous salt causes a precipitation of

anhydrous salt.

The phase of the fluid is such that K is positive for all phases differing

slightly from its own phase, and its equilibrium is therefore stable, but for

certain widely different phases, namely, ice, cryohydrate and anhydrous salt,

K is negative.

If none of these substances are in contact with the fluid, the fluid cannot

alter in phase without a transport of matter through a finite .distance, and is

therefore stable ; but if any one of them is in contact with the fluid, part of

the fluid is enabled to pass into a phase in which K is negative. The con-

ditions of consistent phases are that the values of 6, p, tii.-.fJin, and K are

equal for all phases which can coexist in equilibrium, the surface of contact

being plane.

This was illustrated by Mr Main's experiments on co-existent phases of

mixtures of chloroform, alcohol and water.



[From Nature, Vol. xiv.]

LXXVIL Diffusion of Gases through Ahsorhing Substances.

The importance of the exact "study of the motions of gases, not only as

a method of distinguishing one gas from another, but as likely to increase our

knowledge of the dynamical theory of gases, was pointed out by Thomas Graham.

Graham himself studied the most important phenomena, and distinguished from

each other those in which the principal effect is due to different properties of

gases.

The motion of large masses of the gas approximates to that of a perfect

fluid having the same density and pressure as the gas. This is the case with

the motion of a single gas when it flows through a large hole in a thin

plate from one vessel into another in which the pressure is less. The result

in this case is found to be in accordance with the principles of the dynamics

of fluids. This was approximately estabUshed by Graham, and the more accurate

formula, in which the thermodynamic properties of the gas are taken into

account, has been verified by the experiments of Joule and Thomson. {Proc.

R. S., May, 1856.)

When the orifice is exceedingly small, it appears from the molecular theor}-

of gases that the total discharge may be calculated by supposing that there

are two currents in opposite directions, the quantity flowing in each current

being the same as if it had been discharged into a vacuum.

For different gases the volume discharged in a given time, reduced to

standard pressure and temperature, is proportional to

—

-£=

where p is the actual pressure, s is the specific gravity, and the temperature

reckoned from — 274'C.
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When the gases in the two vessels are different, each gas is discharged

according to this law independently of the other.

These phenomena, however, can be observed only when the thickness of the

l)late and the diameter of the aperture are very small.

AVhen this is the case, the distance is very small between a point in the

first vessel where the mixed gas has a certain compoBition, and a point in the

second vessel where the mixed gas has a quite different composition, so that

the velocity of diffusion through the hole between these two points is large

compared with the velocity of flow of the mixed gas arising from the difference

of the total pressures in the two vessels.

When the hole is of sensible magnitude this distance is larger, because

the reo-ion of mixed gases extends further from the hole, and the effects of

diffusion become completely masked by the effect of the current of the gas

in mass, arising from the difference of the total pressures in the two vessels.

In this latter case the discharge depends only on the nature of the gas in

the vessel of greater pressure, and on the resultant pressures in the two vessels.

It consists entirely of the gas of the first vessel, and there is no appreciable

counter current of the gas of the other vessel.

Hence the experiments on the double current must be made either through

a single very small aperture, as in Graham's first experiment with a glass vessel

accidentally cracked, or through a great number of apertures, as in Graham's

later experiments with porous septa of plaster of Paris or of plumbago.

With such septa the following phenomena are observed :

—

When the gases on the two sides of the septum are different, but have the

same pressure, the reduced volumes of the gases diffused in opposite directions

through the septum are inversely as the square roots of their specific gravities.

If one or both of the vessels is of invariable volume, the interchange of

icas will cause an inequality of pressure, the pressure becoming greater in the

vessel which contains the heavier gas.

If a vessel contains a mixture of gases, the gas diffused from the vessel through

a porous septum will contain a larger proportion of the lighter gas, and the pro-

portion of the heavier gas remaining in the vessel will increase during the process.

The rate of flow of a gas through a long capillary tube depends upon the

viscosity or internal friction of the gas, a property quite independent of its

specific gravity.
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The phenomena of diffusion studied by Dr v. WroblewskI are quite distinct

from any of these. The septum througli which the giis is observed to pass is

apparently quite free from pores, and Ls hideed quite impervious to certain

gases, while it allows others to pass.

It was the opinion of Graham that the substance of the septum is capable

of entering into a more or less intimate combination with the substance of the

gas; that on the side where the gas has greatest pressure the process of

combination is always going on ; that at the other side, where the pressure of

the gas is smaller, the substance of the gas is always becoming dissociated from

that of the septum ; while in the interior of the septum those parts wlncli

are richer in the substance of the gas are communicating it to those which

are poorer.

The rate at which this diffusion takes place depends therefore on the power

of the gas to combine with the substance of the septum. Thus if the septum

be a film of water or a soap-bubble, those gases will pass through it most

rapidly which are most readily absorbed by water, but if the septum be of

caoutchouc the order of the gases will be different. The fact discovered by

St Claire-Deville and Troost that certain gases can pass through plates of red-

hot metals, was explained by Graham in the same manner.

Franz Exner'" has studied the diffusion of gases through soap-bubbles, and

finds the rate of diffusion is directly as the absorption-coefficient of the gas,

and inversely as the square root of the specific gravity.

Stefan t in his first paper on the diflfusion of gases has shewn that a law

of this form is to be expected, but he says that he will not go further into

the problem of the motion of gases in absorbing medium, as it ought to form

the subject of a separate investigation.

Dr V. Wroblewski has confined himself to the investigation of the relation

between the rate of diffusion and the pressure of the diffusing gas on the two

sides of the membrane. The membrane was of caoutchouc, 0'0034 cm. thick.

It was almost completely impervious to air. The rate at which carbonic acid

diffused through the membrane was proportional to the pressure of that gas,

and was independent of the pressure of the air on the other side of the

Pogg. Ann., Bd. 155.

t Ueber das Gleichgewicht u. d. DiJ'union von Gasgemengrn. Sitzb. dor k. Akad. (Wien). Jan. 5,

1871.
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membrane, provided this air was from carbonic acid. The connexion between

this result and Henry's law of absorption is pointed out.

The time of diffusion of hydrogen through caoutchouc is 3 '6 times that of

an equal volume of carbonic acid. The diffusion of a mixture of hydrogen and

carbonic acid takes place as if each gas diffused independently of the other

at a rate proportional to the part of the pressure which is due to that gas.

We hope that Dr v. Wroblewski will continue his researches, and make

a complete investigation of the phenomena of diffusion through absorbing sub-

stances.



[From the Kensington Museum Handbook; pp. 1—21.]

LXXVIII. General coiisidemtiojis concerning Scientific Apparatus.

1. Experiments.

The aim of Physical Science is to observe and interpret natural phenomena.

Of natural phenomena, some—as, for example, those of astronomy—are not

subject to our control, and in the study of these we can make use only of

the method of Observation. When, however, we can cause the phenomenon to

be repeated under various conditions, we are in possession of a much more

powerful method of investigation—that of Experiment.

An Experiment, like every other event which takes place, is a natural

phenomenon; but in a Scientific Experiment the circumstances are so arranged

that the relations between a particular set of phenomena may be studied to

the best advantage.

In designing an Experiment the agents and phenomena to be studied are

marked off from all others and regarded as the Field of Investigation. All

agents and phenomena not included within this field are called Disturbing

Agents, and their effects Disturbances ; and the experiment must be so arranged

that the effects of these disturbing agents on the phenomena to be investigated

shall be as small as possible.

We may afterwards change the field of our investigation, and include

within it those phenomena which in our former investigation we regarded as

disturbances. The experiments must now be designed so as to bring into

prominence the phenomena which we formerly tried to get rid of When we

have in this way ascertained the laws of the disturbances, we sliall be better

prepared to make a more thorough investigation of what we began by regarding

as the principal phenomena.

VOL. II. 64
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Thus, in experiments where we endeavour to detect or to measure a force

by observing the motion which it produces in a movable body, we regard

Friction as a disturbing agent, and we arrange the experiment so that the

motion to be observed may be impeded as little as possible by friction.

2. Apparatus.

Everything which is required in order to make an experiment is called

Apparatus.

A piece of apparatus constructed specially for the performance of experiments

is called an Instrument.

Apparatus may be designed to produce and exhibit a particular phenomenon,

to eliminate the effects of disturbing agents, to regulate the physical conditions

of the phenomenon, or to measure the magnitude of the phenomenon itself

In many experiments, special apparatus is required for all these purposes,

but certain pieces of apparatus are used in a great variety of experiments, and

there are whole classes of insti-uments which have certain principles of con-

struction in common.

Thus, in all instruments in which motion is to be produced there must

be a prime mover or driving power, and a train of mechanism to connect the

prime mover with the body to be moved ; and in many cases additional apparatus

is necessary—such as a break to destroy the superfluous energy of the prime

mover, or a reservoir to store up its energy when not required ; and we may

have special apparatus to measure the force transmitted, the velocity produced,

or the work done, or to regulate them by automatic governors.

We may make a somewhat similar classification of the functions of apparatus

belonging to other physical sciences—such as Electricity, Heat, Light, Sound, &c.

3. General Principle of the Construction of Apparatus.

There are certain primary requisites, however, which are common to all

instruments, and which therefore are to be carefully considered in designing or

selecting them. The fundamental principle is, that the construction of the

instrument should be adapted to the use that is to be made of it, and in

particular, that the parts intended to be fixed should not be liable to become

displaced ; that those which ought to be movable should not stick fast ; that
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parts which have to be observed should not be covered uj) or kept in the

(lark ; and that pieces intended to liave a definite form shoukl not l>e disfigured

hy warping, straining, or wearing.

It is therefore desirable, before we enter on the classification of instruments

according to the phenomena with which they are connected, to point " out a

few of the principles which must be attended to in all instruments.

Each solid piece of an instrument is intended to be either fixed or movable,

and to have a certain definite shape. It is acted on by its own weight, and

other forces, but it ought not to be subjected to unnecessary stresses, for these

not only diminish its strength, but (what for scientific purposes may be much

more injurious) they alter its figure, and may, by their unexpected changes

during the course of an experiment, produce disturbance or confusion in the

observations we have to make.

We have, therefore, to consider the methods of relieving the pieces of an

instrument from unnecessary strain, of securing for the fixed parts a determinate

position, and of ensuring that the movable parts shall move freely, yet without

shake.

This we may do by attending to the well-known fact in kinematics— " A
lliGiD Body has Six Degrees of Freedom."

A rigid body is one whose form does not vary. The pieces of our instru-

ments are solid, but not rigid. They are liable to change of form under stress,

hut such change of form is not desirable, except in certain special parts, such

as springs.

Hence, if a solid piece is constrained in more than six ways it will be

subject to internal stress, and will become strained or distorted, and this in

a manner which, without the most exact micrometrical measurements, it would

be impossible to specify.

In instruments which are exposed to rough usage it may sometimes be

advisable to secure a piece from becoming loose, even at the risk of straining

and jamming it ; but in apparatus for accurate work it is essential that the

bearings of every piece should be properly defined, both in number and in position.

4. Methods of placing an Instrument in a Definite Position.

When an instrument is intended to stand in a definite position on a fixed

base it must have six bearings, so arranged that if one of the bearings were

64—2



508 GENERAL CONSIDERATIONS

removed the direction in which the corresponding point of the instrument would

be left free to move by the other bearings must be as nearly as possible

normal to the tangent plane at the bearing.

(This condition implies that, of the normals to the tangent planes at the

bearings, no two coincide; no three are in one plane, and either meet in a

point or are parallel; no four are in one plane, or meet in a point, or are

parallel, or, more generally, belomg to the same system of generators of an

hyperboloid of one sheet. The conditions for five normals and for six are more

complicated.)'"

These conditions are satisfied by the well-known method of forming on the

fixed base three V grooves, whose sides are inclined 45" to the base, and whose

directions meet in a point at angles of 120". The instrument has three feet;

the end of each foot is, roughly speaking, conical, but so rounded off that it

bears against the two sides of the groove, and cannot reach the bottom. The

instrument has thus six solid bearings, and is kept in its place by its weight,

without being subjected to any unnecessary strain.

Sir William Thomson, who has bestowed much attention on this subject,

has adopted a somewhat different arrangement in some of his instruments. A
triangular hole, like that formed by pressing an angle of a cube into a mass

of clay, is formed in the base, and a V groove is cut in a direction passing

through the centre of the hole. The three feet of the instrument are all rounded,

but of different lengths. The longest stands in the triangular hole, and has

three bearings; the second stands in the V groove, and has two bearings; and

the third stands on the horizontal plane of the base, and has one bearing.

There are thus six bearings in all. This method, though it does not give so

large a margin of stability as the method of three grooves, has this advantage,

that as each of the three feet is differently formed, it is impossible to put

any but the proper foot into the hole without detecting the mistake.

5. Bearings of Mirrors,

In mounting mirrors it is especially important to attend to the number

and position of their bearings, for any stress on the mirror spoils its figure,

and renders it useless for accurate work.

* See Ball on the Theory of Screws.
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For small mirrors it is best to make one face of the mirror rest against

three solid bearings, and to keep it in contact witli these by three spring

bearings placed exactly opposite to them against the other face of the mirror.

These will prevent any displacement of the mirror out of it« j)roper plane. The

bearings against the edges of the mirror, by which it is prevented from phifting

in its own plane, are, in the case of small mirrors, of less importance.

When the mirror is large, as in the case of the speculum of a large

telescope, a greater number of bearings is required to prevent the mirror from

becoming strained by its own weight ; but in all cases the number of Jijced

bearings at the back of the mirror must be three and only three, otherwise

any warping of the framework will entirely spoil the figure of the surface.

6. Bearings of Standards of Length.

It is of the greatest importance that the standard measure of length, by

which the national unit of length is defined, should not be exposed to strain.

The box in which the standard yard is kept in the Exchequer Chamber

is provided with bearings, the positions of which have been arranged so that

the bar may rest on them with as little strain throughout its substance as is

consistent with the fact that it is a heavy body.

7. On the Bearings of Movable Parts.

The most important kinds of motion with one degree of freedom are,

(1) Rotation round an axis
; (2) Motion of translation without rotation ; and

(3) Screw motion, in which a definite rotation about an axis corresponds to a

definite motion of translation along that axis.

For one degree of freedom five solid bearings are required, the sLxth con-

dition being supplied by that part of the instrument which regulates the motion

of the piece.

The construction of pieces capable of rotation about an axis is better

understood than any other department of mechanism.

In astronomical instruments, four of the bearings are supplied by the twt»

Y's on which the cylindrical end-pieces of the axle rest, and the fifth by the

longitudinal pressure of a bearing against one end of the axle, or a shoulder

formed upon it. The weight of the instrument is generally sufficient to keep
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it ill contact with its bearings; but when the weight is so great that the

pressure on the bearings is likely to injure them, the greater part of the weight

is supported by auxiliary bearings, the pressure of which is regulated by counter-

l)oises or springs, leaving only a moderate pressure to be borne by the true

bearings.

8. Translation.

Motion of translation in a fixed direction, without rotation.

This kind of motion is required for pieces which slide along straight fixed

pieces, as the verniers and microscopes of measuring apparatus, such as catheto-

meters and micrometers, the slide-rests of lathes, the pistons of steam-engines

and pumps, &c.

When a tripod stand is to have a motion of this kind in a horizontal

plane, two of its feet may be made to slide in a V groove, while the third

rests on the horizontal plane.

When a cylindrical rod is to have a longitudinal motion, it must be made

to bear against two fixed Y's, and must be prevented from rotating on its

axis by a bearing, connected either with the cylinder or the fixed piece, which

slides on a surface whose plane passes through the axis of the cylinder.

When, as in cathetometers and other measuring apparatus, a piece has to

sUde along a bar, the five bearings of the piece may be arranged so that

three of them form a triangle on one face of the bar, while the two others

rest against an adjacent face of the bar, the line joining these two being in

the direction of motion. These bearings may be kept tight, without the possi-

liility of jamming, by means of spring bearings against the other sides of the bar.

9. Parallel Motion by Linkwork.

In all these methods of guiding a piece by sliding contact, there is a

considerable waste of energy by friction. In many cases, however, this is of

little moment, compared with the errors depending on the necessary imperfection

of the guiding surfaces, arising not only from original defects of workmanship

hut from straining and wearing during use.

It is true that great advances have been made, and notably by Sir J.

Whitworth, in the art of forming truly plane and cyUndric surfaces; but even
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these are liable to become altered, not only by wear Ijut by strain and by

inequalities of temperature, so that it is never safe to depend upon the perfect

accuracy of the fitting of a large bearing surface, except when the pressure is

very great.

In hnkwork, on the other hand, the relative motion of any two pieces

at their mutual bearing is one of pure rotation about a well-turned axle. The

extent of tlie sliding surfaces is thus reduced to a minimum, so that less

power is lost by friction, and the workmanship of such bearings can be brought

much nearer to perfection than that of any other kind of fittings. Hence, in

all prime movers and other machines, in whicli waste of power by friction is

to be avoided, and even in those in which great accuracy is required, it i-

desirable, if it is possible, to guide the motion by linkwork.

The so-called " Parallel Motion " invented by James Watt was the first

attempt to guide a motion of translation by means of linkwork ; but though

the motion as thus guided is very nearly rectilinear, it is not exactly >o.

Various other contrivances have been invented since the time of Watt, as, for

instance, that fitted to the engines of the Gorgon by Mr Seaward; but all of

them involved either a deviation from true rectilinear motion, or a sliding

contact on a plane surface, and it was generally supposed by mathematicians

that a true rectilinear motion, guided by pure linkwork, was a geometrical

impossibility.

It was in the year 1864 that M. Peaucellier published his invention of an

exact parallel motion by pure linkwork, and thus opened up the path to a

very great extension of the science of mechanism, and its practical applications.

The linkwork motions constructed by M. Garcia, Mr Penrose, and others, and

the extensions of the theory of linkwork by Sylvester, Hart, and Kempe, are

now well known, but they could not be fully described within our present limits.

10. Screw Motion.

The adjustments of instruments are to a great extent made l)y means oi'

screws. In the case of levelling screws, which bear the weight of an instru-

ment, the thread of the screw is always in contact with its proper bearing

in the nut; but in micrometer screws it is necessary to secure this contact

by means of a spring. This spring Is sometimes made to bear against the end

of the screw, or a shoulder turned upon it; but this arrangement causes a
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variable pressure as the screw moves forward. A mucli better arrangement is

to make the spring bear, not against the screw itself, but against a nut which

is free to move on the screw, but which is prevented from turning round by a

proper bearing. This movable nut always remains at the same distance from

the fixed one, so that the pressure of the spring remains constant. This is

the arrangement of the micrometer screws in Sir W. Thomson's electrometers.

11. On Contrivances for securing Freedom of Motion.

In many instruments there is a movable part or indicator, the position or

motion of which is to be observed in order to deduce therefrom some conclusion

with respect to the force which acts upon it. This force may be the weight

of a body, or an attractive or repulsive force of any kind ; but, besides the

force we are investigating, the resistance called Friction is always acting as a

disturbing force.

If the magnitude and direction of the force of friction were at all times

accurately known, this would be of less consequence ; but the amount of friction

is liable to sudden alterations, owing to causes which we can often neither

suspect nor detect, so that the only way in which we can make any approach

to accuracy is by diminishing as much as possible the effect of friction. The

modes by which this is effected are of two kinds. Whenever there is sliding

contact, there is friction ; and wherever there is complete freedom of motion

there must be sliding contact; but by making the extent of the sliding motion

small compared with the motion of the indicating part, we may reduce the effect

of friction to a very small part of the whole effect.

This is done in rotating parts by diminishing the size of the axle, and

by supporting it on friction-wheels ; and in toothed wheels by keeping the

bearings of the teeth as near as possible to the line of centres, or more perfectly

by cutting the teeth obliquely, as in Hooke's teeth.* A compass needle is

balanced on a fine point, and the extent of the bearing is so small that a

very small force applied to either end of the needle is sufiicient to turn it round.

In all these instances the effect of friction is reduced by diminishing the

extent of the sliding motion.

In balances and other levers the bearing of the lever is in the form of

a prism, called a knife-edge, having an angle of about 120"; the edge of this

* Communicated to the Royal Society in 1666. See Willis's Principles of Mecluinism, 1870, p. 53.
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prism is accurately ground to a straight line, and rests on a plane horizontal

surface of agate.

The relative motion in this case is one of rolling contact.

In another class of instruments sliding and rolling are entirely done away

with, and sufficient freedom of motion is secured by the pliability of certain

solid parts.

Thus many pendulums are hung, not on knife-edges, but on pieces of

watch-spring, and torsion balances are suspended by metallic wires or by silk

fibres. The motion of the piece is then affected by the elastic force of the

suspension apparatus, but this force is much more regular in its action than

friction, and its effects can be accurately taken account of, and a proper cor-

rection applied to the observed result.

12. The Torsion Rod, or Balance of Torsion.

The balance of torsion has been of the greatest benefit to modern science

in the measurement of small forces. The first instrument of the kind was that

constructed by the Rev. John Michell, formerly Woodwardian Professor of Geology

at Cambridge, in order to observe the effect of the attraction of a pair of

large lead balls on a pair of smaller balls hung from the extremities of the

rod of the balance. Michell, however, died before he had opportunity to make

the experiment, and his apparatus came into the hands of Professor F. J. H.

Wollaston, and was transmitted by him to Henry Cavendish. Cavendish

greatly improved the apparatus,'" and successfully measured the attraction of the

balls, and thus determined the density of the earth.f

The experiment has since been repeated by Reich and Baily. In the mean-

time, however, independently of Michell, and before Cavendish had actually

used the instrument, Coulomb | had invented a torsion balance, by which he

established the laws of the attraction and repulsion of electrified and magnetic

bodies.

* Cavendish's apparatus now belongs to the Royal Institution,

t Philosophical Transactions, 1798.

* Mhn. de VAcademie, 1784, kc.

VOL. n. 65



514 GENERAL CONSIDERATIONS

13. BiFiLAR Suspension.

The elastic force of torsion of a wire, though much more regular than the

force of friction, is suhject to alterations arising from hitherto unknown causes,

but probably depending on facts in the previous history of the wire, such as

its having been subjected to twists and other strains before it was hung up.

Hence it is sometimes better to employ another mode of suspension, in which

the force of restitution depends principally on the weight of the suspended parts.

The body is suspended by two wires or fibres, which are close together

and nearly vertical, and are so connected by a pulley that their tensions are

equal. The body is in equilibrium when the two fibres are in the same plane.

When the body is turned about a vertical axis, the tension of the fibres produces

a force tending to turn the body back towards its position of equilibrium; and

this force is very regular in its action, and may be accurately determined by

proper experiments.

This arrangement, which is called the Bifilar suspension, was invented by

Gauss and Weber for their magnetic apparatus. It was afterwards used by

Bally in his experiments on the attraction of balls.

14. Methods of Reading.

The observed position of the indicating part of an instrument is recorded

as the "Beading." To ascertain the position of the indicating part of the

instrument various methods have been adopted. The commonest method is to

make the indicating part in the form of a light needle, the point of which

moves near a graduated circle. The position of the needle is estimated by

observing the position of its point with respect to the divisions of the scale.

By giving the needle two points at opposite extremities of a diameter, and

observing the position of both points, we may eliminate the errors arising from

the want of coincidence between the centre of the graduated circle and the

axis of motion of the needle.

This is the method adopted in ordinary magnetic compasses. As it is

necessary for freedom of motion that the point of the needle should not be in

actual contact with the graduated limb, the reading will be afiected by any

change in the position of the eye of the observer. The error thus introduced
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is called the error of Parallax. In some instruments, therefore, the observation

is made through an eye-hole in a definite position. A better plan, however, is

to place a plane mirror under the needle, and in taking the reading to place

the eye so that the needle appears to cover its own reflexion in the mirror.

15. Spiegel-Ablesung, or Mirror-Reading.

A still more accurate method is that invented by Poggendorff, and used

by Gauss and Weber in their magnetic observations. A small plane mirror is

attached to the indicating piece, so ^s to turn with it about its axis, which

we may suppose vertical. A divided scale is placed so as to be perpendicular

to this axis, and so that a normal to the scale at its middle point passes

through the axis. The image of this scale by reflexion in the mirror is observed

by means of a telescope having a vertical wire in the plane of distinct vision.

As the indicating piece turns about its axis, the image of the scale passes

across the field of view of the telescope, and the coincidence of the image of

any division of the scale with the vertical wire of the telescope may be observed.

The error of parallax is entirely got rid of by this method, for the two

optical images whose relative position is observed are in the same plane.

Another method of using the mirror is to reverse the direction of the rays

of light by removing the eye-piece of the telescope, and putting the flame of

a lamp in its place. The light emerging from the object-glass falls on the

mirror, and is reflected so as to form on the scale a somewhat confused image

of the flame, with a distinct image of the vertical wire crossing it. The reading

is made by observing the position on the scale of the image of the vertical

wire. In many instruments the telescope is dispensed with, and the mirror is

a concave one, as in Thomson's reflecting galvanometer.

Some German writers distinguish this method of using the mirror and scale

with a lamp as the objective method, the method in which the observer looks

through the telescope being called the subjective method. The objective method

is the only one adapted for the photographic registration of the readings.

IG. Ramsden's Ghost.

To ascertain the exact position of an instrument with respect to a pluml)-

line without touching the line, Ramsden fixed a convex lens to a part of his
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instrument, and placed a wire so that when the instrument was in its proper

position the image of the plumb-line formed by the lens exactly coincided with

the fixed wire. By moving the instrument till this coincidence was observed,

the instrument was adjusted to its proper position. This contrivance was long

known as "Eamsden's Ghost." It is, in fact, a simple form of the reading

microscope; and there is no better method of ascertaining that a delicately-

suspended object is exactly in its proper place.

17. COLLIMATING TELESCOPE.

If two telescopes are made to face one another, and if the cross-wires of

the first, as seen through the second, appear to coincide with the cross-wires

of the second, the optic axes of the two instruments are parallel. This mode

of ascertaining parallelism is used in practical astronomy, and is called the method

of coUimating telescopes, or of collimators.

It is also used in the Kew portable magnetometer. The magnet is hollow,

and carries a lens at one end and a scale at the other, at the principal focus

of the lens. The magnet is thus a coUimating telescope, and is observed by

means of a telescope mounted on a divided circle. The disadvantage of this

method is, that when the magnet is deflected, the scale soon passes out of the

field of view, and the observer has to shift his telescope, in order to get a

new reading.

18. Three Classes of JIeadings.

We may, in fact, arrange instruments in three classes, according to the

method of reading them.

In the self-recording class the observer leaves the instrument to itself, and

examines the record at his own convenience.

In those which depend on eye obsei-vations alone, the observer must be

there to look at the indicator of the instrument, but he does not touch it.

In the third class, which depend on eye and hand, the observer, before

taking the reading, must make some adjustment of the instrument.

19. Functions of Instruments.

The foregoing remarks apply to the constituent parts of instruments, without

reference to the special department of science to which they belong.
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The classification of special instruments will be best understood if we arrange

those belonging to each department of science according to their resj)ective

functions ; some of these functions having instruments corresponding to them

in several departments of science, while others are pecuUar to one department.

All the physical sciences relate to the passage of energy, under its various

forms, from one body to another; but Optics and Acoustics are often representee!

as relating to the sensations of sight and hearing. These two sciences, in fact,

have a physiological as well as a physical aspect, and therefore some parts of

them have less analogy with the purely dynamical sciences.

The most important functions belonging to instruments, or elements of

instruments, are as follows :

—

1. The Source of energy. The energy involved in the phenomenon we

are studying is not, of course, produced from nothing, but it enters

the apparatus at a particular place, which we may call the Source.

2. The channels or distributors of energy, which carry it to the places

where it is required to do work.

3. The restraints, which prevent it from doing work when it is not

required.

4. The reservoirs in which energy is stored up till it is required.

5. Apparatus for allowing superfluous energy to escape.

6. Begulators for equalising the rate at which work is done.

7. Indicators, or movable pieces, which are acted on by the forces under

investigation.

8. Fixed scales on which the position of the indicator is read off.

Thus in solid machinery we have

—

1. Prime movers.

2. Trains of mechanism.

3. Fixed framework.

4. Fly-wheels, springs, weights raised.

5. Friction breaks.

G. Governors, pendulums, balance springs in watches.

7. Dynamometers, Strophometers, Watt's indicator, chronographs, &c.

8. Scales for these indicators. Standards of length and mass. Astro-

nomical standard of time.
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For the phenomena depending on fluid pressure we have

—

1. Pumps, condensing and rarifjing syringes, Orsted's Piezometer, Andrews's

apparatus for high pressure.

2. Pipes and tubes.

3. Packing, washers, caoutchouc tubes, paraffin joints ; fusion and other

metliods of making joints tight.

4. Air chambers, water reservoirs, vacuum chambers.

5. Safety valves.

G. Governors by Siemens and others, Cavaillc^-Col's regulator for organ

blast.

7. Pressure-gauges, barometers, manometers, sphygmographs, &c. ; areometers,

and specific gravity bottles ; current meters, gas meters.

8. Scales for these gauges.

For thermal phenomena

—

1. Furnaces, blow-pipe flames, freezing mixtures, solar and electric heat.

2. Hot water pipes, copper conductors.

3. Non-conducting packing, cements, clothing, &c.; steam-jackets, and

ice-jackets.

4. Regenerators, heaters, &c.

5. Condensers and safety valves.

G. Thermostats, (1) by regulation of gas
; (2) by boiling a liquid of known

composition.

7. Thermometers. Pyrometers, Thermoelectric Pile, Siemens' resistance

thermometer ; Calorimeters.

8. Standard temperatures : as those of melting ice, boiling water, &c.

For electric phenomena

—

1. Electric machines, frictional machine, electrophorus, Holtz' machine;

voltaic batteries, thermo-electric batteries, magneto-electric machines.

2. Wires and other metallic conductors; armatures of magnets.

3. Insulators.

4. Leyden jars and other " condensers
;

" secondary batteries or cells of

polarization ; magnets, and electro-magnets.

5. Ptheostats, lightning conductors, &c.

G. Guthrie's voltastat, regulators of electric lamps, &c.
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7. Electroscopes and electrometers, Coulomb's torsion balance, voltameters,

galvanometers and electrodynamometers, magnetometers.

8. Standards of resistance, capacity, electro-motive force, &c., as the Olun,

the microfarad, L. Clark's voltaic constant cell

From the physical, as distinguished from the physiological point of view,

the science of Acoustics relates to the excitement of vibrations and the propa-

gation of waves in solids, liquids, and gases, and that of Optics to the excitement

of vibrations, and the propagation of radiation, in the luminiferous medium.

From the physiological point of view, only those waves in ordinary matter

are considered which excite in us the sensation of Sound, though waves which

do not excite this sensation can be detected and studied by appropriate methods.

In the physiological treatment of Optics, only those radiations are considered

which excite in us the sensation of Light, though other radiations can be

detected and studied by their thermal, chemical, and even mechanical effects.

Vibrations and Waves.

Physical Aspect of Acoustics.

1. Sources. Vibrations of various bodies.

Air—Organ pipes, resonators and other wind instruments.

Reed instruments.

The Siren.

Strings

Membranes .

Plates

Rods .

2. Distributors. Air

Wood,

Metal,

3. Pugging of floors, &c.

4. Reservoirs. Resonators, Organ Pipes, Sounding-boards.

5. Dampers of pianofortes.

6. Regulators. Organ Swell.

7. Detectors, the ear; Sensitive Flames, Membranes, Phonautographs, &c.

8. Tuning-forks, pitch-pipes, and musical scales.

Harp, &c.

Drum, &c.

Gong, &c.

Tuning-fork, &c.

Speaking tubes, stethoscopes, &c.

Sounding rods.

Wires.
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Hearing.

Physiological Aspect of Acoustics.

Aj)paratus for determining the conditions

—

1. Of the audibility of sounds.

'2. Of the perception of the distinction of sounds.

;>. Of the harmony or discord of simultaneous sounds.

4. Of the melodious succession of sounds.

5. Of the timbre of sounds, and of the distinction of vowel sounds.

(5. Of the time required for the perception of the sensation of sound.

Eadiation.

Physical Aspect of Optics.

1. Sources of Radiation, Heated bodies, solid, liquid, and gaseous.

Solid. Heated by a blow-pipe as in the oxy-hydrogen limelight.

Heated by their own combustion, as in the magnesium light

and glowing coals.

Heated by an electric current, as the carbon electrodes of

the electric lamp.

Heated by concentrated radiation from other sources, as in

the phenomenon called Culescence.

Liquid, as in hot fused metals and other bodies.

Gaseous. Heated by their own combustion, as in flames.

Heated by a Bunsen burner, as the sodium light.

Heated by the voltaic arc.

Heated by the induction spark.

•2. Distributors. Burning mirrors and lenses, condensing lenses for solar

microscopes, magic lanterns, &c., lighthouse apparatus ; telescopes,

microscopes, &c.

:>. Selectors. Absorbing media and coloured bodies in general, prisms

and spectroscopes, ruled gratings, &c. : tourmalines, Nicol's prisms,

and other polarizers.
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4. Phosphorescent, fluorescent, and calescent bodies.

5. Opaque screens, diaphragms, and sHts.

6. Regulators. The iris of the eye.

7. Photometers, photographic apparatus, actinometer, thermo|>ile, Bunsen

and Roscoe's photometer, selenium photometer, Crookes' radiometer,

and other instruments.

8. Fraunhofer's lines of reference, and maps of the spectrum. Standard

sperm candle, burning 120 grains of sperm per liliour.

Sight.

Physiological Aspect of Optics.

Apparatus for determining the conditions of

—

1. The \dsibility of objects, with respect to size, illumination, &c.

2. The perception of the distinction of objects.

3. The perception of colour, as depending on the composition of the

light coming from the object.

Apparatus for comparing the intensity of luminous impressions, as depending

on the intensity of the exciting cause and on the time during which it has

acted, and for tracing the course of the development of a luminous impression

from its first excitation to its final decay and extinction.

Ophthalmometers, for measuring the dimensions of the eye and determining

its motions ; and for ascertaining the two limits of distinct vision.

Ophthalmoscopes, for illuminating and observing the interior of the eye.

Biological Apparatus.

1. For measuring the ingesta, egesta, and weight of living beings.

2. For testing the strength of animals and measuring the work done

by them.

3. For measuring the heat which they generate.

4. For determining the conditions of fatigue of muscles.

5. For investigating thg phenomena of the propagation of impulses through

the nerves, and of the excitement of muscular action.,

VOL. II.
^^
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6. For tracing and registering the rhythmic action of the circulatory and

respiratory operations—cardiographs, sphygmographs, stethoscopes, &c.

7. Marey's apparatus for registering the paces of men, horses, &c., and

the actions of birds and insects during flight.

8. Instruments for illuminating and rendering visible parts within the

living body—ophthalmoscopes, laryngoscopes, &c.—and arrangements

for transmitting light through parts of the living body.

9. Instruments for varying the electrical state of the body—induction

coils, &c.

10. Instruments for determining the electric state of living organs

—

galvanometers with proper electrodes, electrometers, &c.



[From the Kensington Museum Hand Book."]

LXXIX. Instruments connected with Fluids.

In countries where the fertility of the soil is capable of being greatly

increased by artificial irrigation, the attention of all ingenious persons is naturally

directed to devising means whereby *he labour of raising water may be diminished.

Hence we find that in China and in India, but especially in Eg}7>t, great

progress was made in the art of producing and guiding the motion of water.

The first pump worked by a piston of which we have any account seems

to be that invented by Ctesibius of Alexandria, about 130 B.C.

The construction of this pump, as described by Vitruvius, resembles that

of the modern fire-engine. It had two barrels, which discharged the water

alternately into a closed vessel, the upper part of which contained air. This

air-chamber acted as a reservoir of energy, and equalised the pressure under

which the water was emitted from the discharge pipe.

Hero, a scholar of Ctesibius, invented a number of ingenious machines. He
delighted in curious combinations of siphons, by which fountains were made to

play under unusual circumstances. "We should call such machines toys, but though

to us they have no longer any scientific value, we must regard them as among

the first instances of apparatus constructed not in order to minister directly

to man's necessities or luxuries, but to excite or to satisfy his curiosity with

respect to the more unusual phenomena of nature.

From the time of Ctesibius and Hero to that of Galileo (1600) pumps were

constructed chiefly for useful, as distinguished from scientific, purposes, and con-

siderable skill was developed in the art of forming the barrel and piston so

as to work with a certain degree of accuracy.

Galileo shewed that the reason why water ascends in a sucking pump is

not that Nature abhors a vacuum, but that the pressure of the atmosphere

acts on the free surface of the water, and that this pressure will force the

66—2
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water only to a height of 34 feet; for when this height is reached, the water

rises no further, and this shews either that the pressure of the atmosphere is

balanced by that of the column of water, or else that Nature has become

reconciled to a vacuum.

From this time the production of a vacuum became the scientific object

aimed at by a gi-eat number of inventors. Torricelli, the pupil of Galileo, in

1642, made the greatest step in this direction, by filling with mercury a tube

closed at one end and then inverting the tube with its open end in a vessel

of mercury. If the tube was long enough the mercury fell, leaving an empty

space at the top of the tube. The vacuum obtained by filling a vessel with

mercury and removing the mercury without admitting any other matter is hence

called the Torricellian vacuum. Torricelli, therefore, gave us at once the mercury-

pump and the barometer, though the subsequent history of these two instruments

is very different.

A little before 1654 Otto Von Guericke, of Magdeburg, first applied the

principle of the common pump to the production of a vacuum. The fitting of

the pistons of the pumps of those days, however, though sufiiciently water-tight,

was by no means air-tight. He therefore began by filling a vessel with water

and then removing the water by a water-pump. In his experiments he met

with many failures, but he continued to improve his apparatus till he could

not only exhibit most of the phenomena now shewn in exhausted receivers,

but till he had discovered the reason of the imperfection of the vacuum when

water was used to keep the pump air-tight.

"In the year 1658 Hooke finished an air-pump for Boyle, in whose laboratory

he was an assistant ; it was more convenient than Guericke's, but the vacuum

was not so perfect
;

yet Boyle's numerous and judicious experiments gave to

the exhausted receiver of the air-pump the name of the Boylean vacuum, by

which it was long known in the greatest part of Europe. Hooke's air-pump

had two barrels, and with some improvements by Hauksbee it remained in use

until the introduction of Smeaton's pump, which, however, has not wholly

superseded it"'."

The history of the air-pump after this time relates chiefly to the con-

trivances for insuring the working of the valves when the pressure of the

remaining air is no longer sufficient to efiect it, and to methods of rendering

* Thomas Young's Lectures on Nat. Phil (1807). Lecture xxx.
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the working parts air-tight witliout introducing substances the vapour of which

would continue to fill the otherwise empty space.

There is one form of air-pumj), however, which we must notice, as in it

all packing and lubricating substances are dispensed with. This Ls the air-pumj>

constructed by M. Deleuil, of Paris *, in wliich the pistons are sohd cylinders

of considerable length, and are not made to fit tightly in the barrels of the

pump. No grease or lubricating substance is used, and the pistons work easily

and smoothly in the barrels. The space between the piston and the barrel

contains air, but the internal friction of the air in this narrow space is so great

that the rate at which it leaks into the exhausted part of the barrel is not

comparable with the rate at which the pump is exhausting the air from the

receiver. It has been shewn by the present writer that the internal friction

of air is not diminished even when its density is greatly reduced. It is for

this reason that this pump works satisfactorily up to a very considerable degree

of exhaustion.

Pumps of the type already described are still used for the rapid exhaustion

of larore vessels, but since the physical properties of extremely rarefied gases

have become the object of scientific research, the original method of TorriceUi

has been revived under various forms.

Thus we have one set of mercury-pumps in which the mercury is alternately

made to fill a certain chamber completely and to drive out whatever gas may

be in it, and then to flow back leaving the chamber empty.

Sprengel's pump is the type of the other set. The working part is a vertical

glass tube longer than the height of the barometer, and so narrow that a

small portion of mercury placed in it is compelled by its surface-tension to fill

the whole section of the tube. The mercury is introduced into this tube from

a funnel at the top through a small India-rubber tube regulated by a pinch-

cock, so that the mercury falls in small detached portions, each of which drives

before it any air which may be in the tube till it escapes into a mercury-

trough, into which the bottom of the tube dips.

The vessel to be exhausted is connected to a tube which enters at the

side of the vertical tube near the top. Any air or other gas which may be

in the vessel expands into the vacuum left in the vertical tube between suc-

cessive portions of the falling mercury, and is driven down the tube by the

next portion of mercury into the mercury-trough, where it may be collected.

* Comptes Rendus, t Ix. p. 571. Carl's Repertorium.
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As long as the rarefaction of tlie air is not very great the quantity of

air which is included between successive portions of mercury is suflacient to act

as a sort of buflfer, but as the rarefaction increases the portions of mercury

come together more abruptly, and produce a sound which becomes sharper as

the vacuum becomes more perfect.

After the mercury-pump has been in action for some hours the quantity

of matter remaining in the vessel is very small. If the tubes have been joined

by means of caoutchouc connections there is a trace of gaseous matter emitted

by the caoutchouc. It is therefore necessary, when a very perfect vacuum is

desii-ed, to make all the joints " hermetical " by fusing the glass. Still, however,

there remains a trace of matter. The vapour of mercury is, of course, present,

and the sides of the glass vessel retain water very strongly, and part with

it very slowly, when all other matter is removed.

By passing a little strong sulphuric acid through the pump along with the

mercury, vapours both of mercury and of water may be in great measure

removed.

MM. Kundt and Warburg have got rid of an additional quantity of water-

substance by heating the vessel to as high a temperature as the glass wiU

bear while the pump was kept in action.

A method which has been long in use for getting a good vacuum is to

place in the vessel a stick of fused potash, and to fill it with carbonic acid,

and, after exhausting as much as possible, to seal up the vessel. The potash

is then heated, and when it has again become cold, most of the remaining

carbonic acid has combined with the potash.

Another method, employed by Professor Dewar, is to place in a compart-

ment of the vessel a piece of freshly heated cocoa-nut charcoal, and to heat

it strongly during the last stages of the exhaustion by the mercury-pump.

The vessel is then sealed up, and as the charcoal cools it absorbs a very large

proportion of the gases remaining in the vessel.

The interior of the vessel, after exhaustion, is found to be possessed of

very remarkable properties.

One of these properties furnishes a convenient test of the completeness of

the exhaustion. The vessel is provided with two metallic electrodes, the ends

of which within the vessel are within a quarter of an inch of each other. When

the vessel contains air at the ordinary pressure a considerable electromotive

force is required to produce an electric discharge across this interval. As the



INSTRUMENTS CONNECTED WITH FLUIDS. 527

exhaustion proceeds tlie resistance to the dlscliarge diminishes till the pressure

is reduced to that of ahout a millimetre of mercury. When, however, the

exhaustion is made very perfect the discharge cannot be made to take place

between the electrodes within the vessel, and the Bj)ark actually passes through

several inches of air outside the vessel before it will leap the small inter\'al

in the empty vessel. A vacuum, therefore, is a stronger insulator of electricity

than any other medium.

MM. Kundt and Warburg have experimented on the viscosity of the air

remaining after exhaustion, and on its conductivity for heat. They find that

it is only when the exhaustion is very perfect that the viscosity and con-

ductivity begin sensibly to diminish, even when the stratum of the medium

experimented on is very thin.

But the most remarkable phenomenon hitherto observed in an empty space

is that discovered by Mr Crookes. A light body is delicately suspended in an

exhausted vessel, and the radiation from the sun, or any other source of light

or heat, is allowed to fall on it. The body is apparently repelled and moves

away from the side on which the radiation falls.

This action is the more energetic the greater the perfection of the vacuum.

When the pressure amounts to a millimetre or two the repulsion becomes very

feeble, and at greater pressures an apparent attraction takes place, which, how-

ever, cannot be compared either in regularity or in intensity to the repulsion

in a good vacuum.

From these instances we may see what important scientific discoveries may

be looked for in consequence of improvements in the methods of obtaining a
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LXXX. WhewelVs Writings and Correspondence.

"We frequently hear the complaint that as the boundaries of science are

widened its cultivators become less of philosophers and more of specialists, each

confining himself with increasing exclusiveness to the area with which he is

familiar. This is probably an inevitable result of the development of science,

which has made it impossible for any one man to acquire a thorough knowledge

of the whole, while each of its sub-divisions is now large enough to afford

occupation for the useful work of a lifetime. The ablest cultivators of science

are agreed that the student, in order to make the most of his powers, should

ascertain in what field of science these powers are most available, and that he

should then confine his investigations to this field, making use of other parts

of science only in so far as they bear upon his special subject.

Accordingly we find that Dr Whewell, in his article in the Encyclojp(2dia

Metropolitana, on "Archimedes and Greek Mathematics," says of Eratosthenes,

who, like himself, was philologer, geometer, astronomer, poet, and antiquary:

"It is seldom that one person attempts to master so many subjects without

incurring the charge and perhaps the danger of being superficial."

It is probably on account of the number and diversity of the kinds of

intellectual work in which Dr Whewell attained eminence that his name is most

widely known. Of his actual performances the "History" and the "Philosophy

of the Inductive Sciences" are the most characteristic, and this because his

practical acquaintance with a certain part of his great subject enabled him the

better to deal with those parts which he had studied only in books, and to

describe their relations in a more intelligent manner than those authors who

have devoted themselves entirely to the general aspect of human knowledge

without being actual workers in any particular department of it.
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But the chief characteristic of Dr Whewell's intellectual life seems to have
been the energy and perseverance with which he pursued the development of

each of the great ideas which had in the course of his life presented itself to

him. Of these ideas some might be greater than others, but all were large.

The special pursuit, therefore, to which he devoted himself was the elabora-

tion and the expression of the ideas appropriate to different branches of

knowledge. The discovery of a new fact, the invention of a theory, the solution

of a problem, the filling up of a gap in an existing science, were interesting

to him not so much for their own sake as additions to the general stock of

knowledge, as for their illustrative value as characteristic instances of the

processes by which all human knowledge is developed.

To w^atch the first germ of an appropriate idea as it was developed either

in his own mind or in the writings of the founders of the sciences, to frame

appropriate and scientific words in which the idea might be expressed, and then

to construct a treatise in which the idea should be largely developed and the

appropriate words copiously exemplified—such seems to have been the natural

channel of his intellectual activity in whatever direction it overflowed. When
any of his great works had reached this stage he prepared himself for some

other labour, and if new editions of his work were called for, the alterations

which he introduced often rather tended to destroy than to complete the unity

of the original plan.

Mr Todhunter has given us an exhaustive account of Dr Whewell's writings

and scientific work, and in this w^e may easily trace the leading ideas which

he successively inculcated as a writer. We can only share Mr Todhunter's regret

that it is only as a writer that he appears in this book, and it is to be

hoped that the promised account of his complete life as a man may enable us

to form a fuller conception of the individuality and unity of his character, which

it is hard to gather from the multifarious collection of his books.

Dr Whewell first appears before us as the author of a long series of

text-books on Mechanics. His position as a tutor of his College, and the

interest which he took in University education, may have induced him to spend

more time in the composition of elementary treatises than would otherwise have

been congenial to him, but in the prefaces to the difierent editions, as well

as in the introductory chapters of each treatise, he shews that sense of the

intellectual and educational value of the study of first principles which dis-

tinguishes all his writings. It is manifest from his other writings, that the
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composition of these text-books, involving as it did a thorough study of the

fundamental science of Dynamics, was a most appropriate training for his

subsequent labours in the survey of the sciences in their widest extent.

"It has always appeared to me," says Mr Todhunter, "that Mr Whewell would have been of

great benefit to students if he had undertaken a critical revision of the technical language of Mechanics.

This language was formed to a great extent by the early writers at an epoch when the subject was

imperfectly understood, and many terms were used without well-defined meanings. Gradually the

language has been improved, but it is still open to objection."

In after years, when his authority in scientific terminology was widely

recognised, we find Faraday, Lyell, and others applying to him for appropriate

expressions for the subject-matter of their discoveries, and receiving in reply

systems of scientific terms which have not only held their place in technical

treatises, but are gradually becoming familiar to the ordinary reader.

"Is it not true," Dr Whewell asks in his Address to the Geological Society,

" in our science as in all others, that a technical phraseology is real wealth,

because it puts in our hands a vast treasure of foregone generalisations ?

"

Perhaps, however, he felt it less difficult to induce scientific men to adopt

a new term for a new idea than to persuade the students and teachers of a

University to alter the phraseology of a time-honoured study.

But even in the elementary treatment of Dynamics, if we compare the

text-books of different dates, we cannot fail to recognise a marked progress.

Those by Dr Whewell were far in advance of any former text-books as regards

logical coherence and scientific accuracy, and if many of those which have been

published since have fallen behind in these respects, most of them have intro-

duced some slight improvement in terminology which has not been allowed to

be lost.

Dr Whewell's opinion with respect to the evidence of the fundamental

doctrines of mechanics is repeatedly inculcated in his writings. He considered

that experiment was necessary in order to suggest these truths to the mind,

but that the doctrine when once fairly set before the mind is apprehended by

it as strictly true, the accuracy of the doctrine being in no way dependent

on the accuracy of observation of the result of the experiment.

He therefore regarded experiments on the laws of motion as illustrative

experiments, meant to make us familiar with the general aspect of certain phe-

nomena, and not as experiments of research from which the results are to be

deduced by careful measurement and calculation.
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Thus experiments on the fall of bodies may be regarded as experiments of

research into the laws of gravity. We find by careful measurements of times

and distances that the intensity of the force of gravity is the same whatever

be the motion of the body on which it acts. We also ascertain the direction

and magnitude of this force on different bodies and in different places. All

this can only be done by careful measurement, and the results are affected by

all the errors of observation to which we are liable.

The same experiments may be also taken as illustrations of the laws of

motion. The performance of the experiments tends to make us familiar with

these laws, and to impress them on our minds. But the laws of motion cannot

be proved to be accurate by a comparison of the observations which we make,

for it is only by taking the laws for granted that we have any basis for our

calculations. We may ascertain, no doubt, by experiment, that the acceleration

of a body acted on by gravity is the same whatever be the motion of that

body, but this does not prove that a constant force produces a constant accele-

ration, but only that gravity is a force, the intensity of which does not depend

on the velocity of the body on which it acts.

The truth of Dr Whewell's principle is curiously illustrated by a case in

which he persistently contradicted it. In a paper communicated to the Philo-

sophical Society of Cambridge, and reprinted at the end of his Philosophy of

the Inductive Sciences, Dr Whewell conceived that he had proved, a j^J'iori, that

all matter must be heavy. He was well acquainted with the history of the

establishment of the law of gravitation, and knew that it was only by careful

experiments and observations that Newton ascertained that the effect of gravi-

tation on two equal masses is the same whatever be the chemical nature of

the bodies, but in spite of this he maintained that it is contrary not only to

observation but tc reason, that any body should be repelled instead of attracted

by another, whereas it is a matter of daily experience, that any two bodies

when they are brought near enough, repel each other.

The fact seems to be that, finding the word w-eight employed in ordinary

language to denote the quantity of matter in a body, though in scientific language

it denotes the tendency of that body to move do\vnwards, and at the same

time supposing that the word mass in its scientific sense was not yet sufficiently

established to be used without danger in ordinary language, Dr Whewell en-

deavoured to make the word weight carry the meaning of the word mass. Thus

he tells us that " the weight of the whole compound must be equal to the

weights of the separate elements."
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On this Mr Todhunter very properly observes

:

"Of course there is no practical uncertainty as to this principle; but Dr Whewell seems to allow

his readers to imagine that it is of the same nature as the axiom that 'two straight lines cannot

inclose a space.' There is, however, a wide difference between them, depending on a fact which

Dr Whewell has himself recognised in another place (see vol. I. p. 224). The truth is, that strictly

speaking the weight of the whole compound is not equal to the weight of the separate elements;

for the weight depends upon the position of the compound particles, and in general by altering

the position of the particles, the resultant effect which "we call weight is altered, though it ma^

be to an inappreciable extent."

It is evident that what Dr Whewell should have said was :
" The mass of

the whole compound must be equal to the sum of the masses of the separate

elements." This statement all would admit to be strictly true, and yet not a

single experiment has ever been made in order to verify it. All chemical

measurements are made by comparing the weights of bodies, and not by com-

paring the forces required to produce given changes of motion in the bodies

;

and as we have just been reminded by Mr Todhunter, the method of comparing

quantities of matter by weighing them is not strictly correct.

Thus, then, we are led by experiments which are not only liable to error,

but which are to a certain extent erroneous in principle, to a statement which

is universally acknowledged to be strictly true. Our conviction of its truth must

therefore rest on some deeper foundation than the experiments which suggested

it to our minds. The belief in and the search for such foundations is, I think,

the most characteristic feature of all Dr Whewell's work.
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LXXXI. On Ohms Law.

The service rendered to electrical science by Dr G. S. Ohm can only be

rightly estimated when we compare the language of those writers on electricity

who were ignorant of Ohm's law with that of those who have understood

and adopted it.

By the former, electric currents are said to vary as regards both their

"quantity" and their "intensity," two qualities the nature of which was very

imperfectly explained by tedious and vague expositions.

In the writings of the latter, after the elementary terms "Electromotive

Force," "Strength of Current," and "Electric Resistance" have been defined,

the whole doctrine of currents becomes distinct and plain.

Ohm's law may be stated thus :

The electromotive force which must act on a homogeneous conductor in

order to maintain a given steady current through it, is numerically equal t<»

the product of the resistance of the conductor into the strength of the current

through it. If, therefore, we define the resistance of a conductor as the ratio

of the numerical value of the electromotive force to the numerical value of

the strength of the current. Ohm's law asserts that this ratio is constant

—

that is, that its value does not depend on that of the electromotive force or

of the current.

The resistance, as thus defined, depends on the nature and form of the

conductor, and on its physical condition as regards temperature, strain, &c.

;

but if Ohm's law is true, it does not depend on the strength of the current.

Ohm's law must, at least at present, be considered a purely empirical

one. No attempt to deduce it fi-om pure dynamiciil principles has as yet

been successful ; indeed Weber's latest theoretical investigations* on this subject

have led him to suspect that Ohm's law is not true, but that, as tlie electro-

Pogg. Ann, 1875.
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motive force Increases without limit, the current increases slower and slower,

so that the "resistance," as defined by Ohm's law, would increase with the

electromotive force. On the other hand, Schuster* has described experiments

which lead him to suspect a deviation from Ohm's law, but in the opposite

direction, the resistance being smaller for great currents than for small ones.

Lorentzt, of Leyden, has also proposed a theory according to which Ohm's

law would cease to be true for rapidly varying currents. The rapidity of

variation, however, which, as he supposes, would cause a perceptible deviation

from Ohm's law, must be comparable with the rate of vibration of light, so

that it would be impossible by any experiments other than optical ones to

test this theory.

The conduction of electricity through a resisting medium is a process in

which part of the energy of an electric current, flowing in a definite direc-

tion, is spent in imparting to the molecules of the medium that irregular

agitation which we call heat. To calculate from any hypothesis as to the

molecular constitution of the medium at what rate the energy of a given

current would be spent in this way, would require a far more perfect know-

ledge of the dynamical theory of bodies than we at present possess. It is

only by experiment that we can ascertain the laws of processes of which we

do not understand the dynamical theory.

We therefore define, as the resistance of a conductor, the ratio of the

numerical value of the electromotive force to that of the strength of the

cuiTent, and we have to determine by experiment the conditions which affect

the value of this ratio.

Thus if E denotes the electromotive force acting from one electrode of the

conductor to the other, C the strength of the current flowing through the

conductor, and R the resistance of the current, we have by definition

and if H is the heat generated in the time t, and if J is the dynamical

equivalent of heat, we have by the principle of conservation of energy

JH=ECt = ROt = ^t.

* Report of British Association, 1874.

t Over de Terugkaatsing en Breking van het Licht. Leiden, 1875.
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The quantity R, which we have defined as the resistance of the conductor,

can be determined only by experiment. Its value may therefore, for any thing

we know, be affected by each and all of the physical conditions to which the

conductor may be subjected.

Thus we know that the resistance is altered by a change of the tempe-

rature of the conductor, and also by mechanical strain and by magnetization.

The question which is now before us is whether the current itself is or

is not one of the physical conditions which may affect the value of the

resistance; and this question we cannot decide except by experiment.

Let us therefore assume that the resistance of a given conductor at a

given temperature is a function of the strength of the current. Since the

resistance of a conductor is the same for the same current in whichever

direction the current flows, the expression for the resistance can contain only

even powers of the current.

Let us suppose, therefore, that the resistance of a conductor of unit length

and unit section is

r(l+5c'-f 5V + &C.),

where r is the resistance corresponding to an infinitely small current, and

c is the current through unit of section, and s, s\ &c. are small coeflBcients to

be determined by experiment. The coefficients 5, s', &c. represent the deviations

from Ohm's law. If Ohm's law is accurate, these coefficients are zero; also if

e is the electromotive force acting on this conductor,

e = rc(l+5c' + 5V + &c.).

Now let us consider another conductor of the same substance whose length

is L and whose section is A ; then if ^ is the electromotive force on this

conductor, and e that on unit of length.

Also if C be the current through the conductor and c that through unit of

area,

C=Ac.

Hence the resistance of this conductor will be

^=c=-aV^a^^a^^^V
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Now let us suppose two conductors of the same material but of different

diniensions arranged in series and the same current passed through both :

where the suflSxes indicate to which conductor the quantities belong. The

ratio of the resistances is

t4i-{-^^=(i:.-i^-}-
Hence if Ohm's law is not true, and if, therefore, any of the quantities 5, s',

&c. have sensible values, the ratio of the resistances will depend on the strength

of the current.

Now the ratio of two resistances may be measured with great accuracy

by means of Wheatstone's bridge.

We therefore arrange the bridge so that one branch of the current passes

first through a very fine wire a few centimetres long, and then through a

much longer and thicker wire of about the same resistance. The other branch

of the current passes through two resistances, equal to each other, but much

greater than the other two, so that very little of the heating-effect of the

current is produced in these auxiliary resistances.

The bridge is formed by connecting the electrodes of a galvanometer, one

to the junction of the fine wire and the thick one, and the other to a point

between the other two resistances.

We have thus a method of testing the ratio of the resistances of the

fine wire to that of the thick one ; and by passing through the bridge some-

times a feeble current and sometimes a powerful one, we might ascertain if

the ratio differed in the two cases.

But this dii'ect method is rendered useless by the fact that the current

generates heat, which raises the temperature of both wires, but that of the

thin wire most rapidly ; and this makes it impossible to compare the effects

of strong and weak currents through a conductor at one and the same

temperature.
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It is also useless to work with weak currents, as the effect depends on

the square of the current, and is so small as to have escaped observation in

all ordinary experiments.

Again, if we were to use a single very strong current acting for a very

short time, we should not be able to observe the galvanometer in a satis-

factory manner. In fact it was found in the experiment that currents which

lasted for a sixtieth part of a second produced a heating-effect which interfered

with the measurements. The experiment was therefore arranged so that a

strong current and a weak one were passed through the bridge alternately

;

and when the bridge was so arranged that the galvanometer was in equili-

brium, the direction of the weaker current was reversed. If Ohm's law were

not true, the condition of equilibrium for strong currents would be different

from that for weaker ones, so that when the weak currents were reversed

there would be no longer equilibrium. Since, in point of fact, the reversal

of the weaker currents did not affect the equilibrium, it follows that the

bridge was in equilibrium for the weaker currents as well as for the stronger

ones, and therefore the conditions were the same for both, and Ohm's law

is true to within the limits of error of the experiment''.

[* The mode in whicli the actual strength of the currents -was measured and the limits of

error ascertained are described in the Report which follows the above by Mr Chrystal, now Pro-

fessor of Mathematics at Edinburgh University.]
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LXXXII. 0)1 the protection of huildings from lightning.

Most of tliose who have given directions for the construction of lightning-

conductors have paid great attention to the upper and lower extremities of

the conductor. They recommend that the upper extremity of the conductor

should extend somewhat above the highest part of the building to be protected,

and that it should terminate in a sharp point, and that the lower extremity

should be carried as far as possible into the conducting strata of the ground,

so as to " make " what telegraph engineers call " a good earth."

The electrical effect of such an arrangement is to tap, as it were, the

gathering charge by facilitating a quiet discharge between the atmospheric

accumulation and the earth. The erection of the conductor will cause a some-

what greater number of discharges to occur at the place than would have

occurred if it had not been erected ; but each of these discharges will be

smaller than those which would have occurred without the conductor. It is

probable, also, that fewer discharges will occur in the region surrounding the

conductor.

It appears to me that these arrangements are calculated rather for the

benefit of the surrounding countiy and for the relief of clouds labouring under

an accumulation of electricity, than for the protection of the building on which

the conductor is erected.

What we really wish is to prevent the possibility of an electric discharge

taking place within a certain region, say in the inside of a gunpowder manu-

factory. If this is clearly laid down as our object, the method of securing it

is equally clear.

An electric discharge cannot occur between two bodies, unless the difference

of their potentials is sufficiently great, compared with the distance between them.

If, therefore, we can keep the potentials of all bodies within a certain region

equal, or nearly equal, no discharge will take place between them. We may
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secure this by connecting all these bodies by means of good conductors, such

as copper wire ropes, but it is not necessary to do so, for it may be shewn

by experiment that if every part of the surface surrounding a certain region

is at the same potential, every point within that region must be at the same

potential, provided no charged body is placed within the region.

It would, therefore, be sufficient to surround our powder-mill with a con-

ducting material, to sheathe its roof, walls, and ground-floor with thick sheet

copper, and then no electrical eff'ect could occur within it on account of any

thunderstorm outside. There would be no need of any earth connection. We
mio-ht even place a layer of asphalte between the copper floor and the ground,

so as to insulate the building. If the mill were then struck with lightning,

it would remain charged for some time, and a person standing on the ground

outside and touching the wall might receive a shock, but no electrical efl"ect

would be perceived inside, even on the most delicate electrometer. The poten-

tial of everything inside with respect to the earth would be suddenly raised

or lowered as the case might be, but electric potential is not a physical con-

dition, but only a mathematical conception, so that no physical efiect would be

perceived.

It is therefore not necessary to connect large masses of metal such as

engines, tanks, &c., to the walls, if they are entirely within the building. If,

however, any conductor, such as a telegraph wire or a metallic supply-pipe for

water or gas comes into the building from without, the potential of this con-

ductor may be different from that of the building, unless it is connected with

the conducting- shell of the building. Hence the water or gas supply pipes, if

any enter the building, must be connected to the system of lightning con-

ductors, and since to connect a telegraph wire with the conductor would render

the telegraph useless, no telegraph from without should be allowed to enter

a powder-mill, though there may be electric bells and other telegraphic appa-

ratus entirely within the building.

I have supposed the powder-mill to be entirely sheathed in thick sheet

copper. This, however, is by no means necessary in order to prevent any

sensible electrical effect taking place within it, supposing it struck by lightning.

It is quite sufficient to inclose the building with a network of a good conduct-

ing substance. For instance, if a copper wire, say No. 4, B.W.G. (0-238 inches

diameter), were carried round the foundation of the house, up each of the

corners and gables and along the ridges, this would probably be a sufficient
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protection for an ordinary building against any thunderstorm in this climate.

The copper wire may be built into the wall to prevent theft, but should be

connected to any outside metal such as lead or zinc on the roof, and to metal

rain-water pipes. In the case of a powder-mill it might be advisable to make

the network closer by carrying one or two additional wires over the roof and

down the walls to the wire at the foundation. If there are water or gas-

pipes which enter the building from without, these must be connected with

the system of conducting-wires, but if there are no such metallic connections

with distant points, it is not necessary to take any pains to facilitate the

escape of the electricity into the earth.

Still less is it advisable to erect a tall conductor with a sharp point in

order to relieve the thunder-clouds of their charge.

It is hardly necessary to add, that it is not advisable, during a thunder-

storm, to stand on the roof of a house so protected, or to stand on the ground

outside and lean against the wall.



[From the Encydopoedia Bntannica.]

LXXXIII. Capillarij Action.

A TUBE, the bore of which is so small that it will only admit a hair

(capilla), is called a capQlary tube. When such a tube of glass, open at both

ends, is placed vertically with its lower end immersed in water, the water is

obsen^ed to rise in the tube, and to stand within the tube at a higher level

than the water outside. The action between the capillary tube and the water

has been called Capillary Action, and the name has been extended to many

other phenomena which have been found to depend on properties of liquids

and solids similar to those which cause water to rise in capillary tubes.

The forces which are concerned in these phenomena are those which act

between neighbouring parts of the same substance, and which are called forces

of cohesion, and those which act between portions of matter of different kinds,

which are called forces of adhesion. These forces are quite insensible between

two portions of matter separated by any distance which we can directly measure.

It is only when the distance becomes exceedingly small that these forces be-

come perceptible. Quincke'"' has made experiments to determine the greatest

distance at which the effect of these forces is sensible, and he finds for various

substances distances about the twenty-thousandth part of a millimetre.

Poggendorfft tells us that Leonardo da Vinci J must be considered as the

discoverer of capillary phenomena.

The first accurate observations of the capillary action of tubes and glass

plates were made by Hauksbee§. He ascribes the action to an attraction be-

tween the glass and the liquid. He observed that the effect was the same in

thick tubes as in thin, and concluded that only those particles of the glass

which are very near the surface have any influence on the phenomenon.

* Pogg. Ann., cxxxvil. p. 402. t Pogg. Ann., ci. p. 551. X I>ied 1519.

§ Phi/sico-MecIuinical Experinmits, London, 1709, pp. 139—169; and Phil. Trans., 1711 and 1712.
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Dr Jurin* shewed that the height at which the liquid is suspended

depends on the section of the tube at the surface of the liquid, and is inde-

pendent of the form of the lower part of the tube. He considered that the

suspension of the liquid is due to " the attraction of the periphery or section

of the surface of the tube to which the upper surface of the water is con-

tiguous and coheres." From this he shews that the rise of the liquid in tubes

of the same substance is inversely proportional to their radii.

Ne^vton devotes the 31st query in the last edition of his Opticks to

molecular forces, and instances several examples of the cohesion of liquids, such

as the suspension of mercury in a barometer tube at more than double the

height at which it usually stands. This arises from its adhesion to the tube,

and the upper part of the mercury sustains a considerable tension, . or negative

pressure, without the separation of its parts. He considers the capillary phe-

nomena to be of the same kind, but his explanation is not sufficiently explicit

with respect to the nature and the limits of the action of the attractive force.

It is to be observed that, while these early speculators ascribe the phe-

nomena to attraction, they do not distinctly assert that this attraction is

sensible only at insensible distances, and that for all distances which we can

directly measure the force is altogether insensible. The idea of such forces,

however, had been distinctly formed by Newton, who gave the first example

of the calculation of the effect of such forces in his theorem on the alteration

of the path of a light-corpuscle when it enters or leaves a dense body.

Clairautf appears to have been the first to shew the necessity of taking

account of the attraction between the parts of the fluid itself in order to

explain the phenomena. He does not, however, recognise the fact that the

distance at which the attraction is sensible is not only small but altogether

insensible.

Segner | introduced the very important idea of the surface-tension of liquids,

which he ascribed to attractive forces, the sphere of whose action is so small

"ut nullo adhuc s6nsu percipi potuerit." In attempting to calculate the effect

of this surface-tension in determining the form of a drop of the liquid, Segner

took account of the curvature of a meridian section of the drop, but neglected

the effect of the curvature in a plane at right angles to this section.

Phil. Trails., 1718, No. 355, p. 739, and 1719, Ko. 363, p. 1083.

+ Clairaut, Theorie de la Figure de la Terre, Paris, 1808, pp. 105, 128.

X Segner, Comment. Soc. Reg. Gotthxg., i. (1751), p. 301.
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But the idea of surface-tension introduced by Segner had a most important

effect on the subsequent development of the theory. We may regard it as a

physical fact established by experiment in the same way as the laws of the

elasticity of soHd bodies. We may investigate the forces which act between

finite portions of a liquid in the same way as we investigate the forces which

act between finite portions of a solid. The experiments oa solids lead to certain

laws of elasticity expressed in terms of coefficients, the values of which can

be determined only by experiments on each particular substance. Various

attempts have also been made to deduce these laws from particular hypotheses

as to the action between the molecules of the elastic substance. We may
therefore regard the theory of elasticity as consisting of two parts. The first

part establishes the laws of the elasticity of a finite portion of the solid sub-

jected to a homogeneous strain, and deduces from these laws the equations of

the equilibrium and motion of a body subjected to any forces and displace-

ments. The second pai-t endeavours to deduce the facts of the elasticity of a

finite portion of the substance from hypotheses as to the motion of its con-

stituent molecules and the forces acting between them.

In like manner we may by experiment ascertain the general fact that the

surface of a liquid is in a state of tension similar to that of a membrane

stretched equally in all directions, and prove that this tension depends only

on the nature and temperature of the liquid and not on its form, and from

this as a secondary physical principle we may deduce all the phenomena

of capillary action. This is one step of the investigation. The next step

is to deduce this surface-tension from an hypothesis as to the molecular

constitution of the liquid and of the bodies that surround it. The scientific

importance of this step is to be measured by the degree of insight which

it affords or promises into the molecular constitution of real bodies by the

suggestion of experiments by which we may discriminate between rival molecular

theories.

In 1756 Leidenfrost* shewed that a soap-bubble tends to contract, so that

if the tube with which it was blown is left open the bubble will diminish

in size and will expel through the tube the air which it contains. He attri-

buted this force, however, not to any general property of the surfaces of liquids,

but to the fatty part of the soap which he supposed to separate itself from

* De aqucB communis nonnullis qualitatlbus tractatics, Duisburg.
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the other constituents of the solution, and to form a thin skin on the outer

face of the bubble.

In 1787 Monge* asserted that "by supposing the adherence of the par-

ticles of a fluid to have a sensible effect only at the surface itself and in the

direction of the surface it would be easy to determine the curvature of the

surfaces of fluids in the neighbourhood of the solid boundaries which contain

them; that these surfaces would be lintearioe of which the tension, constant

in all directions, would be everywhere equal to the adherence of two particles,

and the phenomena of capiUary tubes would then present nothing which could

not be determined by analysis." He applied this principle of surface-tension

to the explanation of the apparent attractions and repulsions between bodies

floating on a liquid.

In 1802 LesUet gave the first correct explanation of the rise of a liquid

in a tube by considering the effect of the attraction of the soUd on the very

thm stratum of the liquid in contact with it. He does not, like the earher

speculators, suppose this attraction to act in an upward direction so a^ to

support the fluid directly. He shews that the attraction is everywhere normal

to the surface of the solid. The dbect effect of the attraction is to increase

the pressure of the stratum of the fluid in contact with the soHd, so as to

make it greater than the pressure in the interior of the fluid. The result of

this pressure if unopposed is to cause this stratum to spread itself over the

surface of the soHd as a drop of water is observed to do when placed on a

clean horizontal glass plate, and this even when gravity opposes the action, as

when the drop is placed on the under surface of the plate. Hence a glass

tube plunged into water would become wet all over were it not that the

ascending liquid film carries up a quantity of other Uquid which coheres to it,

so that when it has ascended to a certain height the weight of the column

balances the force by which the film spreads itself over the glass. This ex-

planation of the action of the solid is equivalent to that by which Gauss

afterwards suppHed the defect of the theory of Laplace, except that, not being

expressed in terms of mathematical symbols, it does not indicate the mathe-

matical relation between the attraction of individual particles and the final

result. Leslie's theory was afterwards treated according to Laplace's mathe-

matical methods by James Ivory in the article on capillary, action, under the

* Memoires de VAcad. des Sciences, 1787, p. 506.

t Philosophical Magazine, 1802, Vol. xiv. p. 193.
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heading "Fluids, Elevation of," in the supplement to the fourth edition of the

EncyclopcBclia BHtannica, published in 1819.

In 1804 Thomas Young* founded the theory of capillary phenomena on

the principle of surface-tension. He also observed the constancy of the angle

of contact of a liquid surface with a solid, and shewed how from these two

principles to deduce the phenomena of capillary action. His essay contains the

solution of a great number of cases, including most of those afterwards solved

by Laplace, but his methods of demonstration, though always correct, and often

extremely elegant, are sometimes rendered obscure by his scrupulous avoidance

of mathematical symbols. Having applied the secondary principle of surface-

tension to the various particular cases of capillary action. Young proceeds to

deduce this surface-tension from ulterior principles. He supposes the particles

to act on one another with two different kinds of forces, one of which, the

attractive force of cohesion, extends to particles at a greater distance than

those to which the repulsive force is confined. He further supposes that the

attractive force is constant throughout the minute distance to which it extends,

but that the repulsive force increases rapidly as the distance diminishes. He
thus shews that at a curved part of the surface, a superficial particle would

be urged towards the centre of curvature of the surface, and he gives reasons

for concluding that this force is proportional to the sum of the curvatures of

the surface in two normal planes at right angles to each other.

The subject was next taken up by Laplace t. His results are in manv
respects identical with those of Young, but his methods of arriving at them
are very different, being conducted entirely by mathematical calculations. The

form into which he has thrown his investigation seems to have deterred many
able physicists from the inquiry into the ulterior cause of capillary phenomena,

and induced them to rest content with deriving them from the fact of surface-

tension. But for those who wish to study the molecular constitution of bodies

it is necessary to study the effect of forces which are sensible only at insen-

sible distances; and Laplace has furnished us with an example of the method
of this study which has never been surpassed. Laplace investigates the force

acting on the fluid contained in an infinitely slender canal normal to the

surface of the fluid arising from the attraction of the parts of the fluid out-

Essaj on the "Cohesion of Fluids," Philosophical Transactions, 1805, p. 65.

t Mecanique Celeste, supplement to the tenth book, published in 1806.

VOL. II. 69
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side the canal. He thus finds for the pressure at a point in the interior of

the fluid an expression of the form

where ^ is a constant pressure, probably very large, which, however, does not

influence capillary phenomena, and therefore cannot be determined from observa-

tion of such phenomena ; H is another constant on which all capillary phenomena

depend ; and R and R are the radii of curvature of any two normal sections

of the surface at right angles to each other.

In the first part of our own investigation we shall adhere to the symbols

used by Laplace, as we shall find that an accurate knowledge of the physical

interpretation of these symbols is necessary for the further investigation of the

subject. In the Supplement to the Theory of Capillary Action, Laplace deduces

the equation of the surface of the fluid from the condition that the resultant

force on a particle at the surface must be normal to the surface. His expla-

nation, however, of the rise of a liquid in a tube is based on the assumption

of the constancy of the angle of contact for the same solid and fluid, and of

this he has nowhere given a satisfactory proof. In this supplement Laplace

gives many important applications of the theory, and compares the results with

the experiments of Gay-Lussac.

The next great step in the treatment of the subject was made by Gauss*.

The principle which he adopts is that of virtual velocities, a principle which

under his hands was gradually transforming itself into what is now known as

the principle of the conservation of energy. Instead of calculating the direction

and magnitude of the resultant force on each particle arising from the action

of neighbouring particles, he forms a single expression which is the aggregate

of all the potentials arising from the mutual action between pairs of particles.

This expression has been called the force-function. With its sign reversed it

is now called the potential energy of the system. It consists of three parts,

the first depending on the action of gravity, the second on the mutual action

between the particles of the fluid, and the third on the action between the

particles of the fluid and the particles of a solid or fluid in contact with it.

The condition of equilibrium is that this expression (which we may for

the sake of distinctness call the potential energy) shall be a minimum. This

* Principia generaZia Theories Figvrce Fluidorum in statu JEquilibrii (Gottingen, 1830), or Werke,

V. 29 (Gottingen, 1867).
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condition when worked out gives not only the equation of the free surface in

the form already established by Laplace, but the conditions of the angle of

contact of this surface with the surface of a solid.

Gauss thus supplied the principal defect in the great work of Laplaxje.

He also pointed out more distinctly the nature of the assumptions which we

must make with respect to the law of action of the particles in order to be

consistent with observed phenomena. He did not, however, enter into the ex-

planation of particular phenomena, as this had been done already by Laplace.

He points out, however, to physicists the advantages of the method of Segner

and Gay-Lussac, afterwards carried out by Quincke, of measuring the dimen-

sions of large drops of mercury on a horizontal or slightly concave surface,

and those of large bubbles of air in transparent liquids resting against the

under side of a horizontal plate of a substance wetted by the liquid.

In 1831 Poisson published his Nouvelle Theorie de rAction Capillaire.

He maintains that there is a rapid variation of density near the surface of a

liquid, and he gives very strong reasons, which have been only strengthened

by subsequent discoveries, for believing that this is the case. He then pro-

ceeds to an investigation of the equilibrium of a fluid on the hypothesis of

uniform density, and he arrives at the conclusion that on this hypothesis none

of the observed capillary phenomena would take place, and that, therefore,

Laplace's theory, in which the density is supposed uniform, is not only insuffi-

cient but erroneous. In particular he maintains that the constant pressure K,

which occurs in Laplace's theory, and which on that theory is very large,

must be in point of fact very small, but the equation of equilibrium from

which he concludes this is itself defective. Laplace assumes that the liquid

has uniform density, and that the attraction of its molecules extends to a

finite though insensible distance. On these assumptions his results are certainly

right, and are confirmed by the independent method of Gauss, so that the

objections raised against them by Poisson fall to the ground. But whether

the assumption of uniform density be physically correct is a very different

question, and Poisson has done good service to science in shewing how to

carry on the investigation on the hypothesis that the density very near the

surface is different from that in the interior of the fluid.

The result, however, of Poisson's investigation is practically equivalent to

that already obtained by Laplace. In both theories the equation of the liquid

surface is the same, involving a constant H, which can be determined only by
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experiment. The only difference is in the manner in which this quantity H
depends on the law of the molecular forces and the law of density near the

surface of the fluid, and as these laws are unknown to us we cannot obtain

any test to discriminate between the two theories.

We have now described the principal forms of the theory of capillary

action during its earlier development. In more recent times the method of

Gauss has been modified so as to take account of the variation of density

near the surface, and its language has been translated in terms of the modem

doctrine of the conservation of energy '".

M. Plateau t, who has himself made the most elaborate study of the

phenomena of surface-tension, has adopted the following method of getting rid

of the effects of gravity : He forms a mixture of alcohol and water of the

same density as olive oil. He then introduces a quantity of oil into the

mixture. It assumes the form of a sphere under the action of surface-tension

alone. He then, by means of rings of iron-wire, disks, and other contrivances,

alters the form of certain parts of the surface of f^he oil. The free portions

of the surface then assume new forms depending on the equilibrium of surfa<;e-

tension. In this way he has produced a great many of the forms of equilibrium

of a liquid under the action of surface-tension alone, and compared them with

the results of mathematical investigation. He has also greatly facilitated the

study of liquid films by shewing how to form a liquid, the films of which

will last for twelve or even for twenty-four hours. The debt which science

owes to M. Plateau is not diminished by the fact that, while investigating

these beautiful phenomena, he has never himself seen them. He lost his sight

long ago in the pursuit of science, and has ever since been obliged to depend

on the eyes and the hands of others.

M. Van der Mensbrugghe J has also devised a great number of beautiful

illustrations of the phenomena of surface-tension, and has shewn their connection

with the experiments of Mr Tomlinson on the figures formed by oils dropped

on the clean surface of water.

* See Prof. Betti, Teoria della Caplllaritct: Xiiovo Cimento, 1867; a memoir by M. Stahl,

"Uebev einige Punckte in der Theorie der Capillarersclieinungen," Fogg. Ann., cxxxix. p. 239 (1870);

and M. Van der Waal's Over de Continuiteit van den Gas- en Vloeistoftoestand. The scudent will

find a good account of the subject from a mathematical point of view in Professor Challis's

"Report on the Theory of Capillary Attraction," Brit. Ass. Report, iv. p. 253 (1834).

t M. Plateau, Statique experimentcde et theorique des liquides.

X Mem. de I'Acad. Boy. de Belgique, xxxvii. (1873).
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M. Dupr^ in his 5th, 6th, and 7 th Memoirs on the Mechanical Theory

of Heat (Ann. de Chimie et de Physique, 1866 to 1868) has done much to-

wards applying the principles of thermodynamics to capillary phenomena, and

the experiments of his son are exceedingly ingenious and well devised, tracing

the influence of surface-tension in a great number of very different circumstances,

and deducing from independent methods the numerical value of the surface-

tension. The experimental evidence which M. Dupr^ has obtained bearing on

the molecular structure of liquids must be very valuable, even if many of our

present opinions on this subject should turn out to be erroneous.

M. Quincke '^ has made a most elaborate series of experiments on the tension

of the surfaces separating one liquid from another and from air.

M. Liidtget has experimented on liquid films, and has shewn how a film

of a liquid of high surface-tension is replaced by a film of lower surface-tension.

He has also experimented on the effects of the thickness of the film, and has

come to the conclusion that the thinner a film is, the greater is its tension.

This result, however, has been tested by M. Van der Mensbrugghe, who finds

that the tension is the same for the same liquid whatever be the thickness,

as long as the film does not burst. The phenomena of very thin liquid films

deserve the most careful study, for it is in this way that we are most likely

to obtain evidence by which we may test the theories of the molecular structure

of liquids.

Sir W. Thomson J has investigated the effect of the curvature of the

surface of a liquid on the thermal equilibrium between the liquid and the

vapour in contact with it. He has also calculated the effect of surface-tension

on the propagation of waves on the surface of a liquid, and has determined

the minimum velocity of a wave, and the velocity of the wind when it is just

sufficient to disturb the surface of still water §.

Theory of Capillary Action.

When two different fluids are placed in contact, they may either diffuse

into each other or remain separate. In some cases diffusion takes place to a

limited extent, after which the resulting mixtures do not mix with each other.

* Poffr/. Ann., cxxxix. (1870), p. 1. t Ibid. p. 620.

X Proceedings R. S., Edinburgh, February 7, 1870.

§ Philosophical Magazine, NovemV^er, 1871.
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The same substance may be able to exist in two different states at tbe same

temperature and pressure, as when water and its saturated vapour are con-

tained in the same vessel. The conditions under which the thermal and

mechanical equilibrium of two fluids, two mixtures, or the same substance in

two physical states in contact with each other, is possible belong to thermo-

dynamics. All that we have to observe at present is that, in the cases in

which the fluids do not mix of themselves, the potential energy of the system

must be greater when the fluids are mixed than when they are separate.

It is found by experiment that it is only very close to the bounding

surface of a liquid that the forces arising from the mutual action of its parts

have any resultant effect on one of its particles. The experiments of Quincke

and others seem to shew that the extreme range of the forces which produce

capillary action lies between a thousandth and a twenty thousandth part of

a mOlimetre.

We shall use the symbol e to denote this extreme range, beyond which

the action of these forces may be regarded as insensible. If x denotes the

potential energy of unit of mass of the substance, we may treat x ^^ sensibly

constant except within a distance e of the bounding surface of the fluid. In

the interior of the fluid it has the uniform value Xo- In ^^^ manner the

density, p, is sensibly equal to the constant quantity p^, which is its value

in the interior of the liquid, except within a distance e of the bounding surface.

Hence if V is the volume of a mass M of liquid bounded by a surface whose

area is S, the integral

3I=jjjpdxdydz (1),

where the integration is to be extended throughout the volume V, may be

divided into two parts by considering separately the thin shell or skin extend-

ing from the outer surface to a depth e, within which the density and other

properties of the liquid vary with the depth, and the interior portion of the

liquid within which its properties are constant.

Since e is a line of insensible magnitude compared with the dimensions of

the mass of liquid and the principal radii of curvature of its surface, the

volume of the sheU whose surface is S and thickness e will be Se, and that

of the interior space will be V—Se.

If we suppose a normal v less than e to be drawn from the surface S

into the liquid, we may divide the shell into elementary shells whose thick-
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ness is dv, in each of which the density and other properties of the liquid

will be constant.

The volume of one of these shells will be Sdv. Its mass will be Spdv.

The mass of the whole shell will therefore be S\ pdv, and that of the interior

part of the liquid (V-Se)p,. We thus find for the whole mass of the liquid

M=Vp,-S^\p,-p)dv (2).

To find the potential energy we have to integrate

E = ^^^XP<-'^xdydz (3).

Substituting x/>
for 9 in the process we have just gone through, we find

E=Vx^.-s\^\x.p,-XP)dv (4).

Multiplying equation (2) by Xo, and subtracting it from (4),

E-Mx. = X^s\^\x-X:)pd^ (^)-

In this expression M and Xo are both constant, so that the variation ot

the right hand side of the equation is the same as that of the energy E,

and expresses that part of the energy which depends on the area of the

bounding surface of the liquid. We may call this the surface energy.

The symbol x expresses the energy of unit of mass of the liquid at a

depth V within the bounding surface. When the liquid is in contact with a

rare medium, such as its own vapour or any other gas, x is greater than Xo.

and the surface energy is positive. By the principle of the conservation of

energy, any displacement of the liquid by which its energy is diminished will

tend to take place of itself. Hence if the energy is the greater, the greater

the area of the exposed surface, the liquid will tend to move in such a way

as to diminish the area of the exposed surface, or in other words, the exposed

surface will tend to diminish if it can do so consistently with the other

conditions. This tendency of the surface to contract itself is called the surface-

tension of liquids.

M. Dupr^ has described an arrangement by which the surface-tension of

a liquid film may be illustrated.



552 CAPILLARY ACTION.

A piece of sheet metal is cut out in the form AA (fig. l). A very fine

slip of metal is laid on it in the position BB, and the whole is dipped into

a solution of soap, or M. Plateau's glycerine mixture.

When it is taken out the rectangle AACC is filled up

by a liquid film. This film, however, tends to contract

on itself, and the loose strip of metal BB will, if it

is let go, be drawn up towards AA, provided it is

^' ' sufficiently light and smooth.

Let T be the surface-energy per unit of area; then the energy of a

surface of area S will be ST. If, in the rectangle AACC, AA=a, and CC=h,

its area is S= ah, and its energy Tab. Hence if F is the force by which

the slip BB is pulled towards AA,

F=ifTah=Ta (6),

or the force arising from the surface-tension acting on a length a of the strip

is Ta, so that T represents the surface-tension acting transversely on every

unit of length of the periphery of the liquid surface. Hence if we write

T = \[{x-X:)pdv (7),

we may define T either as the surface-energy per unit of area, or as the

surface-tension per unit of contour, for the numerical values of these two

quantities are equal.

If the liquid is bounded by a dense substance, whether liquid or solid, the

value of X '^^1 t»e different from its value when the liquid has a free surface.

If the liquid is in contact with another liquid, let us distinguish quantities

belonging to the two liquids by suffixes. We shall then have

^,-3f,Xo. = 'S^|\a-Xo.)pA (9).

Adding these expressions, and dividing the second member by S, we obtain

for the tension of the surface of contact of the two liquids

r:,=|^Xi-XoO/'A+|^x.-Xo.)pA (10).
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If this quantity is positive, the surface of contact will tend to contract,

and the liquids will remain distinct. If, however, it were negative, the dis-

placement of the liquids which tends to enlarge the surface of contact would

be aided by the molecular forces, so that the liquids, if not kept separate by

gravity, would at length become thoroughly mixed. No instance, liowever, of

a phenomenon of this kind has been discovered, for those liquids which mix

of themselves do so by the process of dilQfusion, which is a molecular motion,

and not by the spontaneous puckering and replication of the bounding surface,

as would be the case if T were negative.

It is probable, however, that there are many cases in which the integral

belonging to the less dense fluid is negative. If the denser body be solid we

can often demonstrate this; for the liquid tends to spread itself over the

surface of the solid, so as to increase the area of the surface of contact, even

although in so doing it is obliged to increase the free surface in opposition

to the surface-tension. Thus w^ater spreads itself out on a clean surface of glass.

This shews that {x~Xo)p^^^ "^^^^ ^® negative for water in contact with glass.

Ox THE Tension of Liquid Films.

The method already given for the investigation of the surface-tension of

eC liquid, all whose dimensions are sensible, fails in the case of a liquid film,

such as a soap-bubble. In such a film it is possible that no part of the Hquid

may be so far from the surface as to have the potential and density corre-

sponding to what we have called the interior of a liquid mass, and measurements

of the tension of the film when drawn out to different degrees of thinness

may possibly lead to an estimate of the range of the molecular forces, or at

least of the depth within a liquid mass, at which its properties become sensibly

uniform. We shall therefore indicate a method of investigating the tension of

such films.

Let S be the area of the film, M its mass, and £ its energy; a- the

mass, and e the energy of unit of area ; then

M=Sa (11),

E= Se (12).

VOL. IL 70
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Let us now suppose that by some change in the form of the boundary

of the film its area is changed from S to S+ dS. If its tension is T the

work required to effect this increase of surface will be TdS, and the energy

of the film will be increased by this amount. Hence

TdS=dE

= Sde-\-edS (13).

But since M is constant,

d3I=Sda--\-a-dS=0 (14).

Eliminating dS from equations (13) and (14), and dividing by S, we find

^=^-4: ('5)-

In this expression a denotes the mass of unit of area of the film, and

(f the energy of unit of area.

If we take the axis of z normal to either surface of the film, the radius

of curvature of which we suppose to be very great compared with its thick-

ness c, and if p is the density, and x ^^^ energy of unit of mass at depth z,

then

cr

and

€

= j[pd^ (16),

=|V^2 (17).

Both p and x ^i'® functions of z, the values of which remain the same

when z — c is substituted for z. If the thickness of the film is greater than

2e, there will be a stratum of thickness c — 2e in the middle of the film,

within which the values of p and x "^^ ^^ Po ^^^ Xo* ^^ ^^® ^^^ strata

on either side of this the law, according to which p and x depend on the

depth, will be the same as in a liquid mass of large dimensions. Hence in

this case

a={c-2e)p, + 2jpdu (18),

e = (c-2e)xo/>o + 2|^'x/jc//^ (19),
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d(r_ de _ de _
d~c~P" 5c~^"^" •'•(T^"^"'

r = 2
j

xP^lu - 2xo
I

pdi^,

= '^j\x-X:}pd- (20).

Hence the tension of a thick film is equal to the sum of the tensions of

its two surfaces as already calculated (equation 7). On the hypothesis of

uniform density we shall find that this is true for films whose thickness

exceeds c.

The symbol x ^s defined as the energy of unit of mass of the substance.

A knowledge of the absolute value of this energy is not required, since iu

every expression in which it occurs it is under the form X""X"' ^^^^^ ^^ ^^^

say, the difference between the energy in two different states. The only cases,

however, in which we have experimental values of this quantity are when the

substance is either liquid and surrounded by similar liquid, or gaseous and sur-

rounded by similar gas. It is impossible to make direct measurements of the

properties of particles of the substance within the insensible distance e of the

bounding surface.

When a liquid is in thermal and dynamical equilibrium with its vapour,

then if p' and x' ^^re the values of p and ^ ^^^' "the vapour, and p^ and X"

those for the liquid,

,-_,„=/i_„(i-i)
(.,),

where J is the dynamical equivalent of heat, L is the latent heat of unit of

mass of the vapour, and p is the pressure. At points in the liquid very near

its surface it is probable that x ^^ greater than ^o) ^^rid at points in the gas

very near the surface of the liquid it is probable that x '^^ ^^^^ than ^'j but

this has not as yet been ascertained experimentally. We shall therefore en-

deavour to apply to this subject the methods used in Thermodynamics, and

where these fail us we shall have recourse to the hypotheses of molecular

physics.

70—2
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We have next to determine the value of x ^^ terms of the action between

one particle and another. Let us suppose that the force between two particles

m and m' at the distance / is

F=mm(<f>{f)+^^ (22),

being reckoned positive when the force is attractive. The actual force between

the particles arises in part from their mutual gravitation, which is inversely

C
as the square of the distance. This force is expressed by mm ^^. It is easy

to shew that a force subject to this law would not account for capillary action.

We shall, therefore, in what follows, consider only that part of the force which

depends on ^ (/), where ^ (/) is a function of / which is insensible for al 1

sensible values of /, but which becomes sensible and even enormously great

when / is exceedingly small.

If we next introduce a new function of/ and write

/%(/)#=n(/) (23),

then mwiTl (/) will represent (1) the work done by the attractive force on

the particle m, whUe it is brought from an infinite distance from m' to the

distance / from m' ; or (2) the attraction of a particle m on a narrow straight

rod resolved in the direction of the length of the rod, one extremity of the

rod being at a distance / from m, and the other at an infinite distance, the

mass of unit of length of the rod being on. The function n (/) is also in-

sensible for sensible values of /, but for insensible values of / it may become

sensible and even very great.

If we next write

|yn(/)rf/=,/,(z) (24),

then 2TTmcn^{z) will represent (l) the work done by the attractive force while

a particle m is brought from an infinite distance to a distance z from an

infinitely thin stratum of the substance whose mass per unit of area is <r

;

(2) the attraction of a particle m placed at a distance z from the plane surface

of an infinite solid whose density is cr.
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Let us examine the case in which the particle m is

placed at a distance z jfrom a curved stratum of the sub-

stance, whose principal radii of curvature are R^ and R^.

Let P (fig. 2) be the particle and PB a nonnal to the

surface. Let the plane of the paper be a normal section

of the surface of the stratum at the point B, making an

angle o> with the section whose radius of curvature is R^.

Then if is the centre of curvature in the plane of the

paper, and BO = u,

1

u

Fig. 2.

cos CO sm"" (t)

R, R,

Let POQ = e, PO = r, PQ=f, BP = z,

f' = u- + r' — 2ur coaO

The element of the stratum at Q may be expressed by

cm' sin dO dco,

or expressing dO in terms of df by (26),

u

(25).

(26).

cr - fdfdco.

Multiplying this by m and by Uf, we obtain for the work done by the

attraction of this element when m is brought from an infinite distance to P

mcT'^n{f)dfdco.

Integrating with respect to / from f=z to f=a, where a is a line very

great compared with the extreme range of the molecular force, but very small

compared with either of the radii of curvature, we obtain for the work

mcT-{xlj{z)-xp{a)}dco,

and since \p{a) is an insensible quantity we may omit it. We may also write

u , z ,

-=l + - + &c.,
r u

since z is very small compared with u, and expressing ?« in terras of w by

(25), we find

/;.^(,{i..p^-%^ij.)}..=2.,«<^(=){i.i.g_+^j}.



558 CAPILLARY ACTION.

This then expresses the work done by the attractive forces when a particle

m is brought from an infinite distance to the point P at a distance z from

a stratum whose surface-density is cr, and whose principal radii of curvature

are JR^ and R^.

To find the work done when m is brought to the point P in the neigh-

bourhood of a solid body, the density of which is a function of the depth v

below the surface, we have only to write instead of cr pdz, and to integrate

2'rrm I pxp (z) dz + irm (;d- + d" ) P^^{^) ^^>

where, in general, we must suppose p a function of z. This expression, when

integrated, gives (l) the work done on a particle m while it is brought from

an infinite distance to the point P, or (2) the attraction on a long slender

column normal to the surface and terminating at P, the mass of unit of

length of the column being m. In the form of the theory given by Laplace,

the density of the liquid was supposed to be uniform. Hence if we write

K=27r\ xp{z)dz, H=27r( zylj{z)dz,

the pressure of a column of the fluid itself terminating at the surface will be

and the work done by the attractive forces when a particle m is brought to

the surface of the fluid from an infinite distance will be

{-^Hh&-mp

If we write

^l,{z)dz=^{£),
/:

then 2iTmpO{z) will express the work done by the attractive forces, while a

particle m is brought from an infinite distance to a distance z from the plane

surface of a mass of the substance of density p and infinitely thick. The

function [z) is insensible for all sensible values of z. For insensible values it

may become sensible, but it must remain finite even when 2 = 0, in which case

e{o)=K.
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If ^ is the potential energy of unit of mass of the substance in vapour,

then at a distance z from the plane surface of the liquid

At the surface

X = x'-27rp^(0).

At a distance ;: within the surface

X = x-477/)^(0) + 27r/)^(2).

If the liquid forms a stratum of thickness c, then

X = x'
- 477/3(9 (0) + lirpd {z) + 27rpe {z - c).

The surface-density of this stratum is (r = cp. The energy per unit of

area is

= cp{x- ^TTpO (0)} + 27rp-^ r e iz) dz + 277/)= r e{c-z) dz.

Since the two sides of the stratum are similar the last two terms art-

equal, and

e = cp [x
- 477/3(9 (0)} + 47rp-

|
6 (z) dz.

Diiferentiating with respect to c, we find

da-

dp

Hence the surface-tension

de

da

= iTTp'U' e(z)dz-ce{A.

Integrating the first term within brackets by parts, it becomes

c^(c)-0(9(0)-r
de ,

dz
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Remembering that 6 (O) is a finite quantity, and that -^ = —xp (z), we find

T^iTTp' l\xlj{z)dz.

When c is greater than c this is equivalent to 2H in the equation of Laplace.

Hence the tension is the same for all films thicker than e, the range of the

molecular forces. For thinner films

Hence if t/»(c) is positive, the tension and the thickness will increase together.

Now 2Trmp\lj(c) represents the attraction between a particle m and the plane

surface of an infinite mass of the liquid, when the distance of the particle out-

side the surface is c. Now, the force between the particle and the liquid is

certainly, on the whole, attractive ; but if between any two small values of

c it should be repulsive, then for films whose thickness lies between these

values the tension will increase as the thickness diminishes, but for all other

cases the tension will diminish as the thickness diminishes.

We have given several examples in which the density is assumed to be

uniform, because Poisson has asserted that capillary phenomena would not take

place unless the density varied rapidly near the surface. In this assertion we

think he was mathematically wrong, though in his own hypothesis that the

density does actually vary, he was probably right. In fact, the quantity ^nrp'K,

which we may call with Van der Waals the molecular pressure, is so great

for most liquids (5000 atmospheres for water), that in the parts near the sur-

face, where the molecular pressure varies rapidly, we may expect considerable

variation of density, even when we take into account the smallness of the

compressibility of liquids.

The pressure at any point of the liquid arises from two causes, the external

pressure P to which the liquid is subjected, and the pressure arising from the

mutual attraction of its molecules. If we suppose that the number of molecules

within the range of the attraction of a given molecule is very large, the part

of the pressure arising from attraction will be proportional to the square of

the number of molecules in unit of volume, that is, to the square of the

density. Hence we may write

i5
= P + ^/>= (1)-
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where A is b. constant. But by the equations of equilibrium of the liquid

dp=-pdx (2).

Hence —pdx = ^Apdp
(3)^

a^d x-x = 2Ap-2B
(4),

where B is another constant.

Near the plane surface of a liquid we may assume p a function of z. We
have then for the value of x ^^ the point where 2 = c,

X'-X = 27r r' p{z)^l,{z-c)dz (5),
J c-e

where e is the range beyond which the attraction of a mass of liquid bounded

by a plane surface becomes insensible. The value of x depends, therefore, on

those values only of p which correspond to strata for which z is nearly equal

to c. We may, therefore, expand p in terms of z — c, or writing x for z — c,—(U.n®./*^ («).

where the suffix (c) denotes that in the quantity to which it is applied after

differentiation, z is to be made equal to c. We may now write

+ ^''(S)(,)^|'^''^('^)'^^ + '^' ('')•

The function \ff (x) has equal values for + x and - x. Hence x^xji (x) dx

vanishes if n is odd.

But if we write

r+' 1 r+'
K=tt\ \}j {x) dx, L = -v\ x'\lf{x)dx,

^=
1 2^.4 ""jZ

^'^ (^^ "^^^ ^''•

x'-x = 2^P + 2zg + 2i/^ + &c.

This is the expression for x on the hypothesis that the value of p can

be expanded in a series of powers of z-c within the limits z-e and z + e. It

VOL. IL 7i
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is only when the point P is within the distance e of the surface of the liquid

that this ceases to be possible.

If we now substitute for ;( its value from equation (4), we obtain

2J/D - 25 = 2Zp + 2X^ + 2if^ + &c.,

a linear differential equation in p, the solution of which is

where ?i,, n.., n^, n^ are the roots of the equation

The coefficient M is less than cL, where e is the range of the attractive

force. Hence we may consider M very small compared with L. If we neglect

M altogether,

If we assume a quantity a such that cv'K=2L, we may call a the average

range of the molecular forces. K we also take h, so that hn=\, we may call

h the modulus of the variation of the density near the surface.

Our calculation hitherto has been made on the hypothesis that a is smaU

when compared with h, and in that case we have found that a' : If :: A —K : K.

But it appears from experiments on liquids that A —K is in general large

when compared with K, and sometimes very large. Hence we conclude, first,

that the hypothesis of our calculation is incorrect, and, secondly, that the

phenomena of capillary action do not in any very great degree depend on the

variation of density near the surface, but that the principal part of the force

depends on the finite range of the molecular action.

In the following table, Ap is half the cubical elasticity of the liquid, and

Kp the molecular pressure, both expressed in atmospheres (the absolute value

of an atmosphere being one million in centimetre-gramme-second measure, see

below, p. 589). p is the density, T the surface-tension, and a the average range

of the molecular action, as calculated by Van der Waals from the values of

T and K.
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The unit ia which a is expressed is 1cm. xlO"'; a is therefore the twenty-

millionth part of a centimetre for mercury, the thirty-millionth for water, and

the forty-millionth part for alcohol. Quincke, however, found by direct experi-

ment that certain molecular actions were sensible at a distance of a two-

hundred-thousandth part of a centimetre, so that we cannot regard any of these

numbers as accurate.
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capillary action also vanislies. The early writers on capillary action supposed

that the diminution of capillary action was due simply to the change of density

corresponding to the rise of temperature, and, therefore, assuming the surface-

tension to vary as the square of the density, they deduced its variations from

the observed dilatation of the liquid by heat. This assumption, however, does

not appear to be verified by the experiments of Brunner and Wolff on the

rise of water in tubes at different temperatures.

3. The tension of the surface separating two liquids which do not mix
cannot be deduced by any known method from the tensions of the surfaces

of the liquids when separately in contact with air.

When the surface is curved, the effect of the surface-tension is to make
the pressure on the concave side exceed the pressure on the convex side by

^f d"+"^)' "where T is the intensity of the surface-tension and R^, R^ are

the radii of curvature of any two sections normal to the surface and to each

other.

If three fluids which do not mix are in contact with each other, the three

surfaces of separation meet in a line, straight or curved.

Let (fig. 3) be a point in this line, and let the

plane of the paper be supposed to be normal to the

line at the point 0. The three angles between the

tangent planes to the three surfaces of separation at

the point are completely determined by the tensions

of the three surfaces. For if in the triangle ahc the

side ah is taken so as to represent on a given scale

the tension of the surface of contact of the fluids a

and h, and if the other sides he and ca are taken so

as to represent on the same scale the tensions of the surfaces between h and

c and between c and a respectively, then the condition of equilibrium at

for the corresponding tensions R, P, and Q is that the angle ROF shall be

the supplement of ahc, POQ of hca, and, therefore, QOR of cah. Thus the

angles at which the surfaces of separation meet are the same at all parts of

the line of concourse of the three fluids. When three films of the same liquid

meet, their tensions are equal, and, therefore, they make angles of 120* with

each other. The froth of soap-suds or beat-up eggs consists of a multitude

of small films which meet each other at angles of 120".

Fig. 8.
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If four fluids, a, b, c, d, meet in a point 0, and if a tetrahedron ABCD
is formed so that its edge AB represents the tension of the surface of contact

of the liquids a and b, BC that of b and c, and so on; then if we place

this tetrahedron so that the face ABC is normal to the tangent at to the

line of concourse of the fluids abc, and turn it so that the edge AB ia normal

to the tangent plane at to the surface of contact of the fluids a and b,

then the other three faces of the tetrahedron will be normal to the tangents

at to the other three lines of concourse of the liquids, and the other five

edges of the tetrahedron will be normal to the tangent planes at to the

other five surfaces of contact.

If six films of the same liquid meet in a point the corresponding tetra-

hedron is a regular tetrahedron, and each film, where it meets the others, has

an angle whose cosine is -^. Hence if we take two nets of wire with

hexagonal meshes, and place one on the other so that the point of concourse

of three hexagons of one net coincides with the middle of a hexagon of the

other, and if w^e then, after dipping them in Plateau's liquid, place them

horizontally, and gently raise the upper one, we shall develop a system of

plane laminae arranged as the walls and floors of the cells are arranged in a

honeycomb. We must not, however, raise the upper net too much, or the

system of films will become unstable.

When a drop of one liquid, B, is placed on the surface of another, A,

the phenomena which take place depend on the relative magnitude of the three

surface-tensions corresponding to the surface between A and air, between B

and air, and between A and B. If no one of these tensions is greater than

the sum of the other two, the drop will assume the form of a lens, the

angles which the upper and lower surfaces of the lens make with the free

surface of A and with each other being equal to the external angles of the

triangle of forces. Such lenses are often seen formed by drops of fat floating

on the surface of hot water, soup, or gravy. But when the surface-tension of

A exceeds the sum of the tensions of the surfaces of contact of B with air

and with ^, it is impossible to construct the triangle of forces, so that equi-

librium becomes impossible. The edge of the drop is drawn out by the surface-

tension of A with a force greater than the sum of the tensions of the two

surfaces of the drop. The drop, therefore, spreads itself out, with great velocity,

over the surface of A tiU it covers an enormous area, and is reduced to such

extreme tenuity that it is not probable that it retains the same properties of
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surface-tension which it has in a large mass. Thus a drop of train oil will

spread itself over the surface of the sea till it shews the colours of thin plates.

These rapidly descend in Newton's scale and at last disappear, shewing that

the thickness of the film is less than the tenth part of the length of a wave

of light. But even when thus attenuated, the film may be proved to be pre-

sent, since the surface-tension of the liquid is considerably less than that* of

pure water. This may be shewn by placing another drop of oil on the surface.

This drop will not spread out like the first drop, but will take the form of

a flat lens with a distinct circular edge, shewing that the surface-tension of

what is still apparently pure water is now less than the sum of the tensions

of the surfaces separating oil from air and water.

The spreading of drops on the surface of a liquid has formed the subject

of a very extensive series of experiments by Mr Tomlinson. M. Van der

Mensbrugghe has also written a very complete memoir on this subject*.

When a solid body is in contact with two fluids, the surface

of the solid cannot alter its form, but the angle at which the

surface of contact of the two fluids meets the surface of the solid

depends on the values of the three surface-tensions. If a and h

are the two fluids and c the solid then the equilibrium of the

Q tensions at the point depends only on that of thin components

. parallel to the surface, because the surface-tensions normal to the

surface are balanced by the resistance of the solid. Hence if the

angle ROQ (fig. 4) at which the surface of contact OP meets the solid is

denoted by a,

whence

cos a
^ab

As an experiment on the angle of contact only gives us the diflerence of the

surface-tensions at the solid surface, we cannot determine their actual value.

It is theoretically probable that they are often negative, and may be called

surface-pressures.

The constancy of the angle of contact between the surface of a fluid and

a solid was first pointed out by Dr Young, who states that the angle of

contact between mercury and glass is about 140". Quincke makes it 128° 52'.

* Sur la Tension Superjicielle des Liquides, Bruxelles, 1873.
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If the tension of the surface between the solid and one of the fluids ex-

ceeds the sum of the other two tensions, the point of contact will not be in

equilibrium, but will be dragged towards the side on which the tension is

greatest. If the quantity of the first fluid is small it will stand in a drop

on the surface of the solid without wetting it. If the quantity of the second

fluid is small it will spread itself over the surface and wet the solid. The

angle of contact of the fii-st fluid is 180" and that of the second is zero.

If a drop of alcohol be made to touch one side of a drop of oil on a

glass plate, the alcohol will appear to chase the oil over the plate, and if a

drop of water and a drop of bisulphide of carbon be placed in contact in a

horizontal capillary tube, the bisulphide of carbon will chase the water along

the tube. In both cases the liquids move in the direction in which the surface-

pressure at the solid is least.

On the Eise of a Liquid in a Tube.

Let a tube (fig. 5) whose internal radius is r, made of a solid substance c,

be dipped into a liquid a. Let us suppose that the angle of contact for this

liquid with the solid c is an acute angle. This

implies that the tension of the free surface of

the solid c is greater than that of the surface

of contact of the solid with the liquid a. Now
consider the tension of the free surface of the

liquid a. All round its edge there is a tension

T acting at an angle a with the vertical. The

circumference of the edge is 2n}\ so that the

resultant of this tension is a force 27rrTco3 a

acting vertically upwards on the liquid. Hence

the liquid will rise in the tube till the weight of the vertical column between

the free surface and the level of the liquid in the vessel balances the resultant

of the surface-tension. The upper surface of this column is not level, so that

the height of the column cannot be directly measured, but let us assume that

h is the mean height of the column, that is to say, the height of a column

of equal weight, but with a flat top. Then if ?' is the radius of the tube at

the top of the column, the volume of the suspended columu is irr/i, and its

Fig. 5.
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weight is -rrpgy^h, when p is its density and g the intensity of gravity.

Equating this force with the resultant of the tension

Trpgr^h = 2'n-rrcos a,

, 2Tcosa
or n = .

pgr

Hence the mean height to which the fluid rises is inversely as the radius of

the tube. For water in a clean glass tube the angle of contact is zero, and

fi =—

.

pgr

For mercury in a glass tube the angle of contact is 128° 52', the cosine of

which is negative. Hence when a glass tube is dipped into a vessel of mercury,

the mercury within the tube stands at a lower level than outside it.

EisE OF A Liquid between Two Plates.

When two parallel plates are placed vertically in a liquid the liquid rises

between them. If we now suppose fig. 5 to represent a vertical section per-

pendicular to the plates, we may calculate the rise of the liquid. Let I be

the breadth of the plates measured perpendicularly to the plane of the paper,

then the length of the line which bounds the wet and the dry parts of the

plates inside is I for each surface, and on this the tension T acts at an angle

a to the vertical. Hence the resultant of the surface-tension is 2ZJ'cos a. If

the distance between the inner surfaces of the plates is a, and if the mean

height of the film of fluid which rises between them is h, the weight of fluid

raised is pghla. Equating the forces

—

pghla = 2lT COB a,

2^008 a
whence h =

pga

This expression is the same as that for the rise of a liquid in a tube, except

that instead of r, the radius of the tube, we have a the distance of the plates.
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Form of the Capillary Surface:.

The form of the surface of a Hquid acted on by gravity is easily deter-

mined if we assume that near the part considered the line of contact of the

surface of the liquid with that of the solid bounding it is straight and hori-

zontal, as it is when the solids which constrain the liquid are bounded by
surfaces formed by horizontal and parallel generating lines. This will be the

case, for instance, near a flat plate dipped into the liquid. If we suppose these

generating lines to be normal to the plane of the paper then all sections of

the solids parallel to this plane will be equal and similar to each other, and

the section of the surface of the liquid will be of the same form for all such

sections.

Let us consider the portion of the liquid between two parallel sections

distant one unit of length. Let P^, P^ (fig. 6) be

two points of the surface; 6^, 0,, the inclination of

the surface to the horizon at P^ and P^; y^, y,_ the

heights of P^ and P, above the level of the liquid

at a distance from all solid bodies. The pressure at

any point of the liquid which is above this level is

negative unless another fluid as, for instance, the air,

presses on the upper surface, but it is only the difier-

ence of pressures with which we have to do, because

two equal pressures on opposite sides of the surface produce no eSect.

We may, therefore, write for the pressure at a height y

where p is the density of the liquid, or if there are two fluids the excess of

the density of the lower fluid over that of the upper one.

The forces acting on the portion of liquid P.PJl^^ are—first, the hori-

Fig.

zontal pressures, —^pgyi and :P9y^ second, the surface-tension T acting at

Pi and P, in directions inclined 6^ and 6^ to the horizon,

we find

—

T (cos e, - COS e,) + Igp (y/ - y,^) = 0,

Resolving horizontally

whence 9Pcos e, = cos e, - ypy,' +i^y.

VOL. II. 72
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or if we suppose P, fixed and P^ variable, we may write

cos ^ = 1^^^ + constant.

This equation gives a relation between tbe inclination of the curve to the

horizon and the height above the level of the liquid.

Resolving vertically we find that the weight of the liquid raised above the.

level must be equal to T (sin 6^ - sin 6^, and this is therefore equal to the area

P^P^^i multiplied by gp. The form of the capillary surface is identical with

that of the "elastic curve," or the curve formed by a uniform spring originally

straight, when its ends are acted on by equal and opposite forces applied either

to the ends themselves or to solid pieces attached to them. Drawings of

the different forms of the curve may be found in

Thomson and Tait's Natural Philosophy, Vol. i.

p. 455.

We shall next consider the rise of a liquid

between two plates of different materials for which

the angles of contact are a^ and a.^, the distance

between the plates being a, a small quantity. Since

the plates are very near one another we may use the following equation of

the surface as an approximation :

—

y =h, +Ax+ Baf

\ = h^-\-Aa + Ba\

Fig. 7.

whence

whence we obtain

cot 0.^= —A

cot Oj = A-\- 2Ba

T (cos Oi + cos a,) =pga {Ji^+\Aa +\BA%

L = (cos a, + cos a,) +- (2 cot Oj — cot a,),
pga ^ ^ -'' 6 ^ ''

K=— (cos a, + cos ou) + 77 (2 cot a, — cot a^).
pga ^ ^ ''' 6 ^ '

Let X be the force which must be applied in a horizontal direction to either

plate to keep it from approaching the other, then the forces acting on the first
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plate are T-\-X in the negative direction, and T sina, + ^/jV in the positive

direction. Hence
X = ^gph:-T(l-sma,).

For the second plate

X=^gph,'-T{l-sina,).

Hence X = lgp (h,' + h,') - T { 1 - i (sin a, + sin a,)},

or, substituting the values of A, and hj,

T-X = ^ ;(cosai + cosa2)'-r{l - ^ (sin Oi + sin a,) -^ (cos Oi + cos a,) (cot c^ + cota,)},
pga

the remaining terms being negligible when a is small. The force, therefore, with

which the two plates are drawn together consists first of a positive part, or

in other words an attraction, varying inversely as the square of the distance,

and second, of a negative part or repulsion independent of the distance. Hence

in all cases except that in which the angles ctj and a, are supplementary to

each other, the force is attractive when a is small enough, but when cos a^

and cos cu, are of different signs, as when the liquid is raised by one plate,

and depressed by the other, the first term may be so small that the repulsion

indicated by the second term comes into play. The fact that a pair of plates

which repel one another at a certain distance may attract one another at a

smaller distance was deduced by Laplace from theory, and verified by the

observations of the Abb^ Haiiy.

A Drop between Two Plates.

If a small quantity of a liquid which wets glass be introduced between

two glass plates slightly inclined to each other, it will run towards that part

where the glass plates are nearest together. When the liquid is in equilibrium

it forms a thin film, the outer edge of which is all of the same thickness.

If d is the distance between the plates at the edge of the film and IT the

atmospheric pressure, the pressure of the liquid in the film is n -^—^

,

and if ^ is the area of the film between the plates and B its circumference,

the plates will be pressed together with a force

2^rcosa
, „

"1 h nl sm a,

72—2
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and this, whether the atmosphere exerts any pressure or not. The force thus

produced by the introduction of a drop of water between two plates is enormous,

and is often sufficient to press certain parts of the plates together so power-

fully as to bruise them or break them. When two blocks of ice are placed

loosely together so that the superfluous water which melts from them may

drain away, the remaining water draws the blocks together with a force suffi-

cient to cause the blocks to adhere by the process called Kegelation.

In many experiments bodies are floated on the surface of water in order

that they may be free to move under the action of slight horizontal forces.

Thus Newton placed a magnet in a floating vessel and a piece of iron in

another in order to observe their mutual action, and Ampere floated a voltaic

battery with a coil of wire in its circuit in order to observe the effects of

the earth's magnetism on the electric circuit. When such floating bodies come

near the edge of the vessel they are drawn up to it, and are apt to stick

fast to it. There are two ways of avoiding this inconvenience. One is to grease

the float round its water-line so that the water is depressed round it. This,

however, often produces a worse disturbing effect, because a thin film of grease

spreads over the water and increases its surface-viscosity. The other method

is to fill the vessel with water till the level of the water stands a little

higher than the rim of the vessel. The float will then be repelled from the

edge of the vessel. Such floats, however, should always be made so that the

section taken at the level of the water is as small as possible.

Phenomena arising from the Variation of the Surface-tension.

Pure water has a higher surface-tension than that of any other substance

liquid at ordinary temperatures except mercury. Hence any other liquid if

mixed with water diminishes its surface-tension. For example, if a drop of

alcohol be placed on the surface of water, the surface-tension will be diminished

from 80, the value for pure water, to 25, the value for pure alcohol. The

surface of the liquid will therefore no longer be in equilibrium, and a current

will be formed at and near the surface from the alcohol to the surrounding

water, and this current will go on as long as there is more alcohol at one

part of the surface than at another. If the vessel is deep, these currents will

be balanced by counter currents below them, but if the depth of the water



CAPILLARY ACTION. 57^

is only two or three millimetres, the surface-current will sweep away the whole

of the water, leaving a dry spot where the alcohol was dropped in. This

phenomenon was first described and explained by Professor James Thomson,

who also explained a phenomenon, the converse of this, called the " tears of

strong wine."

If a wine glass be half-filled with port wine the liquid rises a little up

the side of the glass as other liquids do. The wine, however, contains alcohol

and water, both of which evaporate, but the alcohol faster than the water, so

that the superficial layer becomes more watery. In the middle of the vessel

the superficial layer recovers its strength by diffusion from below, but the film

adhering to the side of the glass becomes more watery, and therefore has a

liigher surface-tension than the surface of the stronger wine. It therefore creeps

up the side of the glass dragging the strong wane after it, and this goes on

till the quantity of fluid dragged up collects into a drop and runs down the

side of the glass.

The motion of small pieces of camphor floating on water arises from the

gradual solution of the camphor. If this takes place more rapidly on one side

of the piece of camphor than on the other side, the surface-tension becomes

weaker where there is most camphor in solution, and the lump, being pulled

unequally by the surface-tensions, moves off" in the direction of the strongest

tension, namely, towards the side on which least camphor is dissolved.

If a drop of ether is held near the surface of water the vapour of ether

condenses on the surface of the water, and surface-currents are formed flowing

in every direction away from under the drop of ether.

If we place a small floating body in a shallow vessel of water and wet

one side of it with alcohol or ether, it will move off" with great velocity and

skim about on the surface of the water, the part wet with alcohol being always

the stern.

The surface-tension of mercury is greatly altered by slight changes in the

state of the surface. The surface-tension of pure mercury is so great that it

is very difficult to keep it clean, for every kind of oil or grease spreads over

it at once.

But the most remarkable efiects of change of surface-tension are those pro-

duced by what is called the electric polarization of the surface. The tension

of the surface of contact of mercury and dilute sulphuric acid depends on the

electromotive force acting between the mercury and the acid. If the electro-
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motive force is from the acid to the mercury the surface-tension increases; if

it is from the mercury to the acid, it diminishes. Faraday observed that a

large drop of mercury, resting on the flat bottom of a vessel containing dilute

acid, changes its form in a remarkable way when connected with one of the

electrodes of a battery, the other electrode being placed in the acid. When

the mercury is made positive it becomes dull and spreads itself out ; when il^

is made negative it gathers itself together and becomes bright again. M. Lipp-

maim, who has made a careful investigation of the subject, finds that exceed-

ingly small variations of the electromotive force produce sensible changes in

the surface-tension. The effect of one Darnell's cell is to increase the tension

from 30-4 to 40-6. He has constructed a capillary electrometer by which

differences of electric potential less than O'Ol of that of a Daniell's cell can

be detected by the difference of the pressure required to force the mercury to

a given point of a fine capillary tube. He has also constructed an apparatus

in which this variation in the surface-tension is made to do work and drive

a machine. He has also found that this action is reversible, for when the

area of the surface of contact of the acid and mercury is made to increase,

an electric current passes from the mercury to the acid, the amount of elec-

tricity which passes while the surface increases by one square centimetre being

sufi&cient to decompose '000013 grammes of water.

On the Forms of Liquid Films which are Figures of Eevolution.

A Spherical Soap-huhhle.

A soap-bubble is simply a small quantity of soap-suds spread out so as

to expose a large surface to the air. The bubble, in fact, has two surfaces,

an outer and an inner surface, both exposed to air. It has, therefore, a certam

amount of surface-energy depending on the area of these two surfaces. Smce

in the case of thin films the outer and inner surfaces are approximately equal,

we shall consider the area of the film as representing either of them, and

shall use the symbol T to denote the energy of unit of area of the film, both

surfaces being taken together. If T' is the energy of a single surface of the

liquid, T the energy of the fihn is 21'. When by means of a tube we blow

air into the inside of the bubble we increase its volume and therefore its
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surface, and at the same time we do work in forcing air into it, and thus

increase the energy of the bubble.

That the bubble has energy may be shewn by leav-ing the end of the tube

open. The bubble will contract, forcing the air out, and the current of air

blown through the tube may be made to deflect the flame of a candle. If the

bubble is in the form of a sphere of radius r this material surface will have

an area

>S=47rr (1).

If T be the energy corresponding to unit of area of the film the surface-energy

of the whole bubble will be

ST=iTTfT (2).

The increment of this energy corresponding to an increase of the radius from

r to r-\-dr is therefore

TdS=S'nrTdr (3).

Now this increase of energy was obtained by forcing in air at a pressure

greater than the atmospheric pressure, and thus increasing the volume of the

bubble.

Let n be the atmospheric pressure and U+p the pressure of the air

within the bubble. The volume of the sphere is

v=i^>' (4),

and the increment of volume is

dV=inrdr (5).

Now if we suppose a quantity of air already at the pressure Tl+p, the work

done in forcing it into the bubble is pdV. Hence the equation of work and

energy is

pdV=Tds (6),

or 4'nprdr = S7n^drT (7),

P = ^^l (8).

This, therefore, is the excess of the pressure of the air within the bubble over

that of the external air, and it is due to the action of the inner and outer

surfaces of the bubble. We may conceive this pressure to arise from the ten-

dency which the bubble has to contract, or in other words from the surface-

tension of the bubble.
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If to increase the area of the surface requires the expenditure of work,

the surface must resist extension, and if the bubble in contracting can do work,

the surface must tend to contract. The surface must therefore act like a sheet

of india-rubber when extended both in length and breadth, that is, it must

exert surface-tension. The tension of the sheet of india-rubber, however, de-

pends on the extent to which it is stretched, and may be different in different

directions, whereas the tension of the surface of a liquid remains the same

however much the film is extended, and the tension at any point is the same

in all directions.

The intensity of this surface-tension is measured by the stress which it

exerts across a line of unit length. Let us measure it in the case of the

spherical soap-bubble by considering the stress exerted by one hemisphere of

the bubble on the other, across the circumference of a great circle. This stress

is balanced by the pressure p acting over the area of the same great circle:

it is therefore equal to irt^p. To determine the intensity of the surface-tension

we have to divide this quantity by the length of the line across which it acts,

which is in this case the circumference of a great circle 27rr. Dividing -rrr'p

by this length we obtain ^pr as the value of the intensity of the surface-

tension, and it is plain from equation 8 that this is equal to T. Hence the

numerical value of the intensity of the surface-tension is equal to the numerical

value of the surface-energy per unit of surface. We must remember that since

the film has two surfaces the surface-tension of the fihn is double the tension

of the surface of the liquid of which it is formed.

To determine the relation between the surface-tension and

the pressure which balances it when the form of the surface

is not spherical, let us consider the following case :

—

Let fig. 8 represent a section through the axis Cc of a

soap-bubble in the form of a figure of revolution bounded by

two circular disks AB and ah, and having the meridian section

APa. Let PQ be an imaginary section normal to the axis.

Let the radius of this section PR be y, and let PT, the

tangent at P, make an angle a with the axis.

Let us consider the stresses which are exerted across this

imaginary section by the lower part on the upper part. If

the internal pressure exceeds the external pressure by p,

Fig. 8. there is in the first place a force iry^p acting upwards arising
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from the pressure p over the area of the section. In the next place, there is

the surface-tension acting downwards, but at an angle a with the vertical,

across the circular section of the bubble itself, whose circumference is ^ny, and

the downward force is therefore 2mjT cos a.

Now these forces are balanced by the external force which acts on the

disk ACB, which we may call F. Hence equating the forces which act on

the portion included between ACB and PRQ

Try-p-27ri/Tcosa= -F (9).

If we make CR = z, and suppose z to vary, the shape of the bubble of course

remaining the same, the values of y and of a will change, but the other

quantities will be constant. In studying these variations we may if we please

take as our independent variable the length s of the meridian section AP

reckoned from A. Differentiating equation 9 with respect to s we obtain, after

dividing by 27r as a common factor

w|-^-4+^^-^l=» <^">-

Now Th^^^"'
^^^^'

The radius of curvature of the meridian section is

R,= -'^ (12).
da

The radius of curvature of a normal section of the surface at right angles to

the meridian section is equal to the part of the normal cut off by the axis,

which is

R PN=-y— (13).
cos a

Hence dividing equation 10 by ?/ sin a, we find

^=^(s/i}
•<^^'-

This equation, which gives the pressure in terms of the principal radii of curva-

ture, though here proved only in the case of a surface of revolution, must be

true of all surfaces. For the curvature of any surface at a given point may

VOL. II.
^^
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be completely defined in terms of the positions of its principal normal sections

and their radii of curvature.

Before going further we may deduce from equation 9 the nature of all

the figures of revolution which a liquid film can assume. Let us first deter-

mine the nature of a curve, such that if it is rolled on the axis its origin

will trace out the meridian section of the bubble. Since at any instant the
rolling curve is rotating about the point of contact with the axis, the line

drawn firom this point of contact to the tracing point must be normal to the
direction of motion of the tracing point. Hence if ^V is the point of contact,

NP must be normal to the traced curve. Also, since the axis is a tangent
to the rolling curve, the ordinate PR is the perpendicular fi-om the tracing

point P on the tangent. Hence the relation between the radius vector and
the perpendicular on the tangent of the rolling curve must be identical with
the relation between the normal PX and the ordinate PR of the traced curve.

If we write r for PX, then y=r cos a, and equation 9 becomes

_F

TTp-

This relation between y and r is identical with the relation between the per-

pendicidar firom the focus of a conic section on the tangent at a given point

and the focal distance of that point, provided the transverse and conjugate axes

of the conic are 2a and 26 respectively, where

T F
a = — , and b- =—

.

P ^
Hence the meridian section of the film may be traced by the focus of such
a conic, if the conic is made to roll on the axis.

On the Differen't Forms of the Meeidiax Line.

(1) When the conic is an ellipse the meridian line is in the form of a
series of waves, and the film itself has a series of alternate swellings and con-

tractions as represented in figs. 8 and 9. This form of the film is called the
unduloid.

"('f,-)
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(la.) When the ellip&e becomes a circle, the meridian line becomes a

straight line paraUel to the axis, and the film passes into the form of a

cylinder of revolution.

(1 b.) As the ellipse degenerates into the straight line joining its foci, the

contracted parts of the unduloid become narrower, till at last the figure becomes

a series of spheres in contact.

2T
In all these cases the internal pressure exceeds the external by — where

a is the semi-transverse axis of the conic. The resultant of the internal pres-

sure and the surface-tension is equivalent to a tension along the axis, and the

numerical value of this tension is equal to the force due to the action of this

pressure on a circle whose diameter is equal to the conjugate axis of the

ellipse.

(2) When the conic is a parabola the meridian Hne is a catenary (fig. 10),

the internal pressure is equal to the external pressure, and the tension along

the axis is equal to 2nTm where m is the distance of the vertex from the

focus.

Fie. 9.-Cnaoloid. Fij. i<i.-C>,^oii. Fig. ll.-Sodoid.

(3) When the conic is a hyperbola the meridian line is in the form of

a looped curve (fig. 11). The corresponding figure of the fihn is caUed the

nodoid. The resultant of the internal pressure and the surface-tension is equiva-

lent to a pressure along the axis equal to that due to a pressure p actmg

on a circle whose diameter is the conjugate axis of the hyperbola.

When the conjugate axis of the hyperbola is made smaUer and smaUer

the nodoid approximates more and more to the series of spheres touching^
other along the axis. When the conjugate axis of the hyperbola increases with-

out Umit, the loops of the nodoid are crowded on one another, and each

becomes more nearly a ring of circular section, «-ithout, however, ever reachmg

this form. The onlv closed surface belonging to the series is the sphere.

73—

2
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These figures of revolution have been studied mathematically by Poisson*,

Goldschmidtt, Lindelof and MoignoJ, Delaunayll, Lamarle§, Beer^, and Mann-

heim**, and have been produced experimentally by Plateautt in the two different

ways already described.

The limiting conditions of the stability of these figures have been studied

both mathematically and experimentally. We shall notice only two of them,

the cylinder and the catenoid.

Stability of the Cylinder.

The cylinder is the limiting form of the unduloid when the rolling ellipse

becomes a circle. When the ellipse differs infinitely .little from a circle, the

equation of the meridian line becomes approximately y = a + c sin- where c is

small. This is a simple harmonic wave-line, whose mean distance fi:om the axis

is a, whose wave-length is 27ra, and whose amplitude is c. The internal pres-

T
sure corresponding to this unduloid is aS before p = -

. Now consider a

portion of a cylindric film of length x terminated by two equal disks of radius r

and containing a certain volume of air. Let one of these disks be made to

approach the other by a small quantity dx. The

film will swell out into the convex part of an

unduloid, having its largest section midway between

the disks, and we have to determine whether the

J,.
j2 internal pressure will be greater or less than before.

If A and C (fig. 12) are the disks, and if x the

* Noxivelle theorie de Faction capillaire (1831),

t Determinatio sriperficiei minimce rotatione curves data duo puncta jungentis circa datum axem

ortce (Gottingen, 1831).

X Legons de calcul des variations (Paris, 1861).

II
"Sur la surface de revolution dont la courbm-e moyenne est constante," Liouville's Journal, vi.

§ "Theorie geometrique des rayons et centres de courbure," Bullet, de VAcad, de Belgique, 1857.

II Tractatus de Theoria Matliematica Phcmom&norum in Liquidis actione gravitatis detractis obser-

vatorum (Bonn, 1857).

** Journal Vlnstitut, No. 1260.

ft Statique experimentale et theorique des liquides.

A A, C, C Cj Bj B



CAPILLAKY ACTION. 581

ilistance between the disks is equal to -rrr half the wave-length of the harmonic

curve, the disks will be at the points where the curve is at its mean distance

T
from the axis, and the pressure will therefore be as before. If A^, C, are

the disks, so that the distance between them is less than irr, the curve must

be produced beyond the disks befor^i it is at its mean distance from the axis.

Hence in this case the mean distance is less than r, and the pressure will be

T
greater than —

. If, on the other hand, the disks are at A^ and (7,, so that the

distance between them is greater than ttt, the curve will reach its mean dis-

tance from the axis before it reaches the disks. The mean distance will there-

T
fore be greater than r, and the pressure will be less than — . Hence if one

of the disks be made to approach the other, the internal pressure will be

increased if the distance between the disks is less than half the circumference

of either, and the pressure will be diminished if the distance is greater than

this quantity. In the same way we may shew that if the distance between

the disks is increased, the pressure will be diminished or increased according

as the distance is less or more than half the circumference of either.

Now let us consider a cylindric film contained between two equal fixed disks

A and B, and let a third disk, C, be placed midway between. Let C be slightly

displaced towards A. If AC and CB are each less than half the circumference

of a disk the pressure on C will increase on the side of A and diminish on

the side of B. The resultant force on C wiU therefore tend to oppose the

displacement and to bring C back to its original position. The equilibrium of

C is therefore stable. It is easy to shew that if C had been placed in any

other position than the middle, Its equilibrium would have been stable. Hence

the film is stable as regards longitudinal displacements. It is also stable as

regards displacements transverse to the axis, for the film is in a state of

tension, and any lateral displacement of its middle parts would produce a re-

sultant force tending to restore the film to its original position. Hence if the

length of the cylindric film is less than its circumference, it is in stable equi-

librium. But if the length of the cylindric film is greater than its circumference,

and if we suppose the disk C to be placed midway between A and B, and

to be moved towards A, the pressure on the side next A will diminish, and

that on the side next B will increase, so that the resultant force will tend to
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increase the displacement, and the equilibrium of the disk C is therefore un-

stable. Hence the equilibrium of a cylindric film whose length is greater than
its circumference is unstable. Such a film, if ever so little disturbed, will

begin to contract at one section and to expand at another, till its form ceases

to resemble a cylinder, if it does not break up into two parts which become
ultimately portions of spheres.

Instability of a Jet of Liquid.

When a Hquid flows out of a vessel through a circular opening in the
bottom of the vessel, the form of the stream is at first nearly cylindrical though
its diameter gradually diminishes from the orifice downwards on account of the
increasing velocity of the liquid. But the liquid after it leaves the vessel is

subject to no forces except gravity, the pressure of the air, and its own surface-

tension. Of these gravity has no effect on the form of the stream except in

drawing asunder its parts in a vertical direction, because the lower parts are

moving faster than the upper parts. The resistance of the air produces little

disturbance until the velocity becomes very great. But the surface-tension,

acting on a cylindric column of liquid whose length exceeds the hmit of stability,

begins to produce enlargements and contractions in the stream as soon as the
liquid has left the orifice, and these inequalities in the figure of the column
go on increasing till it is broken up into elongated fragments. These fragments
as they are falling through the air continue to be acted on by surface-tension.

ITiey therefore shorten themselves, and after a series of oscillations in which
they become alternately elongated and flattened, settle down into the form of
spherical drops.

This process, which we have followed as it takes place on an individual

portion of the falling liquid, goes through its several phases at different dis-

tances from the orifice, so that if we examine different portions of the stream
as it descends, we shall find next the orifice the unbroken column, then a
series of contractions and enlargements, then elongated drops, then flattened

drops, and so on till the drops become spherical.
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Stability of the Catenoid.

When the internal pressure is equal to the external, the film forms a

surface of which the mean curvature at every point is zero. The only surface

of revolution having this property is the catenoid formed by the revolution of

a catenary about its directrix. This catenoid, however, is in stable equilibrium

only when the portion considered is such that the tangents to the catenary

at its extremities intersect before they reach the directrix.

To prove this, let us consider the catenary as the form of equilibrium of

a chain suspended between two fixed points A and B. Suppose the chain

hanging between A and B to be of very great length, then the tension at

^ or -B will be very great. Let the chain be hauled in over a peg at A.

At first the tension will diminish, but if the process be continued the tension

will reach a minimum value and will afterwards increase to infinity as the

chain between A and B approaches to the form of a straight line. Hence for

every tension greater than the minimum tension there are two catenaries pass-

ing through A and B. Since the tension is measured by the height above

the directrix these two catenaries have the same directrix. Every catenary

lying between them has its directrix higher, and every catenary lying beyond

them has its directrix lower than that of the two catenaries.

Now let us consider the surfaces of revolution formed by this system of

catenaries revolving about the directrix of the two catenaries of equal tension.

We know that the radius of curvature of a surface of revolution in the plane

normal to the meridian plane is the portion of the normal intercepted by the

axis of revolution.

The radius of curvature of a catenary is equal and opposite to the por-

tion of the normal intercepted by the directrix of the catenary. Hence a

catenoid whose directrix coincides with the axis of revolution has at every point

its principal radii of curvature equal and opposite, so that the mean curvature

of the surface is zero.

The catenaries which lie between the two whose direction coincides with

the axis of revolution generate surfaces whose radius of curvature convex

towards the axis in the meridian plane is less than the radius of concave

curvature. The mean curvature of these surfaces is therefore convex towards the

axis. The catenaries which lie beyond the two generate surfaces whose radius
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of curvature convex towards the axis in the meridian plane is greater than

the radius of concave curvature. The mean curvature of these surfaces is,

therefore, concave towards the axis.

Now if the pressure is equal on both sides of a Hquid film, if its mean

curvature is zero, it will be in equilibrium. This is the case with the two

catenoids. If the mean curvature is convex towards the axis the film will

move from the axis. Hence if a film in the form of the catenoid which is

nearest the axis is ever so slightly displaced from the axis it will move further

from the axis till it reaches the other catenoid.

If the mean curvature is concave towards the axis the film will tend to

approach the axis. Hence if a film in the form of the catenoid which is

nearest the axis be displaced towards the axis, it will tend to move further

towards the axis and will collapse. Hence the film in the form of the catenoid

which is nearest the axis is in unstable equiUbrium under the condition that

it is exposed to equal pressures within and without. If, however, the circular

ends of the catenoid are closed with solid disks, so that the volume of air

contained between these disks and the film is determinate, the film vviU be

in stable equilibrium hov/ever large a portion of the catenary it may consist of

The criterion as to whether any given catenoid is stable or not may be

obtained as follows.

Let PABQ and ApqB (fig. 13) be two catenaries having the same direc-

trix and intersecting in A and B. Draw Pj? and

Qq touching both catenaries, Pp and Qq will

intersect at T, a point in the directrix ; for since

any catenary with its directrix is a similar figure

to any other catenary with its directrix, if the

directrix of the one coincides with that of the

other the centre of similitude must lie on the

common directrix. Also, since the curves at P
and j) are equally inclined to the directrix, P
and j9 are corresponding points and the line Pp

must pass through the centre of similitude. Similarly Qq must pass through

the centre of similitude. Hence T, the point of intersection of Pj) and Qq,

must be the centre of similitude and must be on the common directrix. Hence

the tangents at A and B to the upper catenary must intersect above the

directrix, and the tangents at A and B to the lower catenary must intersect
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below the directrix. The condition of stability of a catenoid is therefore that

the tangents at the extremities of its generating catenary must intersect before

they reach the directrix.

Stability of a Plane Surface.

We shall next consider the limiting conditions of stability of the horizontal

surface which separates a heavier fluid above from a lighter fluid below. Thus,

in an experiment of M. Duprez*, a vessel containing olive oil is placed with

its mouth downwards in a vessel containing a mixture of alcohol and water,

the mixture being denser than the oil. The surface of separation is in this

case horizontal and stable, so that the equilibrium is established of itself

Alcohol is then added very gradually to the mixture till it becomes lighter

than the oil. The equilibrium of the fluids would now be unstable if it were

not for the tension of the surface which separates them, and which, when the

orifice of the vessel is not too large, continues to preserve the stability of the

equilibrium.

When the equilibrium at last becomes unstable, the destruction of equili-

brium takes place by the lighter fluid ascending in one part of the orifice and

the heavier descending in the other. Hence the displacement of the surface

to which we must direct our attention is one which does not alter the volume

of the liquid in the vessel, and which therefore is upward in one part of the

surface and downward in another. The simplest case is that of a rectangular

orifice in a horizontal plane, the sides being a and h.

Let the surface of separation be originally in the plane of the orifice, and

let the co-ordinates x and y be measured from one corner parallel to the sides

a and h respectively, and let z be measured upwards. Then if p be the

density of the upper liquid, and cr that of the lower liquid, and P the original

pressure at the surface of separation, then when the surface receives an upward

displacement z, the pressure above it will be F — pgz, and that below it will

be P-(T(jz, so that the surface will be acted on by an upward pressure {p-a)gz.

Now if the displacement z be everywhere very small, the curvature in the

d'z d^z
planes parallel to xz and yz will be -^ and -y-, respectively; and if T is

* "Sur un cas particulier de I'equilibre des liquides," par F. Duprez, Nouveaitx Mem. de VAcad.

de Befgique, 1851 et 1854.

VOL. II. 74



586 CAPILLARY ACTION.

the surface-tension the whole upward force will be

If this quantity is of the same sign as z, the displacement will be increased,

and the equilibrium will be unstable. If it is of the opposite sign from 2,

the equilibrium wiU be stable. The limiting condition may be found by put-

ting it equal to zero. One form of the solution of the equation, and that

which is applicable to the case of a rectangular orifice, is

Substituting in the equation we find the condition

!-!-''« stable.

neutral.

-*" unstable.

That the surface may coincide with the edge of the orifice, which is a

rectangle, whose sides are a and h, we must have

pa = mir, qh = mr,

when m and n are integral numbers. Also, if m and n are both unity, the

displacement will be entirely positive, and the volume of the liquid will not

be constant. That the volume may be constant, either n or m must be an

even number. We have, therefore, to consider the conditions under which

cannot be made negative. Under these conditions the equilibrium is stable for

all small displacements of the surface. The smallest admissible value of t? + ^,

is —2 + ^ > where a is the longer side of the rectangle. Hence the condition of

stability is that

/ tt'T
is a positive quantity. When the breadth b is less than ^ , _ . the length

a may be unlimited.
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When the orifice is circular of radius a, the limiting value of a is /— 2,

where z is the least root of the equation

2 2' z^ 2*

- A) = 1 - 27-4 + 2:4\6 ~ 2:4r6\^ + '^^•' = ^•

The least root of this equation is

2 = 3-83171.

If h is the height to which the liquid will rise in a capillary tulje of

unit radius, then the diameter of the largest orifice is

2a = 3-8317 n/2A

= 5-4188A
M. Duprez found from his experiments

2a = 5-485 y/i.

Effect of Surface-tension on the Velocity of Waves ^''.

When a series of waves are propagated on the surface of a liquid, the

surface-tension has the effect of increasing the pressure at the crests of the

waves and diminishing it in the troughs. If the wave-length is X, the equa-

tion of the surface is

A

The pressure due to the surface-tension T is

This pressure must be added to the pressure due to gravity gpij. Hence the

waves will be propagated as if the intensity of gravity had been

instead of g. Now it is shewn in hydrodynamics that the velocity of propa-

gation of waves in deep water is that acquired by a heavy body falUng through

half the radius of the circle whose circumference is the wave-length, or

/A
27r

V27r \pkp
'

* See Sir W. Thomson, " Hydrokinetic Solutions and Observations," Phil Mag., Nov. 1S71.

74—2
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This velocity is a minimum when

X = 27r./^.M gp
and the minimum value is

. = ./4^
P

For waves whose length from crest to crest is greater than X, the prin-

cipal force concerned in the motion is that of gravitation. For waves whose

length is less than X the principal force concerned is that of surface-tension.

Sir William Thomson proposes to distinguish the latter kind of waves by the

name of ripples.

When a small body is partly immersed in a liquid originally at rest, and

moves horizontally with constant velocity V, waves are propagated through the

liquid with various velocities according to their respective wave-lengths. In front

of the body the relative velocity of the fluid and the body varies from V
where the fluid is at rest, to zero at the cutwater on the front surface of the

body. The waves produced by the body will travel forwards faster than the

body till they reach a distance from it at which the relative velocity of the

body and the fluid is equal to the velocity of propagation corresponding to the

wave-length. The waves then travel along with the body at a constant dis-

tance in front of it. Hence at a certain distance in front of the body there

is a series of waves which are stationary with respect to the body. Of these,

the waves of minimum velocity form a stationary wave nearest to the front

of the body. Between the body and this first wave the surface is compara-

tively smooth. Then comes the stationary wave of minimum velocity, which is

the most marked of the series. In front of this is a double series of stationary

waves, the gravitation waves forming a series increasing in wave-length with

their distance in front of the body, and the surface-tension waves or ripples

diminishing in wave-length with their distance from the body, and both sets

of waves rapidly diminishing in amplitude with their distance from the body.

If the current-function of the water referred to the body considered as

origin is xjj, then the equation of the form of the crest of a wave of velocity

IV, the crest of which travels along with the body, is

dxjj = wds

where ds is an element of the length of the crest. To integrate this equation
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for a solid of given form is probably difficult, but it is easy to see that at

some distance on either side of the body, where the liquid is sensibly at rest,

the crest of the wave will approximate to an asymptote inclined to the path

of the body at an angle whose sine is ^^, where w is the velocity of the

wave and V is that of the body.

The crests of the different kinds of waves will therefore appear to diverge

as they get further from the body, and the waves themselves will be less and

less perceptible. But those whose wave-length is near to that of the wave of

minimum velocity will diverge less than any of the others, so that the most

marked feature at a distance from the body will be the two long lines of

ripples of minunum velocity. If the angle between these is 20, the velocity

of the body is wsecd, where tv for water is about 23 centimetres per second.

Tables of Surface-tension.

In the following tables the units of length, mass, and time are the centi-

metre, the gramme, and the second, and the unit of force is that which if

it acted on one gramme for one second would communicate to it a velocity of

one centimetre per second :

—

Table of Si
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Quincke has determined the surface-tension of a great many substances near

their point of fusion or solidification. His method was that of observing the

form of a large drop standing on a plane surface. If K is the height of the

flat surface of the drop, and k that of the point where its tangent plane is

vertical, then
T.=\{K-krgp.

Surface-Tensions of Liquids at their Point of Solidification. From Quincke.

Substance.

Platinum

Gold
Zinc
Tin
Mercury
Lead
Silver

Bisravith

Potassium
Sodium
Antimony
Borax
Carbonate of Soda
Chloride of Sodium
Water
Selenium
Sulphur
Phosphorus
Wax

Temperature of

Solidification.
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Relation of Surface-tension to Temperature.

It appears from the experiments of Brunner and of Wolff on the ascent

of water in tubes that at the temperature f centigrade

r=75'20 (1-0-001870;

= 76-08 (1-0-002« + 0-00000415«'), for a tube •02346 cm. diameter (Wolff);

= 77-34(1 -0-001810, for a tube •03098cm. diameter (Wolff).

Sir W. Thomson has applied the principles of Thermodynamics to deter-

mine the thermal effects of increasing or diminishing the area of the free surface

of a liquid, and has shewn that in order to keep the temperature constant

while the area of the surface increases by unity, an amount of heat must be

supplied to the liquid which is dynamically equivalent to the product of the

absolute temperature into the decrement of the surface-tension per degree of

temperature. We may call this the latent heat of surface-extension.

It appears from the experiments of Brunner and Wolff that at ordinar}'

temperatures the latent heat of extension of the surface of water is dynamically

equivalent to about half the mechanical work done in producing the surface-

extension.



[From Nature, Vol. xv.]

LXXXIV. Hermann Ludwig Ferdinand Helmholtz.

The contributions made by Helmholtz to mathematics, physics, physiology,

psychology, and aesthetics, are well known to all cultivators of these various

subjects. Most of those who have risen to eminence in any one of these

sciences have done so by devoting their whole attention to that science ex-

clusively, so that it is only rarely that the cultivators of different branches can

be of service to each other by contributing to one science the skill they have

acquired by the study of another.

Hence the ordinary growth of human knowledge is by accumulation round

a number of distinct centres. The time, however, must sooner or later arrive

when two or more departments of knowledge can no longer remain independent

of each other, but must be fused into a consistent whole. But though men

of science may be profoundly convinced of the necessity of such a fusion, the

operation itself is a most arduous one. For though the phenomena of nature

are all consistent with each other, we have to deal not only with these, but

with the hypotheses which have been invented to systematise them; and it

by no means follows that because one set of observers have laboured with all

sincerity to reduce to order one group of phenomena, the hypotheses which

they have formed will be consistent with those by which a second set of

observers have explained a different set of phenomena. Each science may appear

tolerably consistent within itself, but before they can be combined into one,

each must be stripped of the daubing of untempered mortar by which its parts

have been prematurely made to cohere.

Hence the operation of fusing two sciences into one generally involves much

criticism of established methods, and the explosion of many pieces of fancied

knowledge which may have been long held in scientific reputation.

Most of those physical sciences which deal with things without life have

either undergone this fusion or are in a fair state of preparation for it, and

the form which each finally assumes is that of a branch of dynamics.
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Many cultivators of the biological sciences have been impressed with the

conviction that for an adequate study of their subject a thorough knowledge

of dynamical science is essential. But the manner in which some of them have

cut and pared at the facts in order to bring the phenomena within the range

of their dynamics, has tended to throw discredit on all attempts to apply

dynamical methods to biology.

We purpose to make a few remarks on a portion of the scientific work

of Helmholtz, who is himself the most illustrious example not merely of ex-

tensive acquaintance with science combined with thoroughness, but of a thorough-

ness which of itself demands the mastery of many sciences, and in so doing

makes its mark on each.

Hermann Ludwig Ferdinand Helmholtz was born August 31, 1821, at

Potsdam, where his father, Ferdinand Helmholtz, was Professor of the Gymnasium.

His mother, Caroline Penn, was of an emigrated English family. His father's

means would not admit of his studying science otherwise than as a medical

student. He therefore became a military surgeon, and continued in that posi-

tion till the end of 1848, when he was appointed Assistant of the Anatomical

Museum of BerUn, and Teacher of Anatomy at the Academy of Arts. In the

following year he went to Konigsberg, in Prussia, as Professor of Physiology.

In 1856 he became Professor of Anatomy and Physiology at the University of

Bonn; in 1859, Professor of Physiology at the University of Heidelberg; and,

in 1871, Professor of Natural Philosophy to the University of Berhn.

It was during his career as a military surgeon that he pubhshed his cele-

brated essay on The Conservation of Energy.

The science of dynamics has been so long established, that it is hardly

conceivable that any addition to its fundamental principles should yet remain

to be made. But in the application of pure dynamics to actual bodies a great

deal remains to be done. The great work for the men of science of the pre-

sent age is to extend our knowledge of the motion of matter from those

instances in which we can see and measure the motion to those in which our

senses are unable to trace it. For this purpose we must avail ourselves of

such principles of dynamics as are applicable to cases in which the precise

nature of the motion cannot be directly observed, and we must also discover

methods of observation by which effects which indicate the nature of the un-

seen motion may be measured. It is unnecessary here to refer to the labours

of the different men of science who, each in his own way, have contributed

VOL. II. 75
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by experiment, calculation, or speculation, to the establishment of the principle

of the conservation of energy ; but there can be no doubt that a very great

impulse was communicated to this research by the publication in 1847, of

Helmholtz's essay Ueber die Erhaltiuig der Kraft, which we must now (and

correctly, as a matter of science) translate Conservation of Energy, though in

the translation which appeared in Taylor's Scientific Memoirs, the word Kraft

was translated Force in accordance with the ordinary literary usage of that

time.

In this essay Helmholtz shewed that if the forces acting between material

bodies were equivalent to attractions or repulsions between the particles of these

bodies, the intensity of which depends only on the distance, then the con-

figuration and motion of any material system would be subject to a certain

equation, which, when expressed in words, is the principle of the conservation

of energy.

Whether this equation applies to actual material systems is a matter which

experiment alone can decide, but the search for what was called the perpetual

motion has been carried on for so long, and always in vain, that we may now

appeal to the united experience of a large number of most ingenious men, any

one of whom, if he had once discovered a violation of the principle, would

have turned it to most profitable account.

Besides this, if the principle were in any degree incorrect, the ordinary

processes of nature, carried on as they are incessantly and in all possible com-

binations, would be certain now and then to produce observable and even

startling phenomena, arising from the accumulated effects of any slight diver-

gence from the principle of conservation.

But the scientific importance of the principle of the conservation of energy

does not depend merely on its accuracy as a statement of fact, nor even on

the remarkable conclusions which may be deduced from it, but on the fertility

of the methods founded on this principle.

Whether our work is to form a science by the colligation of known facts,

or to seek for an explanation of obscure phenomena by devising a course of

experiments, the principle of the conservation of energy is our unfailing guide.

It gives us a scheme by which we may arrange the facts of any physical

science as instances of the transformation of energy from one form to another.

It also indicates that in the study of any new phenomenon our first inquiry

must be. How can this phenomenon be explained as a transformation of energy ?
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What is the original form of the energy ? What is its final form ? and What
are the conditions of transformation ?

To appreciate the full scientific value of Helmholtz's little essay on this

subject, we should have to ask those to whom we owe the greatest discoveries

in thermodynamics and other branches of modem physics, how many times they

have read it over, and how often during their researches they felt the weighty

statements of Helmholtz acting on their minds like an irresistible driving-power.

We come next to his researches on the eye and on vision, as they are

given in his book on Physiological Optics. Every modern oculist will admit

that the ophthalmoscope, the original form of which was invented by Helmholtz,

has substituted observation for conjecture in the diagnosis of diseases of the

inner parts of the eye, and has enabled operations on the eye to be made

with greater certainty.

But though the ophthalmoscope is an indispensable aid to the oculist, a

knowledge of optical principles is of still greater importance. Whatever optical

information he had was formerly obtained from text-books, the only practical

object of which seemed to be to explain the construction of telescopes. They

were full of very inelegant mathematics, and most of the results were quite

inapplicable to the eye.

The importance to the physiologist and the physician of a thorough know-

ledge of physical principles has often been insisted on, but unless the physical

principles are presented in a form which can be directly applied to the com-

plex structures of the living body, they are of very little use to him ; but

Helmholtz, Bonders, and Listing, by the application to the eye of Grauss's

theory of the cardinal points of an instrument, have made it possible to acquire

a competent knowledge of the optical effects of the eye by a few direct

observations.

But perhaps the most important service conferred on science by this great

work consists in the way in which the study of the eye and vision is made
to illustrate the conditions of sensation and of voluntary motion. In no depart-

ment of research is the combined and concentrated light of all the sciences

more necessary than in the investigation of sensation. The purely subjective

school of psychologists used to assert that for the analysis of sensation no

apparatus was required except what every man carries within himself, for, since

a sensation can exist nowhere except in our own consciousness, the only possible

method for the study of sensations must be an unbiased contemplation of our

75—2
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own frame of mind. Others might study the conditions under which an impulse

is propagated along a nerve, and might suppose that while doing so they were

studying sensations, but though such a procedure leaves out of account the

very essence of the phenomenon, and treats a fact of consciousness as if it

were an electric current, the methods which it has suggested have been more

fertile in results than the method of self-contemplation has ever been.

But the best results are obtained when we employ all the resources of

physical science so as to vary the nature and intensity of the external stimulus,

and then consult consciousness as to the variation of the resulting sensation.

It was by this method that Johannes Miiller established the great principle

that the difference in the sensations due to different senses does not depend

upon the actions which excite them, but upon the various nervous arrange-

ments which receive them. Hence the sensation due to a particular nerve may

vary in intensity, but not in quality, and therefore the analysis of the infinitely

various states of sensation of which we are conscious must consist in ascertain-

ing the number and nature of those simple sensations which, by entering into

consciousness each in its own degree, constitute the actual state of feeling at

any instant.

If, after this analysis of sensation itself, we should find by anatomy an

apparatus of nerves arranged in natural groups corresponding in number to the

elements of sensation, this would be a strong confirmation of the correctness

of our analysis, and if we could devise the means of stimulating or deadening

each pai-ticular nerve in our own bodies, we might even make the investigation

physiologically complete.

The two great works of Helmholtz on Physiological Optics and on the

Sensations of Tone, form a splendid example of this method of analysis applied

to the two kinds of sensation which furnish the largest proportion of the raw

materials for thought.

In the first of these works the colour-sensation is investigated and shewn

to depend upon three variables or elementary sensations. Another investigation,

in which exceedingly refined methods are employed, is that of the motions of

the eyes. Each eye has six muscles by the combined action of which its

angular position may be varied in each of its three components, namely, in

altitude and azimuth as regards the optic axis, and rotation about that axis.

There is no material connection between these muscles or their nerves which

would cause the motion of one to be accompanied by the motion of any other,
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80 that the three motions of one eye are mechanically independent of the three

motions of the other eye. Yet it is well known that tlie motions of the axis

of one eye are always accompanied by corresponding motions of the other.

This takes place even when we cover one eye with the fingers. We feel the

cornea of the shut eye rolling under our fingers as we roll the open eye up

or down, or to left or right ; and indeed we are quite unable to move one

eye without a corresponding motion of the other.

Now though the upward and downward motions are effected by corresponding

muscles for both eyes, the motions to right and left are not so, being pro-

duced by the inner muscle of one eye along with the outer muscle of the

other, and yet the combined motion is so regular, that we can move our eyes

quite freely while maintaining during the whole motion the condition that the

optic axes shall intersect at some point of the object whose motions we are

following. Besides this, the motion of each eye about its optic axis is found

to be connected in a remarkable way with the motion of the axis itself.

The mode in which Helmholtz discusses these phenomena, and illustrates

the conditions of our command over the motions of our bodies, is well worth

the attention of those who are conscious of no limitation of their power of

moving in a given manner any organ which is capable of that kind of motion.

In his other great work on the Sensation of Tone as a Physiological Basis

for the Theory of Music, he illustrates the conditions under which our senses

are trained in a yet clearer manner. "We quote from Mr Ellis's translation,

p. 95:—

"Now practice and experience play a far greater part in the use of our senses than we are

usually inclined to assume, and since, as just remarked, our sensations derived from the senses

are primarily of importance only for enabling us to form a correct conception of the world with-

out us, our practice in the observation of these sensations usually does not extend in the slightest

degree beyond what is necessary for this purpose. We are certainly only far too much disposed

to believe that we must be immediately conscious of all that we feel and of all that enters into

our sensations. This natural belief, however, is founded only on the fact that we are always

immediately conscious, without taking any special trouble, of everything necessaiy for the practical

purpose of forming a correct acquaintance with external nature, because during our whole life wt-

have been daily and hourly using our organs of sense and collecting results of experience for this

precise object."

Want of space compels us to leave out of consideration that paper on

Vortex Motion, in which he estabUshes principles in pure hydrodynamics which

had escaped the penetrative power of all the mathematicians who preceded him,

including Lagrange himself; and those papers on electrodynamics where he
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reduces to an intelligible and systematic form the laborious and intricate in-

vestigations of several independent theorists, so as to compare them with each

other and with experiment.

But we must not dwell on isolated papers, each of which might have been

taken for the work of a specialist, though few, if any, specialists could have

treated them in so able a manner. We prefer to regard Ilelmholtz as the

author of the two great books on Vision and Hearing, and now that we are

no longer under the sway of that irresistible power which has been bearing

us along through the depths of mathematics, anatomy, and music, we may

venture to observe from a safe distance the whole figure of the intellectual

giant as he sits on some lofty cliff watching the waves, great and small, as

each pursues its independent course on the surface of the sea below.

" I must own," he says, " that whenever I attentively observe this spectacle, it awakens in

me a peculiar kind of intellectual pleasure, because here is laid open before the bodily eye what,

iri the case of the waves of the invisible atmospheric ocean, can' be rendered intelligible only to

the eye of the understanding, and by the help of a long seiies of complicated propositions."

—

[Toiiem^ndungen, p. 42.)

Helmholtz is now in Berlin, directing the labours of able men of science

in his splendid laboratory. Let us hope that from his present position he will

again take a comprehensive view of the waves and ripples of our intellectual

progress, and give us from time to time his idea of the meaning of it all.



[From the Proceedings of the Cainbridge Philosophical Society, Vol. in. 1877.]

LXXXV. On a Paradox in the Theory of Attraction.

Let A,A„ be a straight line, P a point in the same, A'l, X, corresponding points

in the segments PA^, PA„.

Let the distances of these points from the origin measured in the positive

A^ A'a P X^ A

I

a

direction be a^, a.,, 2^, ^i, ^2, respectively, and let the equation of correspondence

between a'j and x. be 1111
x^—p a-i—j^ P — ^i p — <^2

If Xi and x.^ vary simultaneously,

dx^ dx.2

(!)•

,('2).

(x.-pY ip-x.^'"

Hence x^ and x., move in opposite directions, and the lengths of the

corresponding elements cZx, and dx, (considered both positive) are as the squares

of their respective distances from the point P.

If therefore AB is a uniform rod of matter attracting inversely as th^^

square of the distance, the attractions of the corresponding elements on a

particle at the point P will be equal and opposite.

Now by giving values to x^, varying continuously from a^ to p, we may obtain

a corresponding series of values of x.,, varying from a„ to p, and since every

corresponding pair of elements dx^ and dx, exert equal and opposite attractions

on a particle at P, we might conclude that the attraction of the whole segment

A^P on a particle at P is equal and opposite to that of the segment A„P on tli*^

same particle.
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But it is still more evident that i£ A„P is the greater of the two segments,

and if we cut off Pa = PA^ the attractions of Pa and PA^ on the particle at

P will be equal and opposite. But the attraction of PA^ exceeds that of Pa
by the attraction of the part aA^, therefore the attraction of PA^ exceeds

that of PA^ by a finite quantity, contrary to our first conclusion.

Hence our first conclusion is wrong, and for this reason. The attractions

of any two corresponding segments A^X^ and A^^ are exactly equal, but

however near the corresponding points X^ and X, approach to P, the attraction

of each of the parts X^P and X^P on P is infinite, but that of XJ^ exceeds

that of X^P by a constant quantity, equal to the attraction of A^a on P.

This method of corresponding elements leads to a very simple investigation

of the distribution on straight lines, circular and elliptic disks and solid spheres

and ellipsoids of fluids repelling according to any power of the distance.

The problem has been already solved by Green* in a far more general

manner, but at the same time by a far more intricate method.

We have, as before, for corresponding values of Xj and x^

-i—^=-^--i- (1).
x^—p a^—p p — x.^p — ai

rp • 1111 ,„v
imnsposmff h- — = 1 (2).

' °
^i—p p — ^i p — ^i cii—p

Multiplying

(x,-a,){x, -a,) ^ {a,-x.^{a, ~-x.;} .^.

(x,-pY{a,-p)(p-a,) {p-x,Y(a,-p){p-a.;)

If we write (<*i — ^i) (^^i — «:) = ?/i^ (4),

(a,-x,){x,-a,) = 2j,' (5),

we find from equation (3)
—— " =i^ (G).

Let /3i, Pi be the densities and s^, s, the sections of the rod at the

corresponding points X^ and X^, and let the repulsion of the matter of the

* George Green. " Mathematical Investigations concerning the laws of the Equilibrium of Fluids

analogous to the electric fluid, with other similar reseai-ches." Transactions of the Cambridge Philosophical

Society, 1833. (Read Nov. 12, 1832.) Ferrers' Edition of Green's Papers, p. 119.
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rod vary inversely as the n'^ power of the distance, then the condition of

equUibrium of a particle at P under the action of the elements dx, and -dx, is

p,s,dx,(x,-2y)"'= -pM-^Ap-^^Y" ('')•

EUrainating dx, and dx, by means of equation (2), we find

pA('^i-p)"'' = PA(p-'r.r" (S)'

and from this by means of equation (6) we obtain

PyVjr'' = PM^""' (^)'

as the condition of equilibrium between the elements.

The condition of equilibrium is therefore satisfied for every pair of elements

^y
ma mg

p<?y^-» = constant = C (10).

In a uniform rod s is constant, so that the distribution of density is

given by the equation
^_^

If 71 = 2, as in the case of electricity, the density is uniform.

We have already shewn that when the density is uniform a particle not

at the middle of the rod cannot be in equilibrium, but on the other hand

any finite deviation from uniformity of density would be inconsistent with

equilibrium. We may therefore assert that the distribution of the fluid when

in equilibrium is not absolutely uniform, but is least at the middle of the

rod, while at the same time the deviation from uniformity is less than any

assignable quantity.

If the force is independent of the distance, ?i = and

P = Cr- (12),

or if r is the distance from the middle of the rod, 2l being the length of the rod,

C
P = F^'

.(13).

If C were finite, the whole mass would be infinite. Hence if the mass of

fluid in the rod is finite it must be concentrated into two equal masses and placed

at the two ends of the rod.

VOL. II.
"^
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Let US next consider a disk on which two chords are drawn intersecting

at the point P at a small angle 6, and let corresponding elements be taken

of the two sectors so formed.

In this case the section of either sector is proportional to the distance of

the element from the point of intersection, and therefore the two sections are

proportional to the values of y at the two elements. Hence if pif' is constant,

the particle at the point of intersection will be in equilibrium.

If the edge of the disk is the ellipse whose equation is

i-|-s=« ('')

and if at any point within it

'-|-|=^' (i5).

and if the length of a diameter parallel to the given chord is "Id, then the

value of y for any point of the chord is

y=pd (16).

Hence if p = Cp''~'' (17),

a particle placed at any point of the disk will be in equihbrium under the

action of any pair of sectors formed by chords intersecting at that point, and

therefore it will be absolutely in equilibrium.

When as in the case of electricity, n = 2,

P=Q>" (18).

the known law of distribution of density.

If the repulsion were inversely as the distance, the fluid would be accu-

mulated in the circumference of the disk, leaving the rest entirely empty.

If the force were inversely as the cube of the distance, the density would
be uniform over the surface of the disk.

Lastly, let us consider a solid elHpsoid, the equation of the surface being

and at any point within it let

a- y c-

iC c ^
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At any point of a clwrd drawn parallel to a diameter whose length is 2(7

the value of y is pd.

If v^e consider a double cone of small angular aperture whose vertex is

at a given point, and whose axis is this chord, the sections at two correspond-

ing elements are in the ratio of the squares of the distances of the elements

from the given point, and therefore in the ratio of the values of p" at these

elements. Hence the condition to be satisfied is

pp*-''=C, a constant.

If this condition be fulfilled th^ fluid will be in equilibrium at every point

of the ellipsoid.

Ifn = 2, P=Cp-''

is the condition of equilibrium. But if C is finite the whole mass of the fluid

in the ellipsoid if distributed according to this law of density would be infinite.

Hence if the whole quantity of fluid is finite it must be accumulated entirely

on the surface, and the interior will be entirely empty, as we know already.

If the force is inversely as the fourth power of the distance the density

within the ellipsoid will be uniform.

76—2



[From the Proceedings of the Cambridge Philosophical Society, Vol. iii. 1877.]

LXXXVI. On Approximate Multiple Integration betiOeen Limits by Summation.

It is often desirable to obtain the approximate value of an integral taken

between limits in cases in which, though we can ascertain the value of the

quantity to be integrated for any given values of the variables, we are not

able to express the integral as a mathematical function of the variables.

A method of deducing the result of a single integration between limits

from the values of the quantity corresponding to a series of equidistant values

of the independent variable was invented by Cotes in 1707, and given in his

Lectures in 1709. Newton's tract Methodus Differentialis (see Horsley's edition

of Newton's Works (1779), Vol. i. p. 521) was published in 1711.

Cotes' rules are given in his Opera Miscellanea, edited by Dr Bobert Smith,

and placed at the end of his Harmx)nia Mensurarum. He gives the proper

multipliers for the ordinates up to eleven ordinates, but he gives no details

of the method by which he ascertained the values of these multipliers.

Grauss, in his Methodus nova Integralium Valores per Approximationem

Inveniendi (Gottingische gelehrte Anzeigen, 1814, Sept. 26, or Werke, in. 202)

shews how to calculate Cotes' multipliers, and goes on to investigate the case

in which the values of the independent variable are not supposed to be equi-

distant, but are chosen so as with a given number of values to obtain the

highest degree of approximation.

He finds that by a proper choice of the values of the variable the value

of the integral inay be calculated to the same degree of approximation as would

be obtained by means of double the number of equidistant values.

The equation, the roots of which give the proper values of the variable,

is identical in form with that which gives the zero values of a zonal spherical

harmonic.
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Double Integration.

There is a particular kind of double integration which can be treated in

a somewhat similar manner, namely, when the quantity to be integrated is a

function of a linear function of the two independent variables.

Thus if I=r\udxdy (1),

where m is a fUnction of r, and

r = a + bx + cy (2),

let x-l(x^+ x,) + ^p(xt-x,) (3),

y = i (2/2 + 2/1)4-^9 (y,-2/0 (4),

I=^(x,-x,){y,-y,)
j J

udpdq (5).

If we write

r, = a + ^b(x, + x,) + ^c{y, + y,) (6),

^ = ib(x,-x,) (7),

y = ^c(y,-y,)... (8),

C=^P+yq • (9).

we may consider w as a function of C of the form

u = A, + AX-\-A,C + &^o (10),

j"J ^ydpdq = A, + iA,(p^ + y) + A,(i^ + i^'/ + }Y) + &c....iU).

Now let i(^ be the value of u corresponding to ^ = 0,

Ui and u\ C= ±Ci,

u^ and n\ 1,= ±^2.

and if we assume

l = (x,-x)(y,-y,){R,ii,+ R,{u, + u\) + R,(u, + u\)-\rkc.} (12),

/=(a;,-a;0(y.-2/i){(/«5. + 2i?. + 2/e, + &c.)^ + (2i2,C.* + 2i2,C/ + &c.)^, + &c.}...(l3),
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then since the form of the function u, and therefore the values of the coefficients

A^, Ai, A^, &c. must be considered entirely arbitrary, we may equate the

coefficients of A^, &c. in equations (11) and (13) as follows:

E, + 2R,-\-2R,i-kc. =1 =A,
2R,^,^ + 2RZ^ + &c. = i/3H } / =5,,

2RX,' + 2RJU' + &c. = -1 y8« + yS*/ +^Y + -f / =B„

&c.

If we write S^ for the sum of all the values of ^',

^ for the sum of all products such as t,^, U,

^3 * \ 4l > ta J b3 >

then for r terms

B,Sr - BA.^ + B,Sr. ,- &c. ( - )' B,^, = 0,

B,Sr - B,Sr., + ^A-. - &c. ( - )'• B,^, = 0,

B,^,Sr - ^.+A-x + Br^,Sr., - &C. ( - f B^^, = 0,

a set of r equations, from which the quantities R^, R^ have been eliminated,

and from which we may determine the r quantities S^... S^, and the values

of ^ are then given as the roots of the equation

r - S.C"' + ^.r ~* - &c. ( - )' Sr = 0.

Thus if we have three values of ^ they should be

Co = 0, L=± is^ + lO^y + 3/]^ [5^ + 5/]-^

Ify8 = y=l,

4 = 0, L=±Jh

When the quantity to be integrated is a perfectly general function of the

variables we must proceed in a different manner.
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We may begin as before by transforming the double integral into one

between the limits ± 1 for both variables, so that

I=\'judxd>/ = ^{x,-x,){;j,-l/,)l
J

mljjdq (l).

Let l{iin) denote the sum of the eight values of u corresponding to the

following eight systems of values of j^ and q,

K, W, {cin,-K), (-a„, y, (-a„. -K);

and let us assume that the value of the integral is of the form

I=i(x, - X,) {y, - 2/0{^oSW + i?.S(^0 + &c. + Kt(n:)] (2).

The values of the coefficients R, a and 6 are to be deduced from equations

formed by equating the sum of the terms in p"g^ in this expression with the

integral

0;Wc/m=(^^^t)Wt) <•''•

Only those terms in which both a and ^ are even will require to be

considered, for the symmetrical distribution of the values of p and </ ensures

that the terms in which either a or /8 is odd must disappear.

Also since the expression is symmetrical vAt\v respect to p and q, the

term in p^q^ will give an equation identical with that in p'/.

We may therefore write down the equations at once, leaving out the factor

p^q^ common to each term, but writing it at the side to indicate how the

equation was obtained. There are a + 1 equations in the first group, in which

/3 = 0,

i^/ S[2i2J =4,

p\' tiKip^^^q:)-] =t,
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Tliere are a— 1 equations in the second group, in which /8 = 2,

F-T S [7g„p.V(Pn"-- + g."-0] = (2a- 1) . 3 •

There will be a— 3 equations in which )8 = 4, and so on. Hence if a is

even, the whole number of equations is

If a is odd, the number is

(a+l)(a + 3)

4

To satisfy these equations we have in general, for each group of values

of u, three disposable quantities, R, p and q.

If, however, the central ordinate be selected it will constitute the first

group, and will introduce only one disposable quantity, namely B„.

Also, if ordinates lying on the axes of ^ or of g' be chosen, the groups

so formed contain only two disposable quantities, one of the ordinates being

zero.

Also for ordinates lying on the diagonals, q=p, so that for these also

there are only two disposable quantities.

Thus if a = 3, the number of equations is —^ = 6 ; and if we select the

central ordinate, giving one disposable quantity, a group of four points on the

axes, giving two disposable quantities, and a group of eight points giving

three disposable quantities, we shall be able to satisfy the six equations, and
to form an expression for the integral which will be correct for any function

not exceeding the seventh degree.

We assume

udpdq = Pu,+ Qt(u,^o) + Rt{u^,r) (4).IL
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The equations are

Qp*+2R(q* + r^) =l
Qp' + 2R((f + 7^) =h

2R<fr' = ^,

The solution of these equations gives

p= T6ll> Q=^>

p= ±0-5855571,

q= ±0-9294971,

r= ±0-57969554,

The positions of the thirteen points are given in the annexed figure.
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Thus if we endeavour to determine twenty-seven sets of values of x, y
and z, with a corresponding set of multipliers, so as to express the value of
the triple integral in the form

J ]-] J^^^y^^
= ^^^{^^o + P^{Up) + Q%{u^) + m{u^)} (1),

where u^ denotes the value of u when x = y = z=0;

t(u ) denotes the sum of the six values of u for which

x= ±pa, 0, 0,

y=0, ±pd, 0,

z =0, 0, ±pc

;

t{ug) denotes the sum of the twelve values of u for which

x = 0, ±qa, ±qa,

y = ±qh, 0, ±qb,

^ = ±qc, ±qc, ;

and t{u,) denotes the sum of the eight values of u for which

x= ±ra,

y= ±rb,

z = ±rc,

where the signs may be taken in any order.

The equations to be satisfied in order that equation (1) may be satisfied

for any fiinction of x, y and z of not more than seven dimensions are

+ 6P +12Q+^R =8,

2Pp^+ 8^^+8i2r^ = |,

2Pp* + ^Qq*+%R7^ = ^,

2Pp'+8Qq'-h8Er^ = S.,

iQq*+ 8Er' = i,

iQ^+ 8Rr' = ^,

8Et' =^.
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The solution of these equations gives two systems of values

P.'

9i

First System.

i+(A)*.

', = f[2-(H)'].

Second System.

^ = *[2 + (H)']-
9.



[From the Proceedings of the Cambridge Philosophical Society. Vol, iii. Pt. in.]

LXXXVII. On the Unpublished Electrical Papers of the Hon. Henry Cavendish.

Cavendish published only two papers relating to electricity, "An attempt

to explain some of the principal Phaenomena of Electricity by Means of an

Elastic Fluid" {Phil. Trans. 1771, pp. 584—677), and "An account of some

Attempts to imitate the Effects of the Torpedo by Electricity" (Phil. Trans.

for 1776, pp. 196—225). He left behind him, howevfer, some twenty packets

of manuscript on mathematical and experimental electricity. These were

placed by the then Earl of Burlington, now Duke of Devonshire, in the

hands of the late Sir William Snow Harris, who appears to have made "an

abstract of them with a commentary of great value on their contents." This

was sent to Dr George Wilson when he was preparing hi^ Life of Cavendish

[Works of the Cavendish Society, Vol. i, London, 1851). It was afterwards

returned to Sir W. S. Harris, but I have not been able to learn whether

it is still in existence. The Cavendish manuscripts, however, were placed in

my hands by the Duke of Devonshire in 1874, and they are now almost

ready for publication.

They may be divided into three classes

:

(A) Mathematical propositions, intended to follow those in the paper of

1771, and numbered accordingly. Some of these are important as shewing the

clear ideas of Cavendish with respect to what we now call charge, potential,

and the capacity of a conductor ; but the great improvements in the mathe-

matical treatment of electricity since the time of Cavendish have rendered

others superfluous.

We come next to an account of the experiments on which the mathe-

matical theory was founded. This is a manuscript fully prepared for the press,

and since it refers to the second part of the published paper of 1771 as "the
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second part of this Work," it must have been intended to be published as a

book, along with a reprint of that paper. It contains no dates, but as it

refers to experiments which we know were made in 1773, it must have been

written after that time, but I do not think later than 1775.

It forms a scientifically arranged treatise on electricity. A manuscript entitled

"Thoughts concerning electricity" seems to form a kind of introduction to

this treatise, for it contains several important definitions and hypotheses which

are not afterwards repeated.

Next comes the fundamental experiment, in which it is proved that a

conducting sphere insulated within a hollow conducting sphere does not become

charged when the hollow sphere is charged and the inner sphere is made to

communicate with it.

Cavendish proves that if this is the case, the law of force must be that

of the inverse square, and also that if the index instead of being 2 had

been 2 + ^^^, his method would have detected the charge on the inner sphere.

The experiment has been repeated this summer by Mr MacAlister of St

John's College with a delicate quadrant electrometer capable of detecting a

charge many thousand times smaller than Cavendish could detect by his straw

electrometer, so that w^e may now assert that the index cannot exceed or

fall short of 2 by the millionth of a unit.

The second experiment is a repetition of this, using one parallelopiped within

another instead of the two spheres.

He then describes his apparatus for comparing the charges of different

bodies, or, as we should say, their capacities.

He first shews (Exp. 3) that the charge, communicated to a body con-

nected to another body at a great distance by a fine wire, does not depend

on the form of the wire, or on the point w^here it touches the body.

Exp. 4 is on the capacities of bodies of the same shape and size but of

different substances.

Exp. 5 compares the capacity of two circles with that of another of twice

the diameter.

Exp. 6 compares the capacity of two short wires with that of a long one.

Exp. 7 compares the capacities of bodies of different forms, the most im-

portant of which are a disk and a sphere.

Exp. 8 compares the charge of the middle of three parallel plates with

that of the outer plates
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In the next part of his researches he investigates the capacities of con-

densers formed of plates of different kinds of glass, rosin, wax, shellac, &c.

coated with disks of tinfoil, and also of plates of air between two flat con-

ductors. He finds that the electricity spreads on the surface of the plate

beyond the tinfoil coatings, and he investigates most carefully the extent of

this spreading, and how it depends on the strength of the electrification.

After correcting for the spreading, he finds that for coated plates of the

same substance the observed capacity is proportional to the computed capacity,

but it is always several times greater than the computed capacity, except in

the case of plates of air. Cavendish thus anticipated Faraday in the discovery

of the specific inductive capacity of dielectrics, and in the measurement of

this quantity for different substances.

For these experiments Cavendish constructed a large number of coated

plates with capacities so arranged that by combining them he could measure

the capacity of any conductor from a sphere 12"1 inches diameter to his large

battery of 49 Leyden jars. He expressed the capacity of any conductor in

what he calls ''inches of electricity," that is to say the diameter of a sphere

of equal capacity expressed in inches.

The details and dates of the experiments referred to in this work are

contained in three volumes of experiments in the years 1771, 1772 and 1773,

in a separate collection of ''Measurements'' and in a paper entitled '^ Results,''

in which the experiments of difierent days are compared together. Besides these

there are experiments of other kinds which are not described in the treatise.

The most important of these experiments are those on the electric re-

sistance of different substances, which were continued to the year 1781.

He compares the resistance of solutions of sea salt of various strengths

from saturation to 1 in 20000, and measures the diminution of resistance as

the temperature rises. He also compares the resistance of solutions of sea salt

with that of solutions containing chemical equivalents of other salts in the

same quantity of water. He finds the resistance of distilled water to be very

great, and much greater for fresh distilled water than for distilled water kept

for some time in a glass bottle.

I have compared Cavendish's results with those recently obtained by

Kohlrausch, and find them all within 10 per cent, and many much nearer.

Cavendish also investigates the relation between the resistance and the

velocity of the current, and finds the power of the velocity to be by dif-
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ferent experiments r08, 1*03, 0*970 and 1, and he finally concludes that

the resistancfc is as the first power of the velocity, thus anticipating Ohm'H

Law,

The general accuracy of these results is the more remarkable when we

consider the method by which they were obtained, forty years before the

invention of the galvanometer.

Every comparison of two resistances was made by Cavendish by connecting

one end of each resistance-tube with the external coatings of a set of equally

charged Leyden jars and touching the jars in succession with a piece of metal

held in one hand, while with a piece of metal in the other hand he touched

alternately the ends of the two resistances. He thus compared the sensation

of the shock felt when the one or the other resistance in addition to the

resistance of his body was placed in the path of the discharge. His results

therefore are derived from the comparison of the sensations produced by an

enormous number of shocks passed through his own body.

The skill which he thus acquired in the discrimination of shocks was so

gi-eat that he is probably accurate even when he tells us that the shock

when taken through a long thin copper wire wound on a large reel was

sensibly greater than when taken direct. The experiment is certainly worth

repeating, to determine whether the intensification of the physiological effect

on account of the oscillatory character of the discharge through a coil would

in any case compensate for the weakening effect of the resistance of the coil.

But I have not hitherto succeeded in obtaining this result. Indeed on com-

paring the shock through two coils of equal resistance, one of w^hich had far

more self-induction than the other, I found the shock sensibly feebler through

the coil of large self-induction.



[From the Encydopoedia Bntannica.]

LXXXVIII. Constitution of Bodies.

The question whether the smallest parts of which bodies are composed are

rinite in number, or whether, on the other hand, bodies are infinitely divisible,

relates to the ultimate constitution of bodies, and is treated of in the article

Atom.

The mode in which elementary substances combine to form compound sub-

stances is called the chemical constitution of bodies, and is treated of in

Chemistry.

The mode in which sensible quantities of matter, whether elementary or

compound, are aggregated together so as to form a mass having certain observed

properties, is called the physical constitution of bodies.

Bodies may be classed in relation to their physical constitution by con-

sidering the effects of internal stress in changing their dimensions. When a

body can exist in equilibrium under the action of a stress which is not uniform

in all directions it is said to be solid.

When a body is such that it cannot be in equilibrium unless the stress

at every, point is uniform in all directions, it is said to be fluid.

There are certain fluids, any portion of which, however small, is capable

of expanding indefinitely, so as to fill any vessel, however large. These are

called gases. There are other flmds, a small portion of which, when placed in

a large vessel, does not at once expand so as to fill the vessel uniformly, but

remains in a collected mass at the bottom, even when the pressure is removed.

These fluids are called liquids.

When a liquid is placed in a vessel so large that it only occupies a

part of it, part of the liquid begins to evaporate, or in other words it passes

into the state of a gas, and this process goes on either tiQ the whole of the

liquid is evaporated, or till the density of the gaseous part of the substance
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has reached a certain limit. The liquid and the gaseous portions of the sub-

stance are then in equilibrium. If the volume of the vessel be now made

smaller, part of the gas will be condensed as a liquid, and if it be made larger,

part of the liquid will be evaporated as a gas.

The processes of evaporation and condensation, by which the substance

passes from the liquid to the gaseous, and from the gaseous to the liquid state,

are discontinuous processes, that is to say, the properties of the substance are

very different just before and just after the change has been effected. But this

difference is less in all respects the higher the temperature at which the change

takes place, and Cagniard de la Tour in 1822* first shewed that several sub-

stances, such as ether, alcohol, bisulphide of carbon, and water, when heated

to a temperature sufficiently high, pass into a state which difiers from the

ordinary gaseous state as much as from the liquid state. Dr Andrews has

since t made a complete investigation of the properties of carbonic acid both

below and above the temperature at which the phenomena of condensation and

evaporation cease to take place, and has thus explored as well as established

the continuity of the liquid and gaseous states of matter.

For carbonic acid at a temperature, say of 0' C, and at the ordinary pressure

of the atmosphere, is a gas. If the gas be compressed tiU the pressure rises

to about 40 atmospheres, condensation takes place, that is to say, the substance

passes in successive portions from the gaseous to the liquid condition.

If we examine the substance when part of it is condensed, we find that

the liquid carbonic acid at the bottom of the vessel has all the properties of

a liquid, and is separated by a distinct surface from the gaseous carbonic acid

which occupies the upper part of the vessel.

But we may transform gaseous carbonic acid at 0*" C. into liquid carbonic

acid at 0" C without any abrupt change, by first raising the temperature of

the gas above 30".92 C. which is the critical temperature, then raising the

pressure to about 80 atmospheres, and then cooling the substance, still at high

pressure, to zero.

During the whole of this process the substance remains perfectly homo-

geneous. There is no surface of separation between two forms of the substance,

nor can any sudden change be observed like that which takes place when the

gas is condensed into a liquid at low temperatures ; but at the end of the

* Annates de Chimie, 2'°' s^rie, xxi. et xxii.

t Phil. Tram. 1869, p. 575.

VOL. n. 78
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process the substance is undoubtedly in the liquid state, for if we now diminish

the pressure to somewhat less than 40 atmospheres the substance will exhibit

the ordinary distinction between the liquid and the gaseous state, that is to

say, part of it will evaporate, leaving the rest at the bottom of the vessel,

with a distinct surface of separation between the gaseous and the liquid parts.

The passage of a substance between the liquid and the solid state takes place

with various degrees of abruptness. Some substances, such as some of the more

crystalline metals, seem to pass from a completely fluid to a completely solid

state very suddenly. In some cases the melted matter appears to become

thicker before it solidifies, but this may arise from a multitude of solid crystals

being formed in the still liquid mass, so that the consistency of the mass be-

comes like that of a mixture of sand and water, till the melted matter in

which the crystals are swimming becomes all solid.

There are other substances, most of them colloidal, such that when the

melted substance cools it becomes more and more viscous, passing into the

solid state with hardly any discontinuity. This is the case with pitch.

The theory of the consistency of solid bodies will be discussed in the article

Elasticity, but the manner in which a solid behaves when acted on by

stress furnishes us with a system of names of different degrees and kinds of

solidity.

A fluid, as we have seen, can support a stress only when it is uniform in

all directions, that is to say, when it is of the nature of a hydrostatic pressure.

There are a great many substances which so far correspond to this defini-

tion of a fluid that they cannot remain in permanent equilibrium if the stress

within them is not uniform in all directions.

In all existing fluids, however, when their motion is such that the shape

of any small portion is continually changing, the internal stress is not uniform

in all directions, but is of such a kind as to tend to check the relative motion

of the parts of the fluid.

This capacity of having inequality of stress called into play by inequality

of motion is called viscosity. All real fluids are viscous, from treacle and tar

to water and ether and air and hydrogen.

When the viscosity is very small the fluid is said to be mobile, like water

and ether.

When the viscosity is so great that a considerable inequality of stress,

though it produces a continuously increasing displacement, produces it so slowly
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that we can hardly see it, we are often inclined to call the substance a solid,

and even a hard solid. Thus the viscosity of cold pitch or of asphalt is so

great that the substance will break rather than yield to any sudden blow, and

yet if it is left for a sufficient time it will be found unable to remain in

equilibrium under the slight inequality of stress produced by its own weight,

but will flow like a fluid till its surface becomes level.

If, therefore, we define a fluid as a substance which cannot remain in

permanent equilibrium under a stress not equal in all directions, we must call

these substances fluids, though they are so viscous that we can walk on them

without leaving any footprints.

If a body, after having its form altered by the application of stress, tends

to recover its original form when the stress is removed, the body is said to

be elastic.

The ratio of the numerical value of the stress to the numerical value of

the strain produced by it is called the coefficient of elasticity, and the ratio of

the strain to the stress is caUed the coefficient of pliability.

There are as many kinds of these coefficients as there are kinds of stress

and of strains or components of strains produced by them.

If, then, the values of the coefficients of elasticity were to increase without

limit, the body would approximate to the condition of a rigid body.

We may form an elastic body of great pliability by dissolving gelatine or

isinglass in hot water and allowing the solution to cool into a jelly. By
diminishing the proportion of gelatine the coefficient of elasticity of the jelly

may be diminished, so that a very small force is required to produce a large

change of form in the substance.

When the deformation of an elastic body is pushed beyond certain limits

depending on the nature of the substance, it is found that when the stress

is removed it does not return exactly to its original shape, but remains per-

manently deformed. These limits of the different kinds of strain are called the

limits of perfect elasticity.

There are other limits which may be called the limits of cohesion or of

tenacity, such that when the deformation of the body reaches these limits the

body breaks, tears asunder, or otherwise gives way, and the continuity of its

substance is destroyed.

A body which can have its form permanently changed without any flaA\-

or break taking place is called mild. When the force required is small the

78—2
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body is said to be soft ; when it is great the body is said to be tough. A
body which becomes flawed or broken before it can be permanently deformed

is called brittle. When the force required is great the body is said to be

hard.

The stiffness of a body is measured by the force required to produce a

given amount of deformation.

Its strength is measured by the force required to break or crush it.

We may conceive a solid body to approximate to the condition of a fluid

in several different ways.

If we knead fine clay with water, the more water we add the softer does

the mixture become till at last we have water with particles of clay slowly

subsiding through it. This is an instance of a mechanical mixture the con-

stituents of which separate of themselves. But if we mix bees-wax with oil,

or rosin with turpentine, we may form permanent mixtures of all degrees of

softness, and so pass from the solid to the fluid state through all degrees of

viscosity.

We may also begin with an elastic and somewhat brittle substance like

gelatine, and add more and more water till we form a very weak jelly which

opposes a very feeble resistance to the motion of a solid body, such as a spoon,

through it. But even such a weak jelly may not be a true fluid, for it may

be able to withstand a very small force, such as the weight of a small mote.

If a small mote or seed is enclosed in the jelly, and if its specific gravity is

different from that of the jelly, it wiU tend to rise to the top or sink to the

bottom. If it does not do so we conclude that the jelly is not a fluid but

a solid body, very weak, indeed, but able to sustain the force with which the

mote tends to move.

It appears, therefore, that the passage from the solid to the fluid state

may be conceived to take place by the diminution without limit either of the

coefficient of rigidity, or of the ultimate strength against rupture, as well as

by the diminution of the viscosity. But whereas the body is not a true fluid

till the ultimate strength, or the coefficient of rigidity, is reduced to zero, it

is not a true solid as long as the viscosity is not infinite.

Solids, however, which are not viscous in the sense of being capable of

an unlimited amount of change of form, are yet subject to alterations depend-

ing on the time during which stress has acted on them. In other words, the

stress at any given instant depends, not only on the strain at that instant,
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but on the previous history of the body. Thus tlie stress is somewhat greater

when the strain is increasing than when it is diminishing, and if the strain

is continued for a long time, the body, when left to itself, does not at once

return to its original shape, but appears to have taken a set, which, however,

is not a permanent set, for the body slowly creeps back towards its original

shape with a motion which may be observed to go on for hours and even

weeks after the body is left to itself.

Phenomena of this kind were pointed out by Weber and Kohlrausch {Po(j(j.

Ann. Bd. 54, 119 and 128), and have been described by 0. E. Meyer (Po(j(j.

Ann. Bd. 131, 108), and by Maxwell {Phil. Trans. 1866, p. 249), and a theory

of the phenomena has been proposed by Dr L. Boltzmann {Wiener Sitzung.s-

herichte, 8th October 1874).

The German writers refer to the phenomena by the name of " elastische

Nachwirkung," which might be translated "elastic reaction" if the word reaction

were not already used in a different sense. Sir W. Thomson speaks of the

viscosity of elastic bodies.

The phenomena are most easily observed by tw^isting a fine wdre suspended

from a fixed support, and having a small mirror suspended from the lower end,

the position of which can be observed in the usual way by means of a tele-

scope and scale. If the lower end of the wire is turned round through an

angle not too great, and then left to itself, the mirror makes oscillations, the

extent of which may be read off on the scale. These oscillations decay mucli

more rapidly than if the only retarding force were the resistance of the air,

shewing that the force of torsion in the wire must be greater when the twist

is increasing than when it is diminishing. This is the phenomenon described

by Sir W. Thomson under the name of the viscosity of elastic solids. But

we may also ascertain the middle point of these oscillations, or the point of

temporary equilibrium when the oscillations have subsided, and trace the varia-

tions of its position.

If we begin by keeping the wire twisted, say for a minute or an hour,

and then leave it to itself, we find that the point of temporary equilibrium is

displaced in the direction of twisting, and that this displacement is greater the

longer the wire has been kept twisted. But this displacement of the point of

equilibrium is not of the nature of a permanent set, for the wire, if left to

itself, creeps back towards its original position, but always slower and slower.

This slow motion has been observed by the writer going on for more than a
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week, and he also found that if the wire was set in vibration the motion of

the point of equilibrium was more rapid than when the wire was not in vibration.

We may produce a very complicated series of motions of the lower end

of the wire by previously subjecting the wire to a series of twists. For in-

stance, we may first twist it in the positive direction, and keep it twisted for

a day, then in the negative direction for an hour, and then in the positive

direction for a minute. When the wire is left to itself the displacement, at

first positive, becomes negative in a few seconds, and this negative displacement

increases for some time. It then diminishes, and the displacement becomes

positive, and lasts a longer time, till it too finally dies away.

The phenomena are in some respects analogous to the variations of the

surface temperature of a very large ball of iron which has been heated in a

furnace for a day, then placed in melting ice for an hour, then in boiling

water for a minute, and then exposed to the air ; but a still more perfect

analogy may be found in the variations of potential of a Leyden jar which

has been charged positively for a day, negatively for an hour, and positively

again for a minute*.

The efiects of successive magnetization on iron and steel are also in many
respects analogous to those of strain and electrificationf.

The method proposed by Boltzmann for representing such phenomena mathe-

matically is to express the actual stress, i;^„ in terms not only of the actual

strain, ^(^j, but of the strains to which the body has been subjected during

all previous tune.

His equation is of the form

L,= Kd^-{ xIj(co)0,.

where o is the interval of time reckoned backwards from the actual time t to

the time t-o), when the strain df.^ existed, and xjj {(o) is some function of

that interval.

We may describe this method of deducing the actual state from the pre-

vious states as the historical method, because it involves a knowledge of the

previous history of the body. But this method may be transformed into another,

* See Dr Hopkinson, "On tlie Residual Charge of the Leyden Jar," Proc. R. S. xxiv 408
March 30, 1876.

t See Wiedemann's Galvaniamus, vol. ii. p. 567.
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in which the present state is not regarded as influenced by any state whicli

has ceased to exist. For if we expand ^^_„ by Taylor's theorem,

and if we also write

A=\ xp {(o) d(t), ^= \ ^^ (w) f^^j ^= T~^ ^ (<^) <^(^, &C.
Jo jo j 1 •

'-^

then equation (l) becomes

where no symbols of time are subscribed, because all the quantities refer to

the present time.

This expression of Boltzmann's, however, is not in any sense a physical

theory of the phenomena ; it is merely a mathematical formula w^hicli, though

it represents some of the observed phenomena, fails to express the phenomenon

of permanent deformation. Now we know that several substances, such as

gutta-percha. India-rubber, &c., may be permanently stretched when cold, and

yet when afterwards heated to a certain temperature they recover their original

form. Gelatine also may be dried when in a state of strain, and may recover

its form by absorbing water.

We know that the molecules of all bodies are in motion. In gases and

liquids the motion is such that there is nothing to prevent any molecule from

passing from any part of the mass to any other part ; but in solids we must

suppose that some, at least, of the molecules merely oscillate about a certain

mean position, so that, if we consider a certain group of molecules, its con-

figuration is never very different from a certain stable configuration, about which

it oscillates.

This will be the case even when the solid is in a state of strain, pro-

vided the amplitude of the oscillations does not exceed a certain limit, but if

it exceeds this limit the group does not tend to return to its former configu-

ration, but begins to oscillate about a new configuration of stability, the strain

in which is either zero, or at least less than in the orio-inal conficruration.

The condition of this breaking up of a configuration must depend partly

on the amplitude of the oscillations, and partly on the amount of strain in

the original configuration ; and we may suppose that different groups of mole-
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cules, even in a homogeneous solid, are not in similar circumstances in this

respect.

Thus we may suppose that in a certain number of groups the ordinarj^

agitation of the molecules is liable to accumulate so much that every now and

then the configuration of one of the groups breaks up, and this whether it is

in a state of strain or not. We may in this case assume that in every second

a certain proportion of these groups break up, and assume configurations cor-

responding to a strain uniform in all directions.

If all the groups were of this kind, the medium would be a viscous fluid.

But we may suppose that there are other groups, the configuration of which

is so stable that they will not break up under the ordinary agitation of the

molecules unless the average strain exceeds a certain limit, and this limit may

be different for different systems of these groups.

Now if such groups of greater stability are disseminated through the sub-

stance in such abundance as to build up a solid framework, the substance will

be a solid, which will not be permanently deformed except by a stress greater

than a certain given stress.

But if the solid also contains groups of smaller stability and also groups

of the first kind which break up of themselves, then when a strain is applied

the resistance to it will gradually diminish as the groups of the first kind

break up, and this will go on till the stress is reduced to that due to the

more permanent groups. If the body is now left to itself, it will not at once

return to its original form, but will only do so when the groups of the first

kind have broken up so often as to get back to their original state of strain.

This view of the constitution of a solid, as consisting of groups of mole-

cules some of which are in different circumstances from others, also helps to

explain the state of the solid after a permanent deformation has been given

to it. In this case some of the less stable groups have broken up and assumed

new configurations, but it is quite possible that others, more stable, may still

retain their original configurations, so that the form of the body is determined

by the equihbrium between these two sets of groups ; but if, on account of

rise of temperature, increase of moisture, violent vibration, or any other cause,

the breaking up of the less stable groups is facilitated, the more stable groups

may again assert their sway, and tend to restore the body to the shape it

had before its deformation.



[From the Encr/clopcedia Brttannica.]

LXXXIX. Diffusion.

Some liquids, such as mercury and water, when placed in contact with

each other do not mix at all, but the surface of separation remains distinct,

and exhibits the phenomena described under Capillary Action. Other pairs

of liquids, such as chloroform and water, mix, but only in certain proportions.

The chloroform takes up a little water, and the water a little chloroform;

but the two mixed liquids will not mix with each other, but remain in con-

tact separated by a surface shewing capillary phenomena. The two hquids are

then in a state of equiUbrium with each other. The conditions of the equi-

librium of heterogeneous substances have been investigated by Professor J.

Willard Gibbs in a series of papers published in the Transactions of the Con-

necticut Academy of Arts and Sciences, Vol. in. part i. p. 108. Other pairs

of liquids, and all gases, mix in all proportions.

When two fluids are capable of being mixed, they cannot remain in equi-

librium with each other; if they are placed in contact with each other the

process of mixture begins of itself, and goes on till the state of equihbrium

is attained, which, in the case of fluids which mix in all proportions, is a

state of uniform mixture.

This process of mixture is called difiusion. It may be easily observed by

taking a glass jar half full of water and pouring a strong solution of a

coloured salt, such as sulphate of copper, through a long-stemmed funnel, so

as to occupy the lower part of the jar. If the jar is not disturbed we may

trace the process of dififusion for weeks, months, or years, by the gradual rise

of the colour into the upper part of the jar, and the weakening of the colour

in the lower part.

This, however, is not a method capable of giving accurate measurements

of the composition of the Hquid at difierent depths in the vessel. For more

VOL. II. 79
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exact determinations we may draw off a portion from a given stratum of the

mixed liquid, and determine its composition either by chemical methods or by
its specific gravity, or any other property from which its composition may be

deduced.

But as the act of removing a portion of the fluid interferes with the

process of diffusion, it is desirable to be able to ascertain the composition of

any stratum of the mixture without removing it from the vessel. For this

purpose Sir W. Thomson places in the jar a number of glass beads of different

densities, which indicate the densities of the strata in which they are observed

to float. The principal objection to this method is, that if the liquids contain

air or any other gas, bubbles are apt to form on the glass beads, so as to

make them float in a stratum of less density than that marked on them.

M. Voit has observed the diffusion of cane-sugar in water by passing a

ray of plane-polarized light horizontally through the vessel, and determining

the angle through which the plane of polarization is turned by the solution

of sugar. This method is of course appHcable only to those substances which

cause rotation of the plane of polarized light.

Another method is to place the diffusing liquids in a hollow glass prism,

with its refracting edge vertical, and to determine the deviation of a ray of

light passing through the prism at different depths. The ray is bent down-
wards on account of the variable density of the mixture, as well as towards
the thicker part of the prism; but by making it pass as near the edge of

the prism as possible, the vertical component of the refraction may be made
very small; and by placing the prism within a vessel of water having parallel

sides of glass, we can get rid of the constant part of the deviation, and are

able to use a prism of large angle, so as to increase the part due to the

diffusing substance. At the same time we can more easily control and register

the temperature.

The laws of diffusion were first investigated by Graham. The diffusion of

gases has recently been observed with great accuracy by Loschmidt, and that

of liquids by Fick and by Voit.

Diffusion as a Molecular Motion.

If we observe the process of diffusion with our most powerful microscopes,

we cannot follow the motion of any individual portions of the fluids. We
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cannot point out one place in which the lower fluid is ascending, and another

in which the upper fluid is descending. There are no currents visible to us,

and the motion of the material substances goes on as imperceptibly as the

conduction of heat or of electricity. Hence the motion which constitutes dif-

fusion must be distinguished from those motions of fluids which we can trax^e

by means of floating motes. It may be described as a motion of the fluids,

not in mass but by molecules.

When we reason upon the hypothesis that a fluid is a continuous homo-

geneous substance, it is comparatively easy to define its density and velocity;

but when we admit that it may consist of molecules of different kinds, we

must revise our definitions. We therefore define these quantities by considering

that part of the medium which at a given instant is within a certain small

region surrounding a given point. This region must be so small that the

properties of the medium as a whole are sensibly the same throughout the

region, and yet it must be so large as to include a large number of mole-

cides. We then define the density of the medium at the given point as the

mass of the medium within this region divided by its volume, and the

velocity of the medium as the momentum of this portion of the medium

divided by its mass.

If we consider the motion of the medium relative to an imaginary surface

supposed to exist within the region occupied by the medium, and if we define

the flow of the medium through the surface as the mass of the medium

which in unit of time passes through unit of area of the surface, then it

follows from the above definitions that the velocity of the medium resolved

in the direction of the normal to the surface is equal to the flow divided by

the density. If we suppose the surface itself to move with the same velo-

city as the fluid, and in the same direction, there will be no flow through it.

Having thus defined the density, velocity, and flow of the medium as a

whole, or, as it is sometimes expressed, "in mass," we may now consider one

of the fluids which constitute the medium, and define its density, velocity,

and flow in the same way. The velocity of this fluid may be different from

that of the medium in mass, and its velocity relative to that of the medium

is the velocity of diffusion which we have to study.
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Diffusion of Gases according to the Kinetic TheorTj.

So many of the phenomena of gases are found to be explained in a con-

sistent manner by the kinetic theory of gases, that we may describe with

considerable probability of correctness the kind of moti^in which constitutes

diffusion in gases. We shall therefore consider gaseous diffusion in the light

of the kinetic theory before we consider diffusion in liquids.

A gas, according to the kinetic theory, is a collection of particles or mole-

cules which are in rapid motion, and which, when they encounter each other,

behave pretty much as elastic bodies, such as billiard balls, would do if no

energy were lost in their collisions. Each molecule travels but a very small

distance between one encounter and another, so that it is every now and then

altering its velocity both in direction and magnitude, and that in an exceed-

ingly irregular manner.

The result is that the velocity of any molecule may be considered as com-

pounded of two velocities, one of which, called the velocity of the medium,

is the same for all the molecules, while the other, called the velocity of agi-

tation, is irregular both in magnitude and in direction, though the average

magnitude of the velocity may be calculated, and any one direction is just as

likely as any other.

The result of this motion is, that if in any part of the medium the

molecules are more numerous than in a neighbouring region, more molecules

will pass from the first region to the second than in the reverse direction,

and for this reason the density of the gas will tend to become equal in all

parts of the vessel containing it, except in so far as the molecules may be

crowded towards one direction by the action of an external force such as

gravity. Since the motion of the molecules is very swift, the process of

equalization of density in a gas is a very rapid one, its velocity of propaga-

tion through the gas being that of sound.

Let us now consider two gases in the same vessel, the proportion of the

gases being different in different parts of the vessel, but the pressure being

everywhere the same. The agitation of the molecules will still cause more

molecules of the first gas to pass from places where that gas is dense to

places where it is rare than in the opposite direction, but since the second

gas is dense where the first one is rare, its molecules will be for the most

part travelling in the opposite direction. Hence the molecules of the two
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gases will encounter each other, and every encounter will act as a check to

the process of equalization of the density of each gas throughout the mixture.

The interdiffusion of two gases in a vessel is therefore a much slower

process than that by which the density of a single gas becomes equalized,

though it appears from the theory that the final result is the same, and that

each gas is distributed through the vessel in precisely the same way as if no

other gas had been present, and this even when we take into account the

effect of gravity.

If we apply the ordinary language about fluids to a single gas of the

mixture, we may distinguish the forces which act on an element of volume

as follows :

—

1st. Any external force, such as gravity or electricity.

2nd. The difference of the pressure of the j^cirticidar gas on opposite sides

of the element of volume. [The pressure due to other gases is to be con-

sidered of no account.]

3rd. The resistance arising from the percolation of the gas through the

other gases which are moving with different velocity.

The resistance due to encounters with the molecules of any other gas is

proportional to the velocity of the first gas relative to the second, to the

product of their densities, and to a coefficient which depends on the nature

of the gases and on the temperature. The equations of motion of one gas of

a mixture are therefore of the form

Pi -^' + -£^ - X,p, + C,.ji,p.lu, - u,) + C,,p,plii, - u.;) + &c. = 0,

g
where the symbol of operation ^ prefixed to any quantity denotes the time-

variation of that quantity at a point which moves along with that medium

which is distinguished by the suffix d), or more explicitly

h, _d d d d

ht dt \lx ^dy ^dz'

In the state of ultimate equilibrium ?/, = w, = &c. = 0, and the equation is

reduced to

which Is the ordinary form of the equations of equilibrium of a single fluid.
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Hence, when the process of diffusion is complete, the density of each gas at

any point of the vessel is the same as if no other gas were present.

If Fi is the potential of the force which acts on the gas, and if in the

equation 2^i
= kpi, Jc, is constant, as it is when the temperature is uniform,

then the equation of equiUbrium .b^CDmes

dp, dV, ^^

the solution of which is

Hence if, as in the case of gravity, V is the same for all gases, but k is

different for different gases, the composition of the mixture will be different

in different parts of the vessel, the proportion of the heavier gases, for which

k is smaller, being greater at the bottom of the vessel than at the top. It

would be difficult, however, to obtain experimental evidence of this difference

of composition except in a vessel more than 100 metres high, and it would

be necessary to keep the vessel free from inequalities of temperature for more

than a year, in order to allow the process of diffusion to advance to a state

even half-way towards that of ultimate equilibrium. The experiment might,

however, be made in a few minutes by placing a tube, say 10 centimetres

long, on a w-hirling apparatus, so that one end shall be close to the axis,

while the other is moving at the rate, say, of 50 metres per second. Thus

if equal volumes of hydrogen and carbonic acid were used, the proportion of

hydrogen to carbonic acid would be about ^h greater at the end of the tube

nearest the axis. The experimental verification of the result is important, as

it establishes a method of effecting the partial separation of gases without the

selective action of chemical agents.

Let us next consider the case of diffusion in a vertical cylinder. Let m,

be the mass of the first gas in a column of unit area extending from the

bottom of the vessel to the height x, and let i\ be the volume which this

mass would occupy at unit pressure, then

kimi = v,,

dm, dm,

dv, dv,

P' = dx- P'^'^-dt-
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and the equation of motion becomes

_1

h dx

I (d\ dv,' _d^,dv,'\ d\ _ X dv,

ydx" dt dt- dx J daf k^ dx

+
C,2 fdv^ dv^ di\ di\

kjc\dt dx dt dx
+ &c. = 0.

If ^ve add the correspondmg equations together for all the gases, we find

that the terms in Cu destroy each other, and that if the medium is not

affected with sensible currents the first term of each equation may be neg-

lected. In ordinary experiments we may also neglect the effect of gravity, so

that we get

or v^-\-v.,=px,

where p is the uniform pressure of the mixed medium.

dv^ dvi J

and the equation becomes

Hence

dv^

dx P
dvi

dx

d\ _ (7,2 dvj^

d3^~ kjc„^ dt
'

an equation, the form of which is identical with the well-known equation for

the conduction of heat. We may write it

(ivi _ j^ d\
dt ~ dx^

'

D is called the coefficient of diffusion. It is equal to

It therefore varies inversely as the total pressure of the medium, and if the

coefficient of resistance, C^^, is independent of the temperature, it varies directly

as the product kjc.,, i.e., as the square of the absolute temperature. It is

probable, however, that the effect of temperature is not so great as this would

make it.
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In liquids D probably depends on the proportion of the ingredients of the

mixed medium as well as on the temperature. The dimensions of D are DT~\

where L is the unit of length and T the unit of time.

The values of the coefficients of diffusion of several pairs of gases have

been determined by Loschmidt'"'. They are referred in the following table to

the centimetre and the second as units, for the temperature 0"C. and the

pressure of 76 centimetres of mercury.

Carbonic acid and air

Carbonic acid and hydrogen

Oxygen and hydrogen

Carbonic acid and oxygen .

Carbonic acid and carbonic oxide

Carbonic acid and marsh gas

Carbonic acid and nitrous oxide

Sulphurous acid and hydrogen

Oxygen and carbonic oxide

Carbonic oxide and hydrogen
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The coeflBcient of Interdiffusion of two liquids must therefore be considered

as depending on all the physical properties of the mxiture according to laws

which can be ascertained only by experiment.

Thus Fick has determined the coefficient of diffusion for common salt in

water to be O'OOOOOllG, and Voit has found that of cane-sugar to be

0-00000365.

It appears from these numbers that in a vessel of the same size the

process of diffusion of liquids requires a greater number of days to reach a

given stage than the process of diffusion of gases in the same vessel requires

seconds.

When we wish to mix two liquids, it is not sufficient to place them in

the same vessel, for if the vessel is, say, a metre in depth, the lighter liquid

will lie above the denser, and it will be many years before the mixture

becomes even sensibly uniform. We therefore stir the two liquids together,

that is to say, we move a solid body through the vessel, first one way, then

another, so as to make the liquid contents eddy about in as complicated a

manner as possible. The effect of this is that the t\vo liquids, which originally

formed two thick horizontal layers, one above the other, are now disposed in

thin and excessively convoluted strata, which, if they could be spread out,

would cover an immense area. The effect of the stirring is thus to increase

the area over w^hich the process of diffusion can go on, and to diminish the

distance between the diffusing liquids ; and since the time required for diffusion

varies as the square of the thickness of the layers, it is evident that by a

moderate amount of stirring the process of mixture which would otherwise

require years may be completed in a few seconds. That the process is not

instantaneous is easily ascertained by observing that for some time after the

stirring the mixture appears full of streaks, which cause it to lose its trans-

parency. This arises from the different indices of refraction of different portions

of the mixture which have been brought near each other by stirring. The

surfaces of separation are so drawn out and convoluted, that the whole mass

has a woolly appearance, for no ray of light can pass through it without being

turned many times out of its path.

Graham observed that the diffusion both of liquids and gases takes place

through porous solid bodies, such as plugs of plaster of Paris or plates of

pressed plumbago, at a rate not very much less than when no such body is

interposed, and this even when the solid partition is amply sufficient to check
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all ordinary currents, and even to sustain a considerable difference of pressure

on its opposite sides.

But there is another class of cases in which a liquid or a gas can pass

through a diaphragm, which is not, in the ordinary sense, porous. For instance,

when carbonic acid gas is confined in a soap bubble it rapidly escapes. The

gas is absorbed at the inner surface of the bubble, and forms a solution of

carbonic acid in water. This solution diffuses from the inner surface of the

bubble, where it is strongest, to the outer surface, where it is in contact

with air, and the carbonic acid evaporates and diffuses out into the atmosphere.

It is also found that hydrogen and other gases can pass through a layer of

caoutchouc. Graham shewed that it is not through pores, in the ordinary

sense, that the motion takes place, for the ratios are determined by the

chemical relations between the gases and the caoutchouc, or the liquid film.

According to Graham's theory, the Caoutchouc is a colloid substance,—that

is, one which is capable of combining, in a temporary and very loose manner,

with indeterminate proportions of certain other substances, just as glue will

form a jelly with various proportions of water. Another class of substances,

which Graham called crystalloid, are distinguished from these by being always

of definite composition, and not adtaitting of these temporary associations.

When a colloid body has in different parts of its mass different proportions

of water, alcohol, or solutions of crystalloid bodies^ diffusion takes place through

the colloid body, though no part of it can be shewn to be in the liquid state.

On the other hand, a solution of a colloid substance is almost incapable

of diffusion through a poroUs solid, or another colloid body. Thus, if a solu-

tion of gum and salt in water is placed in contact with a solid jelly of gelatine

and alcohol, alcohol will be diffusi^d into the gum, and salt and water will

be diffused into the gelatine, but the gum and the gelatine will not diffuse

into each other.

There are certain metals whose relations to certain gases Grallam explained

by this theory. For instance, hydrogen can be made to pass through iron and

palladium at a high temperature, and carbonic oxide can be made to pass

through iron. The gases form colloidal unions with the metals, and are diffused

through them as water is diffused through a jelly. Root has lately found

that hydrogen can pass through platinum, even at ordinary temperatures.

By taking advantage of the different velocities with which different liquids

and gases pass through parchment-paper and other solid bodies, Graham was
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enabled to effect many remarkable analyses. He called this method the method

of Dialysis.

Diffusion and Evaporation, Condensation, Solution, and Absorption.

The rate of evaporation of liquids is determined principally by the rate

of diflusion of the vapour through the air or other gas which lies above the

liquid Indeed, the coefficient of diffusion of the vapour of a liquid through

air can be determined in a rough but easy manner by placing a little of the

liquid in a test tube, and observing the rat« at which its weight diminishes

by evaporation day by day. For at the surface of the liquid the density of

the vapour is that corresponding to the temperature, whereas at the mouth

of the test tube the air is nearly pure. Hence, if p be the pressure of the

vapour corresponding to the temperature, and p = kp, and if m be the mass

evaporated in time t, and diffused into the air through a distance A*, then

This method is not, of course, applicable to vapours which are rarer than

the superincumbent gas.

The solution of a salt in a liquid goes on in the same way, and so does

the absorption of a gas by a liquid.

These processes are all accelerated by currents, for the reason already ex-

plained.

The processes of evaporation and condensation go on much more rapidly when

no air or other non-condensible gas is present. Hence the importance of the

air-pump in the steam engine.

Relation hetwcen Diffusion of Mattt^r and Diffusion of Heat.

The same motion of agitation of the molecules of gases which causes two

gases to diffuse through each other also causes two portions of the same gas

to diffuse through each other, although we cannot observe this kind of diffusion,

because we cannot distinguish the molecules of one portion from those of the

h hhould be taken eqnal to the height of the tube above the surface of the liquid, together

with about f of the diameter of the tube.—See Clerk Maxwell's Electricity, Art. 309.
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other when they are once mixed. If, however, the molecules of one portion

have any property whereby they can be distinguished from those of the other,

then that property will be communicated from one part of the medium to an

adjoining part, and that either by convection—that is by the molecules them-

selves passing out of one part into the other, carrying the property with

them—or by transmission—that is by the property being communicated from

one molecule to another during their encounters. The chemical properties by

which different substances are recognized are inseparable from their molecules,

so that the diffusion of such properties can take place only by the trans-

ference of the molecules themselves, but the momentum of a molecule in any

given direction and its energy are also properties which may be different in

different molecules, but which may be communicated from one molecule to

another. Hence the diffusion of momentum and that of energy through the

medium can take place in two different ways, whereas the diffusion of matter

can take place only in one of these ways.

In gases the great majority of the particles, at any instant, are describing

free paths, and it is therefore possible to shew that there is a simple numerical

relation between the coefficients of the three kinds of diffusion,—^the diffusion

of matter, the lateral diffusion of velocity (which is the phenomenon known as

the internal friction or viscosity of fluids), and the diffusion of energy (which

is called the conduction of heat). But in liquids the majority of the molecules

are engaged at close quarters with one or more other molecules, so that the

transmission of momentum and of energy takes place in a far greater degree

by communication from one molecule to another, than by convection by the

molecules themselves. Hence the ratios of the coefficient of diffusion to those

of viscosity and thermal conductivity are much smaller in liquids than in gases.

Theory of the Wet Bulb Thermometer.

The temperature indicated by the wet bulb thermometer is determined in

great part by the relation between the coefficients of diffusion and thermal

conductivity. As the water evaporates from the wet bulb heat must be sup-

plied to it by convection, conduction, or radiation. This supply of heat will

not be sufficient to maintain the temperature constant till the temperature of

the wet bulb has sunk so far below that of the surrounding air and other
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bodies that the flow of heat due to the difference of temperature is equal to

the latent heat of the vapour which leaves the bulb.

The use of the wet bulb thermometer as a means of estimating the

humidity of the atmosphere was employed by Hutton* and Leslief, but the

formula by which the dew-point is commonly deduced from the readings of the

wet and dry thermometers was first given by Dr ApjohnJ.

Dr Apjohn assumes that, when the temperature of the wet bulb is sta-

tionary, the heat required to convert the water into vapour is given out by

portions of the surrounding air in cooling from the temperature of the atmo-

sphere to that of the wet bulb, and that the air thus cooled becomes saturated

with the vapour which it receives from the bulb.

Let m be the mass of a portion of air at a distance from the wet bulb,

6, its temperature, jp^ the pressure due to the aqueous vapour in it, and P the

whole pressure.

If (X is the specific gravity of aqueous vapour (referred to air), then the

mass of water in this portion of air is jyO-m.

Let this portion of air communicate with the wet bulb till its temperature

sinks to ^1, that of the wet bulb, and the pressure of the aqueous vapour in

it rises to pi, that corresponding to the temperature 6^.

The quantity of vapour which has been communicated to the air is

, . am

and if L is the latent heat of vapour at the temperature ^,, the quantity of

heat required to produce this vapour is

According to Apjohn's theory, this heat is supplied by the mixed air and

vapour in cooling from 0^ to 6^.

If S is the specific heat of the air (which will not be sensibly different

from that of dry air), this quantity of heat is

* Playfair's "Life of Huttx)u," Edinburgh Transactions, "Vol. v. p. 67, note,

t Encyc. Brit., 8th ed. Vol. i. "Dissertation Fifth," p. 764.

X Trans. Royal Irish Academy, 1834.
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Equating the two values we obtain

Here p^ is the pressure of the vapour in the atmosphere. The tempera-

ture—for which this is the maxinltim pressure—is the dew-point, and p^ is the

maximum pressure corresponding to the temperature 0^ of the wet bulb. Hence

this formula, combined with tables of the pressure of aqueous vapour, enables

us to find the dew-point from observations of the wet and dry bulb thermo-

meters.

We may call this the convection theory of the wet bulb, because we

consider the temperature and humidity of a portion of air brought from a

distance to be afiected directly by the wet bulb without communication either

of heat or of vapour with other portions of air.

Dr Everett has pointed out as a defect in this theoiy, that it does not

explain how the air can either sink in temperature or increase in humidity

unless it comes into absolute contact with the wet bulb. Let us, therefore,

consider what we may call the conduction and diffusion theory in calm air,

taking into account the effects of radiation.

The steady conduction of heat is determined by the conditions

—

6 = 9^ at a great distance from the bulb,

6 = By at the surface of the bulb,

V'^ = at any point of the medium.

The steady diffusion of vapour is determined by the conditions

—

p=p» at a great distance from the bulb,

^^_Pi at the surface of the bulb,

V^p^O at any point of the medium.

Now, if the bulb had been an electrified conductor, the conditions with

respect to the potential would have been

V=0 at a great distance,

V=Vy at the surface,

^'"^"=0 at any point outside the bulb.
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Hence the solution of the electrical problem leads to that of the other

two. For if V is the potential at any point,

If E is the electric charge of the conductor,

where the double integral is extended over the surtace of the bulb, and dv

is an element of a normal to the surface.

If H is the flow of heat in unit of time from the bulb.

%H=-K\\~dS,

and if Q is the flow of aqueous vapour from the bulb,

where Jc is the ratio of the pressure of aqueous vapour to its density.

If C is the electrical capacity of the bulb, E=CVi,

H= AnCK{e, - e,), Q=i7TCj {p, -p,).

The heat which leaves the bulb by radiation to external objects at tem-

perature 6^ may be written

h = AR{d,-e,),

where A is the surface of the bulb and R the coefficient of radiation of unit of

surface.

When the temperature becomes constant

FS(K^ AR \,. ..
Po = -p. Tz\n + -TZ?^^ n]^^^- ^')-'' La-yD'^ AirCpSD]

This formula gives the result of the theory of diff'usion, conduction, and

radiation in a still atmosphere. It differs from the formula of the convection

theory only by the factor in the last term.
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The first part of this factor -^ is certainly less than unity, and probably

about '77.

If the bulb is spherical and of radius r, A = iTTr^ and C=r, so that the

second part is —^y^.

Hence, the larger the wet bulb, the greater will be the ratio of the effect

of radiation to that of conduction. If, on the other hand, the air is in motion,
this will increase both conduction and diffusion, so as to increase the ratio of
the first part to the second. By comparing actual observations of tbe dew-
point with Apjohn's formula, it has been found that the factor should be
somewhat greater than unity. According to our theory it ought to be greater
if the bulb is larger, and smaller if there is much wind.

Eelation between Diffusion and Electrolytic Conduction.

Electrolysis (see separate article) is a molecular movement of the con-
stituents of a compound liquid in which, under the action of electromotive force,

one of the components travels in the positive and the other in the negative
direction, the flow of each component, when reckoned in electrochemical equiva-
lents, being in all cases numerically equal to the flow of electricity.

Electrolysis resembles diffusion in being a molecular movement of two
currents in opposite directions through the same liquid; but since the liquid

is of the same composition throughout, we cannot ascribe the currents to the
molecular agitation of a medium whose composition varies from one part to

another as in ordinary diffusion, but we must ascribe it to the action of the
electromotive force on particles having definite charges of electricity.

The force, therefore, urging an electro-chemical equivalent of either com-
ponent, or ion, as it is called, in a given direction is numerically equal to the
electromotive force at a given point of the electrolyte, and is therefore com-
parable with any ordinary force. The resistance which prevents the current
from rising above a certain value is that arising from the encounters of the
molecules of the ion with other molecules as they struggle forward through
the liquid, and this depends on their relative velocity, and also on the nature
of the ion, and of the liquid through which it has to flow.
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The average velocity of the ions will therefore increase, till the resistance

they meet with is equal to the force which urges them forward, and they will

thus acquire a definite velocity proportional to the electric force at the point,

hut depending also on the nature of the liquid.

If the resistance of the liquid to the passage of the ion is the same for

different strengths of solution, the velocity of the ion will be the same for

different strengths, but the quantity of it, and therefore the quantity of elec-

tricity which passes in a given time, will be proportional to the strength of

the solution.

Now, Kohlrausch has determined the conductivity of the solutions of many

electrolytes in water, and he finds that for very weak solutions the conductivity

is proportional to the strength. When the solution is strong the liquid through

which the ions struggle can no longer be considered sensibly the same as pure

water, and consequently this proportionality does not hold good for strong

solutions.

Kohlrausch has determined the actual velocity in centimetres per second

of various ions in weak solutions under an electro-motive force of unit value.

From these velocities he has calculated the conductivities of weak solutions of

electrolytes different from those of which he made use in calculating the velocity

of the ions, and he finds the results consistent with direct experiments on

those electrolytes.

It is manifest that we have here important information as to the resist-

ance which the ion meets with in travelling through the liquid. It is not

easv, however, to make a numerical comparison between this resistance and any

results of ordinary diffusion, for, in the first place, we cannot make experiments

on the diffusion of ions. Many electrolytes, indeed, are decomposed by the

current into components, one or both of which are capable of diffusion, but

these components, when once separated out of the electrolyte, are no longer

ions—they are no longer acted on by electric force, or charged with definite

quantities of electricity. Some of them, as the metals, are insoluble, and there-

fore incapable of diffusion; others, like the gases, though soluble in the liquid

electrolyte, are not, when in solution, acted on by the current.

Besides this, if we accept the theory of electrolysis proposed by Clausius,

the molecules acted on by the electro-motive force are not the whole of the

molecules which form the constituents of the electrolyte, but only those which

at a given instant are in a state of dissociation from molecules of the other
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kind, being forced away from them temporarily by the violence of the molecular

agitation. If these dissociated molecules form a small proportion of the whole,

the velocity of their passage through the medium must be much greater than

the mean velocity of the whole, which is the quantity calculated by Kohlrausch.

On Processes by which the Mixture and Separation of Fluids can be

effected in a Reversible Manner.

A physical process is said to be reversible when the material system can

be made to return from the final state to the original state under conditions

which at every stage of the reverse process differ only infinitesimally from the

conditions at the corresponding stage of the direct process.

All other processes are called irreversible.

Thus the passage of heat from one body to another is a reversible process

if the temperature of the first body exceeds that of the second only by an

infinitesimal quantity, because by changing the temperature of either of the

bodies by an infinitesimal quantity, the heat may be made to flow back again

from the second body to the first.

But if the temperature of the first body is higher than that of the second

by a finite quantity, the passage of heat from the first body to the second

is not a reversible process, for the temperature of one or both of the bodies

must be altered by a finite quantity before the heat can be made to flow

back again.

In like manner the interdiffiision of two gases is in general an irreversible

process, for in order to separate the two gases the conditions must be very

considerably changed. For instance, if carbonic acid is one of the gases, we

can separate it from the other by means of quicklime ; but the absorption of

carbonic acid by quicklime at ordinary temperatures and pressures is an irre-

versible process, for in order to separate the carbonic acid from the lime it

must be raised to a high temperature.

In all reversible processes the substances which are in contact must be

in complete equilibrium throughout the process ; and Professor Gibbs has shewn

the condition of equilibrium to be that not only the temperature and the

pressure of the two substances must be the same, but also that the potential

of each of the component substances must be the same in both compounds,

and that there is an additional condition which we need not here specify.
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Now, we may obtain complete equilibrium between quicklime and the

mixture containing carbonic acid if we raise the whole to a temperature at

which the pressure of dissociation of the carbonic acid in carbonate of lime is

equal to the pressure of the carbonic acid in the mixed gases. By altering

the temperature or the pressure very slowly we may cause carbonic acid to

pass from the mixture to the lime, or from the lime to the mixture, in such

a manner that the conditions of the system differ only by infinitesimal quan-

tities at the corresponding stages of the direct and the inverse processes. The

same thing may be done at lower temperatures by means of potash or soda.

If one of the gases can be condensed into a liquid, and if during the

condensation the pressure is increased or the temperature diminished so slowly

that the liquid and the mixed gases are always very nearly in equilibrium,

the separation and mixture of the gases can be effected in a reversible

manner.

The same thing can be done by means of a liquid which absorbs the

gases in different proportions, provided that we can maintain such conditions as

to temperature and pressure as shall keep the system in equilibrium during the

whole process.

If the densities of the two gases are different, we can effect their partial

separation by a reversible process which does not involve any of the actions

commonly called chemical. We place the mixed gases in a very long horizontal

tube, and we raise one end of the tube till the tube is vertical. If this is

done so slowly that at every stage of the process the distribution of the two

gases is sensibly the same as it would be at the same stage of the reverse

process, the process will be reversible, and if the tube is long enough the

separation of the gases may be carried to any extent.

In the Philosophical Magazine for 1876, Lord Rayleigh has investigated

the thermodynamics of diffusion, and has shewn that if two portions of different

gases are given at the same pressure and temperature, it is possible, by

mixing them by a reversible process, to obtain a certain quantity of work.

At the end of the process the two gases are uniformly mixed, and occupy a

volume equal to the sum of the volumes they occupied when separate, but

the temperature and pressure of the mixture are lower than before.

The work which can be gained during the mixture is equal to that which

would be gained by allowing first one gas and then the other to expand

from its original volume to the sum of the volumes ; and the fall of temperature
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and pressure is equal to that which would be produced in the mixture by
taking away a quantity of heat equivalent to this work.

If the diffusion takes place by an irreversible process, such as goes on

when the gases are placed together in a vessel, no external work is done,

and there is no fall of temperature or of pressure during the process.

We may arrive at this result by a method which, if not so instructive

as that of Lord Eayleigh, is more general, by the use of a physical quantity

called by Clausius the Entropy of the system.

The entropy of a body in equilibrium is a quantity such that it remains

constant if no heat enters or leaves the body, and such that in general the

quantity of heat which enters the body is

where
(f>

is the entropy, and 6 the absolute temperature.

The entropy of a matenal system is the sum of the entropy of its parts.

In reversible processes the entropy of the system remains unchanged, but

in all irreversible processes the entropy of the system increases.

The increase of entropy involves a diminution of the available energy of

the system, that is to say, the total quantity of work which can be obtained

from the system. This is expressed by Sir W. Thomson by saying that a

certain amount of energy is dissipated.

The quantity of energy which is dissipated in a given process is equal to

where
(f),

is the entropy at the beginning, and <^, that at the end of the

process, and 0^ is the temperature of the system in its ultimate state, when
no more work can be got out of it.

When we can determine the ultimate temperature we can calculate the

amount of energy dissipated by any process; but it is sometimes difHcult to

do this, whereas the increase of entropy is determined by the known states

of the system at the beginning and end of the process.

The entropy of a volume v, of a gas at pressure p^ and temperature 0,

exceeds its entropy where its volume is v, and its temperature 0, by the quantity

i-^ 1 - -, log 7^ + log - L

Hence if volumes i\ and i\ of tw^o gases at the same temperature and pressure



DIFFUSION. 6^5

are mixed so as to occupy a volume i\ + Vj at the same temperature and

pressure, the entropy of the system increases during the process by the quantity

f 1
v, + v,

,
, v, + v,\

Since in this case the temperature does not change during the process, we

may calculate the quantity of energy dissipated by multiplying the gain of

entropy by the temperature, and we thus find for the dissipation

or the sum of the work which would be done by the two portions of gas if

each expanded under constant temperature to the volume v^ + v^.

It is greatest when the two volumes are equal, in which case it is

r386j9y, where p is the pressure and v the volume of one of the portions.

Let us now suppose that we have in a vessel two separate portions of

gas of equal volume, and at the same pressure and temperature, with a

movable partition between them. If we remove the partition the agitation of

the molecules will carry them from one side of the partition to the other in

an irregular manner, till ultimately the two portions of gas will be thoroughly and

uniformly mixed together. This motion of the molecules will take place whether

the two gases are the same or different, that is to say, whether w^e can

distinguish between the properties of the two gases or not.

If the two gases are such that we can separate them by a reversible

process, then, as we have just shewn, we might gain a definite amount ot

work by allowing them to mix under certain conditions; and if we allow them

to mix by ordinary diffusion, this amount of work is no longer available, but

is dissipated for ever. If, on the other hand, the two portions of gas are

the same, then no work can be gained by mixing them, and no work is

dissipated by allowing them to diffuse into each other.

It appears, therefore, that the process of diffusion does not involve dis-

sipation of energy if the two gases are the same, but that it does if they can

be separated from each other by a reversible process.

Now, when we say that two gases are the same, we mean that we cannot

distinguish the one from the other by any known reaction. It is not probable,

but it is possible, that two gases derived from different sources, but hitherto

supposed to be the same, may hereafter be found to be diflerent, and that a
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method may be discovered of separating them by a reversible process. If this

should happen, the process of interdiffusion which we had formerly supposed

not to be an instance of dissipation of energy would now be recognized as

such an instance.

It foUows from this that the idea of dissipation of energy depends on

the extent of our knowledge. Available energy is energy which we can direct

into any desired channel. Dissipated energy is energy which we cannot lay

hold of and direct at pleasure, such as the energy of the confused agitation

of molecules which we call heat. Now, confusion, like the correlative term

order, is not a property of material things in themselves, but only in relation

to the mind which perceives them. A memorandum-book does not, provided it

is neatly written, appear confused to an illiterate person, or to the owner who

understands it thoroughly, but to any other person able to read it appears to

be inextricably confused. Similarly the notion of dissipated energy could not

occur to a being who could not turn any of the energies of nature to his

own account, or to one who could trace the motion of every molecule and

seize it at the right moment. It is only to a being in the intennediate stage,

who can lay hold of some forms of energy while others elude his grasp, that

energy appears to be passing inevitably from the available to the dissipated

state.



[From the Encydopcedia Britannica.]

XC. Diagrams.

A DIAGRAM is a figure drawn in such a manner that the geometrical

relations between the parts of the figure help us to understand relations between

other objects. A few have been selected for description in this article on account

of their greater geometrical significance.

Diagi'ams may be classed according to the manner in which they are

intended to be used, and also according to the kind of analogy which we

recognize between the diagram and the thing represented.

Diagrams of Illustration.

The diagrams in mathematical treatises are intended to help the reader

to follow the mathematical reasoning. The construction of the figure is defined

in words so that even if no figure were drawn the reader could draw one

for himself The diagram is a good one if those features which form the

subject of the proposition are clearly represented. The accuracy of the drawing

is therefore of smaller importance than its distinctness.

Metrical Diagrams.

Diagrams are also employed in an entirely different way—namely, for

purposes of measurement. The plans and designs drawn by architects and

engineers are used to determine the value of certain real magnitudes by

measuring certain distances on the diagram. For such purposes it is essential

that the drawing be as accurate as possible.

We therefore class diagrams as diagrams of illustration, which merely

suggest certain relations to the mind of the spectator, and diagrams drawn to

scale, from which measurements are intended to be made.
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Methods in which diagrams are used for purposes of measurement are called

Graphical methods.

Diagrams of illustration, if sufficiently accurate, may be used for purposes

of measurement ; and diagrams for measurement, if sufficiently clear, may be

used for purposes of demonstration.

There are some diagrams or schemes, however, in which the form of the

parts is of no importance, provided their connections are properly shewn. Of

this kind are the diagrams of electrical connections, and those belonging to

that department of geometry which treats of the degrees of cyclosis, periphraxy,

linkedness, and knottedness.

Diagrams purely Graphic and mixed Symbolic and Graphic.

Diagrams may also be classed either as purely graphical diagrams, in which

no symbols are employed except letters or other marks to distinguish particular

points of the diagrams, and mixed diagrams, in which certain magnitudes are

represented, not by the magnitudes of parts of the diagram, but by symbols,

such as numbers written on the diagram.

Thus in a map the height of places above the level of the sea is often

indicated by marking the number of feet above the sea at the corresponding

places on the map.

There is another method in which a line called a contour line is drawn

through all the places in the map whose height above the sea is a certain

number of feet, and the number of feet is written at some point or points

of this line.

By the use of a series of contour lines, the height of a great number of

places can be indicated on a map by means of a small number of written

symbols. Still this method is not a purely graphical method, but a partly

symbolical method of expressing the third dimension of objects on a diagram

in two dimensions.

Diagrams in Pairs.

In order to express completely by a purely graphical method the relations

of magnitudes involving more than two variables, we must use more than one

diagram. Thus in the arts of construction we use plans and elevations and



DIAGRAMS. G49

sections through diiferent planes, to specify the form of objects having three

dimensions.

In such systems of diagrams we have to indicate that a point in one

diagram corresponds to a point in another diagram. This is generally done by

marking the corresponding points in the different diagrams with the same letter.

If the diagrams are drawn on the same piece of paper we may indicate

corresponding points by drawing a line from one to the other, taking care

that this line of correspondence is so drawn that it cannot be mistaken for

a real line in either diagram.

In the stereoscope the two diagrams, by the combined use of which the

form of bodies hi three dimensions is recognized, are projections of the bodies

taken from two points so near each other that, by viewing the two diagrams

simultaneously, one with each eye, we identify the corresponding points intuitively.

The method in which we simultaneously contemplate two figures, and

recognize a correspondence between certain points in the one figure and certain

points in the other, is one of the most powerful and fertile methods hitherto

known in science. Thus in pure geometry the theories of similar, reciprocal,

and inverse figures have led to many extensions of the science. It is sometimes

spoken of as the method or principle of Duality.

Diagrams in Kinematics.

The study of the motion of a material system is much assisted by the

use of a series of diagrams representing the configuration, displacement, and

acceleration of the parts of the system.

Diagram of Conjiguration.

In considering a material system it is often convenient to suppose that

we have a record of its position at any given instant in the form of a diagram

of configuration.

The position of any particle of the system is defined by drawing a straight

line or vector from the origin, or point of reference, to the given particle.

The position of the particle with respect to the origin is determined by the

magnitude and direction of this vector.

VOL. 11. 82
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If ill the diagram we draw from the origin (which need not be the same

point of space as the origin for the material system) a vector equal and

parallel to the vector which determines the position of the particle, the end

of this vector will indicate the position of the particle in the diagram of

configuration.

If this is done for all the particles, we shall have a system of points in

the diagram of configuration, each of which corresponds to a particle of the

material system, and the relative positions of any pair of these points will be

the same as the relative positions of the material particles which correspond

to them.

We have hitherto spoken of two origins or points from which the vectors

are supposed to be drawn—one for the material system, the other for the

diagram. These points, however, and the vectors drawn from them, may now

be omitted, so that we have on the one hand the material system and on

the other a set of points, each point corresponding to a particle of the system,

and the whole representing the configuration of the system at a given instant.

This is called a diagram of configuration.

Diagram of Displacement.

Let us next consider two diagrams of configuration of the same system,

corresponding to two different instants.

We call the first the initial configuration and the second the final con-

figuration, and the passage from the one configuration to the other we call the

displacement of the system. We do not at present consider the length of

time during which the displacement was effected, nor the intermediate stages

through which it passed, but only the final result—a change of configuration.

To study this change we construct a diagram of displacement.

Let A, B, C be the points in the initial diagram of configuration, and

A', B\ C be the corresponding points in the final diagram of configuration.

From 0, the origin of the diagram of displacement, draw a vector oa

equal and parallel to AA', oh equal and parallel to BB', oc to CC, and so on.

The points, a, h, c, &c., will be such that the vector ab indicates the

displacement of b relative to a, and so on. The diagram containing the points

a, b, c, &c., is therefore called the diagram of displacement.

In constructing the diagram of displacement we have hitherto assumed

that we know the absolute displacements of the points of the system. For
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we are required to draw a line equal and parallel to AA', which we cannot

do unless we know the atisolute final position of A, with respect to its initial

position. In this diagram of displacement there is therefore, besides the points

a, h, c, &c., an origin, o, which represents a point absolutely fixed in space.

This is necessary because the two configurations do not exist at the same

time; and therefore to express their relative position we require to know a

point which remains the same at the beginning and end of the time.

But we may construct the diagram in another way which does not assume

a knowledge of absolute displacement or of a point fixed in space.

Assuming any point and calUng it a, draw ak parallel and equal to B^A,

in the initial configuration, and from k draw kb parallel and equal to A.B^

in the final configuration. It is easy to see that the position of the point h

relative to a will be the same by this construction as by the former construction,

only w^e must observe that in this second construction we use only vectors

such as A^B,, A.,B„, which represent the relative position of points both of

which exist simultaneously, instead of vectors such as A^A,, B,B^, which express

the position of a point at one instant relative to its position at a former

instant, and which therefore cannot be determined by observation, because the

two ends of the vector do not exist simultaneously.

It appears therefore that the diagram of displacements, when drawn by

the first construction includes an origin o, which indicates that we have assumed

a knowledge of absolute displacements. But no such point occurs in the second

construction, because we use such vectors only as we can actually observe.

Hence the diagram of displacements uithout an origin represents neither more

nor less than all we can ever know about the displacement of the material

system.

Diagram of Velocity.

If the relative velocities of the points of the system are constant, then

the diagram of displacement corresponding to an interval of a unit of time

between the initial and the final configuration is called a diagram of relative

velocity.

If the relative velocities are not constant, we suppose another system in

which the velocities are equal to the velocities of the given system at the

given instant and continue constant for a unit of time. The diagram of dis-
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placements for this Imaginary system is the required diagram of relative velocities

of the actual system at the given instant.

It is easy to see that the diagram gives the velocity of any one point

relative to any other, but cannot give the absolute velocity of any of them.

Diagram of Acceleration.

By the same process by which we formed the diagram of displacements

from the two diagrams of initial and final configuration, we may form a diagram

of changes of relative velocity from the two diagrams of initial and final velocities.

This diagram may be called that of total accelerations in a finite interval of time.

By the same process by which we deduced the diagram of velocities from

that of displacements we may deduce the diagram of rates of acceleration from

that of total acceleration.

We have mentioned this system of diagrams in elementary kinematics

because they are found to be of use especially when we have to deal with

material systems containing a great number of parts, as in the kinetic theory

of gases. The diagram of configuration then appears as a region of space

swarming with points representing molecules, and the only way in which we

can investigate it is by considering the number of such points in unit of

volume in different parts of that region, and calling this the density of the gas.

In like manner the diagram of velocities appears as a region containing

points equal in number but distributed in a different manner, and the number

of points in any given portion of the region expresses the number of molecules

whose velocities lie within given limits. We may speak of this as the velocity-

density.

Path and Hodograph.

When the number of bodies in the system is not so great, we may

construct diagrams each of which represents some property of the whole course

of the motion.

Thus if we are considering the motion of one particle relative to another,

the point on the diagram of configuration which corresponds to the moving

particle will trace out a continuous line called the path of the particle.

On the diagram of velocity the point corresponding to the moving particle

will trace another continuous line called the hodograph of the particle.
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The hodograph was Invented and used with great success by Sir W. R.

Hamilton as a method of studying the motions of bodies.

Diagrams of Stress.

Graphical methods are peculiarly applicable to statical questions, because

the state of the system is constant, so that we do not need to construct a

series of diagrams corresponding to the successive states of the system.

The most useful of these applications relates to the equilibrium of plane

framed structures. Two diagrams are used, one called the diagram of the

frame and the other called the diagram of stress.

The structure itself consists of a number of separable pieces or links jointed

together at their extremities. In practice these joints have friction, or may

be made purposely stiff, so that the force acting at the extremity of a piece

may not pass exactly through the axis of the joint; but as it is unsafe to

make the stability of the structure depend in any degree upon the stiffness

of joints, we assume in our calculations that all the joints are perfectly smooth,

and therefore that the force acting on the end of any link passes through the

axis of the joint.

The axes of the joints of the structure are represented by points in the

diagram of the frame.

The link which connects two joints in the actual structure may be of

any shape, but in the diagram of the frame it is represented by a straight

line joining the points representing the two joints.

If no force acts on the link except the two forces acting through the

centres of the joints, these two forces must be equal and opposite, and their

direction must coincide with the straight line joining the centres of the joints.

If the force acting on either extremity of the link is directed towards

the other extremity, the stress on the link is called pressure and the link is

called a strut. If it is directed away from the other extremity, the stress

on the link is called tension and the link is called a tie.

In this case, therefore, the only stress acting in a link is a pressure or

a tension in the direction of the straight line which represents it in the

diagram of the frame, and all that we have to do is to find the magnitude

of this stress.

In the actual structure, gravity acts on every part of the link, but in
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the diagram we substitute for the actual weight of the different parts of the

link, two weights which have the same resultant acting at the extremities of

the link.

We may now treat the diagram of the frame as composed of links without

weight, but loaded at each joint with a weight made up of portions of the

weights of all the links which meet in that joint.

If any link has more than two joints we may substitute for it in the

diagram an imaginary stiff frame, consisting of links, each of which has only

two joints.

The diagram of the frame is now reduced to a system of points, certain

pairs of which are joined by straight lines, and each point is in general acted

on by a weight or other force acting between it and some point external to

the system.

To complete the diagram we may represent these external forces as links,

that is to say, straight lines joining the points of the frame to points external

to the frame. Thus each weight may be represented by a link joining the

point of application of the weight with the centre of the earth.

But we can always construct an imaginary frame having its joints in the

lines of action of these external forces, and this frame, together with the real

frame and the links representing external forces, which join points in the one

frame to points in the other frame, make up together a complete self-strained

system in equilibrium, consisting of points connected by links acting by pressure

or tension. We may in this way reduce any real structure to the case of a

system of points with attractive or repulsive forces acting between certain pairs

of these points, and keeping them in equilibrium.

The direction of each of these forces is sufficiently indicated by that of

the line joining the points, so that we have only to determine its magnitude.

We might do this by calculation, and then write down on each link the

pressure or the tension which acts in it.

We should in this way obtain a mixed diagram in which the stresses

are represented graphically as regards direction and position, but symbolically

as regards magnitude.

But we know that a force may be represented in a purely graphical

manner by a straight line in the direction of the force containing as many
units of length as there are units of force in the force. The end of this line

is marked with an arrow head to shew in which direction the force acts.
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According to this method each force is drawn in its proper position in

the diagram of configuration of the frame. Such a diagram might be useful

as a record of the result of calculation of the magnitude of the forces, but

it would be of no use in enabling us to test the correctness of the calculation.

But we have a graphical method of testing the equilibrium of any set of

forces acting at a point. We draw in series a set of lines parallel and pro-

portional to these forces. If these lines form a closed polygon the forces are in

equilibrium. We might in this way form a series of polygons of forces, one for

each joint of the frame. But in so doing we give up the principle of drawing

the line representing a force from the point of application of the force, for all

the sides of the polygon cannot pass through the same point, as the forces do.

We also represent every stress twice over, for it appears as a side of both

the polygons corresponding to the two joints between which it acts.

But if we can arrange the polygons in such a way that the sides of any

two polygons which represent the same stress coincide with each other, we

may form a diagram in which every stress is represented in direction and

magnitude, though not in position, by a single line which is the common

boundary of the two polygons which represent the joints at the extremities

of the corresponding piece of the frame.

We have thus obtained a pure diagram of stress in which no attempt is

made to represent the configuration of the material system, and in which every

force is not only represented in direction and magnitude by a straight line,

but the equilibrium of the forces at any joint is manifest by inspection, for

we have only to examine whether the corresponding polygon is closed or not.

The relations between the diagram of the frame and the diagram of stress

are as follows :

—

To every link in the frame corresponds a straight line in the diagram of

stress which represents in magnitude and direction the stress acting in that link.

To every joint in the frame corresponds a closed polygon in the diagram,

and the forces acting at that joint are represented by the sides of the polygon

taken in a certain cyclical order. The cyclical order of the sides of the two

adjacent polygons is such that their common side is traced in opposite directions

in going round the two polygons.

The direction in which any side of a polygon is traced is the direction

of the force acting on that joint of the frame which corresponds to the polygon,

and due to that link of the frame which corresponds to the side.
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This determines whether the stress of the Unk is a pressure or a tension.

If we know whether the stress of any one Hnk is a pressure or a tension,

this determines the cjchcal order of the sides of the two polygons corresponding
to the ends of the links, and therefore the cyclical order of all the polygons,
and the nature of the stress in every link of the frame.

Definition of Reciprocal Diagrams.

When to every point of concourse of the lines in the diagram of stress
corresponds a closed polygon in the skeleton of the frame, the two diagrams
are said to be reciprocal.

The first extensions of the method of diagrams of forces to other cases
than that of the funicular polygon were given by Rankine in his Applied
Mechanics (1857). The method was independently applied to a large number
of cases by Mr W. P. Taylor, a practical draughtsman in the office of the
well-known contractor Mr J. B. Cochrane, and by Professor Clerk Maxwell in
his lectures in King's College, London. In the Phil. Mag. for 1864 the latter
pointed out the reciprocal properties of the two diagrams, and in a paper on
"Reciprocal Figures, Frames, and Diagrams of Forces," Trans. R. S. Edinburgh,
Vol. XXVI. (1870), he shewed the relation of the method to Airy's function of
stress and to other mathematical methods.

Professor Fleeming Jenkin has given a number of applications of the method
to practice (Trans. R. S. Edin., Vol. xxv.).

Cremona (Le figure reciproche nella statica grafica, Milan, 1872) has deduced
the construction of reciprocal figures from the theory of the two components
of a wrench as developed by Mobius.

Culmann, in his Graphische Statik, makes great use of diagrams of forces,

some of which, however, are not reciprocal.

M. Maurice Levy in his Statique Graphique (Paris, 1874) has treated the
whole subject in an elementary but copious manner.

Mr R. H. Bow, C.E., F.R.S.E., in his work on The Economics of Construction
in relation to Framed Structures, 1873, has materially simplified the process of
drawing a diagram of stress reciprocal to a given frame acted on by a system
of equihbrating external forces.

Instead of lettering the joints of the frame, as is usually done, or the
Imks of the frame, as was the writer's custom, he places a letter in each of
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the polygonal areas inclosed by the links of the frame, and also in each of

the divisions of surrounding space as separated by the lines of action of the

external forces.

When one link of the frame crosses another, the point of apparent

intersection of the links is treated as if it were a real joint, and the stresses

of each of the intersecting links are represented twice in the diagram of

stress, as the opposite sides of the parallelogram which corresponds to the

point of intersection.

Fio. 1. Diagram of Configuration.

Fio. 2. Diagram of Stress.

This method is followed in the lettering of the diagram of configuration

(fig. 1), and the diagram of stress (fig. 2) of the linkwork which Professor

Sylvester has called a quadruplane.

In fig. 1 the real joints are distinguished from the places where one link

appears to cross another by the little circles 0, P, Q, R, S, T, V.

The four links RSTV form a " contraparallelogram " in which RS=TV and

RV=ST.
The triangles ROS, RPV, TQS are similar to each other. A fourth triangle

{TNV), not drawn in the figure, would complete the quadruplane. The four

VOL. II. 83
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points O, P, N, Q form a parallelogram whose angle POQ is constant and
equal to n-SOR. The product of the distances OF and OQ is constant.

The linkwork may be fixed at 0. If any figure is traced by P, Q will

trace the inverse figure, but turned round through the constant angle POQ.
In the diagram forces Pj), Qq are balanced by the force Oo at the fixed

point. The forces Pp and Qq are necessarily inversely as OP and OQ, and
make equal angles with those lines.

Every closed area formed by the links or the external forces in the diagram
of configuration is marked by a letter which corresponds to a point of concourse

of lines in the diagram of stress.

The stress in the link which is the common boundary of two areas is

represented in the diagram of stress by the line joining the points corresponding

to those areas.

When a link is divided into two or more parts by lines crossing it, the
stress in each part is represented by a different line for each part, but as the
stress is the same throughout the link these lines are aU equal and parallel.

Thus in the figure the stress in i^F is represented by the four equal and
parallel lines HI, FG, DE, and AB.

If two areas have no part of their boundary in common the letters cor-

responding to them in the diagram of stress are not joined by a straight

line. If, however, a straight line were drawn between them, it would represent

in direction and magnitude the resultant of all the stresses in the links which
are cut by any line, straight or curved, joining the two areas.

For instance the areas F and C in fig. 1 have no common boundary, and
the points F and C in fig. 2 are not joined by a straight line. But every
path from the area F to the area C in fig. 1 passes through a series of other

areas, and each passage from one area into a contiguous area corresponds to

a line drawn in the diagram of stress. Hence the whole path from i^ to C
in fig. 1 corresponds to a path formed of lines in fig. 2 and extending from
F to C, and the resultant of all the stresses in the links cut by the path is

represented by FC in fig. 2.

Automatic Description of Diagrams.

There are many other kinds of diagrams in which the two co-ordinates of

a point in a plane are employed to indicate the simultaneous values of two
related quantities.
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If a sheet of paper is made to move, say horizontally, with a constant

known velocity, while a tracing point is made to move in a vertical straight

line, the height varying as the value of any given physical quantity, the point

will trace out a curve on the paper from which the value of that quantity

at any given time may be determined.

This principle is applied to the automatic registration of phenomena of all

kinds, from those of meteorology and terrestrial magnetism to the velocity of

cannon-shot, the vibrations of sounding bodies, the motions of animals, voluntary

and involuntary, and the currents in electric telegraphs.

Indicator-Diagram.

In Watt's indicator for steam-engines the paper does not move with a

constant velocity, but its displacement is proportional to that of the piston of

the engine, while that of the tracing point is proportional to the pressure of

the steam. Hence the co-ordinates of a point of the curve traced on the

diagram represent the volume and the pressure of the steam in the cylinder.

The indicator-diagram not only supplies a record of the pressure of the steam

at each stage of the stroke of the engine, but indicates the work done by the

steam in each stroke by the area inclosed by the curve traced on the diagraoL

The indicator-diagram was invented by James Watt as a method of estimating

the work done by an engine. It was afterwards used by Clapeyron to illustrate

the theory of heat, and this use of it was greatly developed by Rankine in

his work on the steam-engine.

The use of diagrams in thermodynamics has been very completely illustrated

by Prof. J. Willard Gibbs {Connecticut Acad. Sci., Vol. iii.), but though his

methods throw much light on the general theory of diagrams as a method of

study, they belong rather to thermodynamics than to the present subject.

83—2



[From Nature, Vol. xvii.]

XCI. Taifs " Thermodynamics."

This book, as we are told in the preface, has grown out of two articles

contributed in 1864 by Prof. Tait to the North British Revieiv. This journal,

about that time, inserted a good many articles in which scientific subjects were

discussed in scientific language, and in which, instead of the usual attempts

to conciHate the unscientific reader by a series of relapses into irrelevant and

incoherent writing, his attention was maintained by awakening a genuine interest

in the subject.

The attempt was so far successful that the publishers of the Review were

urged by men of science, especially engineers, to reprint these essays of Prof.

Tait, but the Revieiv itself soon afterwards became extinct.

Prof Tait added to the two essays a mathematical sketch of the funda-

mental principles of thermodynamics, and in this form the book was published

in 1868. In the present edition, though there are many additions and improve-

ments, the form of the book is essentially the same.

Whether on account of these external circumstances, or from internal

causes, it is impossible to compare this book either with so-called popular

treatises or with those of a more technical kind.

In the popular treatise, whatever shreds of the science are allowed to

appear, are exhibited in an exceedingly difftise and attenuated form, apparently

with the hope that the mental faculties of the reader, though they would

reject any stronger food, may insensibly become saturated with scientific phraseo-

logy, provided it is diluted with a sufficient quantity of more familiar language.

In this way, by simple reading, the student may become possessed of the

phrases of the science without having been put to the trouble of thinking a

single thought about it. The loss implied in such an acquisition can be estimated
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only by those who have been compelled to unlearn a science that they might

at length begin to learn it.

The technical treatises do less barm, for no one ever reads them except

under compulsion. From the establishment of the general equations to the end

of the book, every page is full of symbols with indices and suffixes, so that

there is not a paragiaph of plain English on which the eye may rest.

Prof Tait has not adopted either of these methods. He serves up his

strong meat for grown men at the beginning of the book, without thinking

it necessary to employ the language either of the nursery or of the school

;

while for younger students he has carefully boiled down the mathematical

elements into the most concentrated form, and has placed the result at the

end as a bonne houche, so that the beginner may take it in all at once, and

ruminate upon it at his leisure.

A considerable part of the book is devoted to the history of thermo-

dynamics, and here it is evident that with Prof. Tait the names of the founders

of his science call up the ideas, not so much of the scientific documents they

have left behind them in our libraries, as of the men themselves, whether he

recommends them to our reverence as masters in science, or bids us beware

of them as tainted with error. There is no need of a garnish of anecdotes

to enliven the dryness of science, for science has enough to do to restrain the

strong human nature of the author, who is at no pains to conceal his own

idiosyncrasies, or to smooth down the obtrusive antinomies of a vigorous mind

into the featureless consistency of a conventional philosopher.

Thus, in the very first page of the book, he denounces all metaphysical

methods of constructing physical science, and especially any d priori decisions

as to what may have been or ought to have been. In the second page he

does not indeed give us Aristotle's ten categories, but he lays down four of

his own :—matter, force, position, and motion, to one of which he tells us,

"it is evident that every distinct physical conception must be referred," and

then before we have finished the page we are assured that heat does not

belong to any of these four categories, but to a fifth, called energj^

This sort of writing, however unlike what we might expect from the con-

ventional man of science, is the very thing to rouse the placid reader, and

startle his thinking powers into action.

Prof Tait next handles the caloric theory, but instead of merely shewino-

up its weak points and then dismissing it with contempt, he puts fresh life
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into it by giving (in the new edition) a characteristic extract from Dr Black's

lectures, and proceeds to help the calorists out of some of their difficulties, by
generously making over to them some excellent hints of his own.

The history of thermodynamics has an especial interest as the development
of a science, within a short time and by a small number of men, from the
condition of a vague anticipation of nature to that of a science with secure
foundations, clear definitions, and distinct boundaries.

The earlier part of the history has already provoked a sufficient amount
of discussion. We shall therefore confine our remarks to the methods employed
for the advancement of the science by the three men who brought the theory
to maturity.

Of the three founders of theoretical thermodynamics, Eankine availed him-
self to the greatest extent of the scientific use of the imagination. His
imagination, however, though amply luxuriant, was strictly scientific. Whatever
he imagined about molecular vortices, with their nuclei and atmospheres, was
so clearly imaged in his mind's eye, that he, as a practical engineer, could

see how it would work.

However intricate, therefore, the machinery might be which he imagined
to exist in the minute parts of bodies, there was no danger of his going
on to explain natural phenomena by any mode of action of this machinery
which was not consistent with the general laws of mechanism. Hence, though
the construction and distribution of his vortices may seem to us as complicated
and arbitrary as the Cartesian system, his final deductions are simple, necessary,

and consistent with facts.

Certain phenomena were to be explained. Rankine set himself to imagine
the mechanism by which they might be produced. Being an accomplished

engineer, he succeeded in specifying a particular arrangement of mechanism
competent to do the work, and also in predicting other properties of the
mechanism which were afterwards found to be consistent with observed facts.

As long as the training of the naturalist enables him to trace the action
only of particular material systems without giving him the power of dealing
with the general properties of all such systems, he must proceed by the method
so often described in histories of science—he must imagine model after model
of hypothetical apparatus till he finds one which will do the required work.
If this apparatus should afterwards be found capable of accounting for many
of the known phenomena, and not demonstrably inconsistent with any of them.
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he Is strongly tempted to conclude that his hypothesis is a fa<;t, at least

until an equally good rival hypothesis has been invented. Thus Rankine*,

long after an explanation of the properties of gases had been founded on the

theory of the collisions of molecules, published what he supposed to be a

proof that the phenomena of heat were invariably due to steady closed streams

of continuous fluid matter.

The scientific career of Eankine was marked by the gradual development

of a singular power of bringing the most difficult investigations within the range

of elementary methods. In his earlier papers, indeed, he appears as if battling

with chaos, as he swims, or sinks, or wades, or creeps, or flies,

" And through the palpable obscure finds out

His uncouth way ;"

but he soon begins to pave a broad and beaten way over the dark abyss, and

his latest writings shew such a power of bridging over the difficulties of science,

that his premature death must have been almost as great a loss to the diffusion

of science as it was to its advancement.

The chapter on thermodynamics in his book on the steam-engine was the

first published treatise on the subject, and is the only expres?' of his \aews

addressed directly to students.

In this book he has disencumbered himself to a great extent of the hypothesis

of molecular vortices, and builds principally on observed facts, though he, in

common with Clausius, makes several assumptions, some expressed as axioms,

others implied in definitions, which seem to us anything but self-evident. As

an example of Rankine's best style we may take the following definition :

—

*' A PERFECT GAS is a substance in such a condition that the total pressure exerted by any

number of portions of it, at a given temperature, against the sides of a vessel in which they

are enclosed, is the sum of the pressures which each portion would exert if enclosed in the vessel

separately at the same temperature."

Here we can form a distinct conception of every clause of the definition,

but when we come to Rankine's Second Law of Thermodynamics we find

that though, as to literaiy form, it seems cast in the same mould, its actual

meaning is inscrutable,

• "On the Second Law of Thermodynamics," Phil. Mag. Oct. 1865, § 12, p. 244; but in his

paper on the Thermal Energy of Molecular Vortices, Trans. R. S. Edin. xxv. p. 557 [18G9], he

admits that the explanation of gaseous pressure by the impacts of molecules has been proved to

be possible.
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•' The Second Law of Thermodynamics.—1{ the total actual heat of a homogeneous and uniformly-
hot substance be conceived to be divided into any number of equal parts, the effects of those
parts in causing work to be performed are equal."

We find it difficult enough, even in 1878, to attach any distinct meaning
to the total actual heat of a body, and still more to conceive this heat
divided into equal parts, and to study the action of each of these parts; but
as if our powers of deglutition were not yet sufficiently strained, Eankine follows

this up with another statement of the same law, in which we have to assert
our intuitive belief that

—

"If the absolute temperature of any uniformly hot substance be divided into any number of
equal parts, the effects of those parts in causing work to be performed are equal."

The student who thinks that he can form any idea of the meaning of this

sentence is quite capable of explaining on thermodynamical principles what
Mr Tennyson says of the great Duke :

—

"Whose eighty winters freeze with one rebuke

All great self-seekers trampling on the right."

Prof. Clausius does not ask us to believe quite so much about the heat
in hot bodies. In his first memoir, indeed, he boldly dismisses one supposed
variety of heat from the science. Latent heat, he tells us, "is not only, as

its name imports, hidden from our perceptions, but has actually no existence;"

"it has been converted into work."

But though Clausius thus gets rid of all the heat which, after entering

a body, is expended in doing work, either exterior or interior, he allows a
certain quantity to remain in the body as heat, and this remnant of what
should have been utterly destroyed lives on in a sort of smouldering existence,

breaking out now and then with just enough vigour to mar the scientific coherence

of what might have been a well compacted system of thermodynamics.

Prof. Tait tells us :

—

" The source of all this sort of speculation, which is as old as the time of Crawford and
Irvine—and which was countenanced to a certain extent even by Rankine—is the assumption that

bodies must contain a certain quantity of actual, or thermometric, heat. We are quite ignorant

of the condition of energy in bodies generally. We know how much goes in, and how much
comes out, and we know whether at entrance or exit it is in the form of heat or of work. But
that is all."

If we define thermodynamics, as I think we may now do, as the investi-

gation of the dynamical and thermal properties of bodies, deduced entirely
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from what are called the First and Second laws of Thermodynamics, without

any hypotheses as to the molecular constitution of bodies, all speculations as

to how much of the energy in a body is in the form of heat are quite out

of place.

Prof. Tait, however, does not seem to have noticed that Prof Clausius, in

a footnote to his sixth memoir*, tells us what he means by the heat in a

body. In the middle of a sentence we read :—

a the heat actually present in a unit weight of the substance in question—in other words,

the vis viva of its molecular motions"

Thus the doctrine that heat consists of the vis viva of molecular motions,

and that it does not include the potential energy of molecular configuration—

the most important doctrine, if true, in molecular science—is introduced in a

footnote under cover of the unpretending German abbreviation " d.h."

Prof Clausius is himself the principal founder of the kinetic theory of

gases. The theory of the exchanges of the energy of collections of molecules

was afterwards developed by Boltzmann to a much greater extent than had

been done by Clausius, and it appears from his investigations that whether we

suppose the molecules to be acted on by forces towards fixed centres or not,

the condition of equilibrium of exchange of energy, or in other words the

condition of equality of temperature of two bodies, is that the average kinetic

energy of translation of a single molecule is the same in both bodies.

We may therefore define the temperature of a body as the average kinetic

energy of translation of one of its molecules multiplied into a constant which

is the same for aU bodies. If we also define the total heat of the body as

the sum of the whole kinetic energy of its molecules, then the total heat

must be equal to the temperature multiplied into the number of molecules,

and by the ratio of the whole kinetic energy to the energy of translation,

and divided by the above constant.

The kinetic theory of gases has therefore a great deal to say about what

Rankine and Clausius call the actual heat of a body, and if we suppose that

molecules never coalesce or spUt up, but remain constant in number, then we

may also assert, all experiments notwithstanding, that the real capacity for

heat (as defined by Clausius) is constant for the same substance in all conditions.

* Hirst's translation, p. 230, German edition, 1864, p. 258, "wirklich vorhandene Warme, d.h.

die lebendige Kraft seiner Molecularbewegungen."

VOL. IL
^^
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Eankine, indeed, probably biassed by the results of experiments, allowed that

the real specific heat of a substance might be different in different states of

aggregation, but Clausius has clearly shewn that this admission is illogical,

and that if we admit any such changes, we had better give up real specific

heat altogether.

Statements of this kind have their legitimate place in molecular science,

where it is essential to specify the dynamical condition of the system, and to

distinguish the kinetic energy of the molecules from the potential energy of

their configuration; but they have no place in thermodynamics proper, in which
we deal only with sensible masses and their sensible motions.

Both Rankine and Clausius have pointed out the importance of a certain

function, the increase or diminution of which indicates whether heat is entering

or leaving the body. Rankine calls it the thermodynamic function, and Clausius

the entropy. Clausius, however, besides inventing the most convenient name
for this function, has made the most valuable developments of the idea of

entropy, and in particular has established the most important theorem in the
whole science,—that when heat passes from one body to another at a lower

temperature, there is always an increase of the sum of the entropy of the two
bodies, from which it follows that the entropy of the universe must always

be increasing.

He has also shewn that if the energy of a body is expressed as a

function of the volume and the entropy, then its pressure (with sign reversed)

and its temperature are the differential coefficients of the energy with respect

to the volume and the entropy respectively, thus indicating the symmetrical

relations of the five principal quantities in thermodynamics.

But Clausius, having begun by breaking up the energy of the body into

its thermal and ergonal content, has gone on to break up its entropy into

the transformational value of its thermal content and the disgregation.

Thus both the energy and the entropy, two quantities capable of direct

measurement, are broken up into four quantities, all of them quite beyond
the reach of experiment, and all this is owing to the actual heat which
Clausius, after getting rid of the latent heat, suffered to remain in the body.

Sir William Thomson, the last but not the least of the three great founders,

does not even consecrate a symbol to denote the entropy, but he was the

first to clearly define the intrinsic energy of a body, and to him alone are due
the ideas and the definitions of the available energy and the dissipation of
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energy. He has always been most careful to point out the exact extent of

the assumptions and experimental observations on which each of his statements

is based, and he avoids the introduction of quantities which are not capable

of experimental measurement. It is therefore greatly to be regretted that his

memoirs on the dynamical theory of heat have not been collected and reprinted

in an accessible form, and completed by a formal treatise, in which his method

of building up the science should be exhibited in the light of his present

knowledge.

The touchstone of a treatise on thermodynamics is what is called the second

law.

Rankine, as we have seen, founds it on statements which may or may not

be true, but which cannot be considered as established in the present state

of science.

The second law is introduced by Clausius and Thomson as an axiom on which

to found Camot's theorem that the efficiency of a reversible engine is at least as

great as that of any other engine working between the same limits of temperature.

If an engine of greater efficiency exists, then, by coupling this engine with

Camot's engine reversed, it is possible to restore to the hot body as much heat

as is taken from it, and at the same time to do a certain amount of work.

If with Carnot we suppose heat to be a substance, then this work would

be performed in direct violation of the first law—the principle of the conser-

vation of energy. But if we regard heat as a form of energy, we cannot apply

this method of reductio ad ahsurdum, for the work may be derived from the

heat taken from the colder body.

Clausius supposes all the work gained by the first engine ta be expended

in driving the second. There is then no loss or gain of heat on the whole,

but heat is taken from the cold body, and an equal quantity communicated to

the hot body, and this process might be carried on to an indefinite extent.

In order to assert the impossibility of such a process in a form of words

having sufficient verisimilitude to be received as an axiom, Clausius, in his

first memoir, simply says that this process " contradicts the general deportment

of heat, which everywhere exhibits the tendency to equalize differences of

temperature, and therefore to pass firom the warmer to the colder body *."

* Und das widerspricht denx sonstigen Verhalten der "Warme, indem sie iibemll das Bestreben

zeigt, vorkommende Temperaturdifferenzen auszugleichen und also aiis den warmeren Korpem in die

kalteren iiberzugehen.

84—2
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In its obvious and strict sense no axiom can be more irrefragable. Even

in the hypothetical process, the impossibility of which it was intended to

assert, every communication of heat is from a warmer to a colder body.

When the heat is taken from the cold body it flows into the working substance

which is at that time still colder. The working substance afterwards becomes

hot, not by communication of heat to it, but by change of volume, and when

it communicates heat to the hot body it is itself still hotter.

It is therefore hardly correct to assert that heat has been transmitted or

transferred from the colder to the hotter body. There is undoubtedly a transfer

of energy, but in what form this energy existed during its middle passage is

a question for molecular science, not for pure thermodynamics.

In a note added in 1864 Clausius states the principle in a modified form,

"that heat cannot of itself pass from a colder to a warmer body"* and finally,

in the new edition of his TJieory of Heat (1876) he substitutes for the words

"of itself" the expression "without compensation f."

With respect to the first of these emendations we must remember that

the words "of itself" are not intended to exclude the intervention of any kind

of self-acting machinery, and it is easy, by means of an engine which takes

in heat from a body at 200" C, and gives it out at 100° to drive a freezing

machine so as to take heat from water at 0", and so freeze* it, and also a

fi-iction break so as to generate heat in a body at 500". It would therefore

be necessary to exclude all bodies except the hot body, the cold body, and

the working substance, in order to exclude exceptions to the principle.

By the introduction of the second expression, " without compensation," com-

bined with a full interpretation of this phrase, the statement of the principle

becomes complete and exact ; but in order to understand it we must have a

previous knowledge of the theory of transformation-equivalents, or in other

words of entropy, and it is to be feared that we shall have to be taught

thermodynamics for several generations before we can expect beginners to receive

as axiomatic the theory of entropy.

Thomson, in his "Third Paper on the Dynamical Theory of Heat" (Trails.

R. S. Edin. xx. p. 265, read March 17, 1851), has stated the axiom as follows :

—

* Dass die Warme nicht von selbst aus einem kalteren in einem warmeren Korper iiber-

gehen kann.

t Ein Warmeubergang aus einem kalteren in einem warmeren KiJrper kann nicht ohne Com-
pensation Statt finden.
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" It is impossible, by means of inauiraate material agency, to derive mechunical effect from any

portion of matter by cooling it below the temperature of the coldest of surrounding objects."

Without some further restriction this axiom cannot be considered as true,

for by allowing air to expand we may derive mechanical effect from it by

cooling it below the temperature of the coldest of surrounding objects.

If we make it a condition that the material agency is to be left in the

same state at the end of the process as it was at first, and also that the

mechanical eflfect is not to be derived from the pressure of the hot or of the

cold body, the axiom will be rendered strictly true, but this brings us back

to a simple re-assertion of Carnot's principle, except that it is extended from

heat engines to all other kinds of inanimate material agency.

It is probably impossible to reduce the second law of thermodynamics to

a form as axiomatic as that of the first law, for we have reason to believe

that though true, its truth is not of the same order as that of the first law.

The first law^ is an extension to the theory of heat of the principle of

conservation of energy, which can be proved mathematically true if real bodies

consist of matter "as per definition," acted on by forces having potentials.

The second law relates to that kind of communication of energy which

we call the transfer of heat as distinguished from another kind of communication

of energy which we call work. According to the molecular theory the only

difference between these two kinds of communication of energy is that the

motions and displacements which are concerned in the communication of heat

are those of molecules, and are so numerous, so small individually, and so

irregular in their distribution, that they quite escape all our methods of obser-

vation ; w^hereas when the motions and displacements are those of visible bodies

consisting of great numbers of molecules moving altogether, the communication

of energy is called work.

Hence we have only to suppose our senses sharpened to such a degree

that we could trace the motions of molecules as easily as we now trace those

of large bodies, and the distinction between work and heat would vanish, for

the communication of heat would be seen to be a communication of energy of

the same kind as that which we call work.

The second law must either be founded on our actual experience in dealing

with real bodies of sensible magnitude, or else deduced from the molecular theory

of these bodies, on the hypothesis that the behaviour of bodies consisting of

millions of molecules may be deduced from the theory of the encounters of
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pairs of molecules, by supposing the relative frequency of different kinds of

encounters to be distributed according to the laws of probability.

The truth of the second law is therefore a statistical, not a mathematical,

truth, for it depends on the fact that the bodies we deal with consist of

millions of molecules, and that we never can get hold of single molecules.

Sir William Thomson* has shewn how to calculate the probability of the

occurrence within a given time of a given amount of deviation from the most

probable distribution of a finite number of molecules of two different kinds

in a vessel, and has given a numerical example of a particular case of the

diffusion of gases.

The same jnethod might be extended to the diffusion of heat by conduction,

and the diffusion of motion by internal friction, which are also processes by

which energy is dissipated in consequence of the motions and encounters of

the molecules of the system.

The tendency of these motions and encounters is in general towards a

definite state, in which there is an equilibrium of exchanges of the molecules

and their momenta and energies between the different parts of the system.

If we restrict our attention to any one molecule of the system, we shall

find its motion changing at every encounter in a most irregular manner.

If we go on to consider a finite number of molecules, even if the system

to which they belong contains an infinite number, the average properties of this

group, though subject to smaller variations than those of a single molecule, are

still every now and then deviating very considerably from the theoretical mean

of the whole system, because the molecules which form the group do not submit

their procedure as individuals to the laws which prescribe the behaviour of

the average or mean molecule.

Hence the second law of thermodynamics is continually being violated, and

that to a considerable extent, in any sufficiently small group of molecules

belonging to a real body. As the number of molecules in the group is increased,

the deviations from the mean of the whole become smaller and less frequent;

and when the number is increased till the group includes a sensible portion

of the body, the probability of a measurable variation from the mean occurring

in a finite number of years becomes so small that it may be regarded as

practically an impossibility.

* "On the Kinetic Theory of the Dissipation of Energy," Proc. U.S. Edin., February 16, 1874,

Vol. VIII. p. 323, also in Nature, Vol. ix. p. 441.
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This calculation belongs of course to molecular theory and not to pure

thermodynamics, but it shews that we have reason for believing the truth of

the second law to be of the nature of a strong probability, which, though it

falls short of certainty by less than any assignable quantity, is not an absolute

certainty.

Several attempts have been made to deduce the second law from purely

dynamical principles, such as Hamilton's principle, and without the introduction

of any element of probability. If we are right in what has been said above,

no deduction of this kind, however apparently satisfactory, can be a sufficient

explanation of the second law. Indeed some of them have already indicated

their unsoundness by leading to determinations of physical quantities which

have no existence, such as the periodic time of the alternations of the volume

of particular gases'"'.

* Szily, Phil. Mag., October, 1876 ; Clausius, Pogg. Ann, cxlh. p. 433 ; Pogg. Ann. cxlvi.

p. 585, May, 1872; J. J. Muller, Pogg. Ann. CLii. p. 105.



[From the Proceedings of the London Mathematical Society, Vol. ix.]

XCII. On the Electrical Capacity of a long narrow Cylinder, and of a Disk of
sensible Thickness.

The distribution of electricity in equilibrium on a straight line without
breadth is a uniform one. We may expect, therefore, that the distribution on
a cylinder will approximate to uniformity as the radius of the cylinder diminishes.

Let 2l be the length of the cylinder, and h its radius.

Let X be measured along the axis from the middle point of the axis, and
let y be the distance of any point from the axis.

Let X be the linear density on the curved surface of the cylinder; that

is, let \dx be the charge on the annular element dx.

Let a be the surface-density on the flat ends.

Then, at a point on the axis for which ^=x, the potential (»//) is

the first integral being extended over the curved surface, and the other two
over the positive and negative flat ends respectively.

If the electricity is in equilibrium in the cyHnder, V» must be constant
for all points within the cylinder, and therefore for all points on the axis.

Also, by Art. 144 of Electricity and Magnetism, if i/» is constant for all

points on the axis, it is constant for all points within the surface of the
cylinder.

If we suppose X and o- constant,
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where /i and /, are the distances of the point ($) on the axis from the positive

and negative edges of the curved surface.

At the middle of the axis,

i=0, and f^=f, = JFTb\

At either end of the axis, i = l. f^ = h, f^ = 2l, nearly,

^^f^
= X log Y + 27ra-6.

Just within the cylinder, when ^ is just less than I,

-j-^ = — ^ ( T ~ 7) + 27ro- = by hypothesis.

Hence 2Trhcr = X,

or the density on the end must be equal to that on the curved surface.

The whole charge is therefore E=2Trba- {2l + h).

The greatest potential is !/;«))
= 27r6cr

(
2 log y- + -r

The smallest potential is that at the curv^ed edge, and is approximately

V'(.)
= 27r6o-(^log-^ +-

and the capacity must lie between

E 2l + b , E 2l + b
and -r—

^'' 2log^ +
y

'^^^^ log^+^

These are the limits between which Cavendish shews that the capacity

must lie. When the cylinder is very narrow, the upper limit is nearly double

the lower, so that we cannot obtain in this way any approximation to the

true value.

To obtain an approximation, we may make use of the following method,

in which we neglect the effect of the flat ends, and consider the cylinder as

a hollow tube :

—

vol* IL 85
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Let Q be the potential energy of any arbitrary distribution of electricity

on the cylinder,

The charge is ^~
\

^^^'

Let us now suppose this charge to distribute itself so as to pass into

the state of equilibrium ; then the potentid will become uniform, and equal,

say, to t/zo, and Qo^^^a^-

If K is the capacity of the conductor,

E==Kx}j„ and J^=l^-

Since Q, the potential energy due to any arbitrary distribution of the

charge, may be greater, but cannot be less, than Qq, the energy of the same

charge in equilibrium, the capacity may be greater, but cannot be less, than

IE'

2Q ^^ r+i

This inferior limit of the capacity is greater than that derived from the

maximum value of the potential, and, as we shall see, often gives a very close

approximation to the truth. Thus, if we suppose, in the case of the cylinder,

\ to be uniform,

E=2\l, Q = 2\H(log'^-'(^

^^'here f'^
=W + If. For a long narrow cylinder,

I
Kq

1
-i'

,

To obtain a closer approximation, let us suppose the distribution to be of

any form, and to be expressed in the form of a series of harmonics.

The potential due to any such distribution at a given point may be

expressed in terms of spherical harmonics of the second kind. See Ferrers'

Spherical Harmonics, Chap. v.
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If we write '*~2 "/^' 2

—

I

—

'

where r, and 1\ are the distances of a given point from the ends of the Hne,

and if the Hnear density is expressed by

where Pi is the zonal harmonic of degree i, then the potential at the given

point (a, y8) is i/, = S^,^, (a) P, {^).

where Qi is the zonal harmonic of the second kind, and is of the form

^,(a) = P.(a)log^ + /?.(4

where i?^ (a) is a rational function of a of (i-l) degrees, and is such that

Qi (a) vanishes when a is infinite, thus :

«.W = (^'-i)log^;-3a.

ftW = (|a'-|a)log«^-5..|.

At a point at a very small distance h from the line, if we write

X = log ^— +log
^^

,

the potential due to the distribution whose linear density is

is approximately

V'i = ^i^i(^7J|_^- 2(^1 --"272^+ 2.3.3 2.3.4.4
i-^^;j'
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thus, if

ELECTRICAL CAPACITY OF A LONG NARROW CYLINDER,

K = A,

K =A

5^_Sx
2 1' 2 1

5.7 X* ^'J^,^
8 I' 4 ^^ ' 8

)

tlien approximately

3f V

^.=-.(lf-|f)(--y>

If we write 2 for log- r^ , or approximately 2= logy, we find, to

the same degree of approximation,
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Determining A, so as to make
j

(X,, + X,) (i//,, + \//,) c/f a niininmni, and re-

membering that E = 2lAg, we find

A -A ^ ^

30

and we obtain as a second approximation

IK>
2-1-A

36 p_l<^l
30~

Unless the length of the cylinder considerably exceeds 7*245 times its

diameter, this approximation is of little use, for this ratio makes A, infinite.

It shews, however, that when the ratio of the length to the diameter increases

without Hmit, the electric density becomes more nearly uniform, and the

expression for K^ approximates to the true capacity.

We may go on to a third approximation by determining A^ and A^ so that

(X<, 4- Xj + X,) {xj/a + xp2 + V'4) ^^ shall be a minimum ; whence

„ 3373

A A^
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When 2 is very great, the distribution of electricity is expressed by the

equation

which shews that, as the ratio of the length to the diameter increases, the

density becomes more nearly uniform, and the deviation from uniformity becomes

more confined to the parts near the ends of the cylinder.

To indicate the character of the approximation, I have calculated 2 and

the three terms of the denominator of K^ for different values of the ratio of

/ to h. When this ratio is less than 100, the third term is unavailable.

r 2 1st term. 2nd term. 3rd term.

10 3-68888. 2-68888-0-43151

20 4-38203. 3-38203-0-13680

30 4-78749 . 3-78749-0-09775

50 5-29832.4-29832-0-07191

100 5-99146 . 4-99146-0-05291-0-13566

1000 8-29405 . 7-29405-0-02818-0-00892.

Examples of the apphcation of the method to the calculation of the

capacities of a cyHnder in presence of a plane conducting surface, and in

presence of another equal cylinder, will be given in the notes to the forth-

coming edition of Cavendish's Electrical Resecirclies, as illustrations of measure-

ments made by Cavendish in 1771.

Electnc Capacity of a Disk of sensible Thickness.

We may apply the same method to determine the capacity of a disk of

radius a and thickness h, h being very small compared with a.

We may begin by supposing that the density on the flat surfaces is the

same as when the disk is infinitely thin.

Let a and y8 be the elliptic co-ordinates of a given point with respect to

the lower disk, or in other words let the greatest and least distances of the

point from the edge of the disk be a(a-f/3) and a(a — ^).
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The diatance of the given point from the axis is

r = aa^ (l),

and its distance from the plane of the lower disk is

2 = a(a'-l)*(l-;8-y (2).

If we write a^/ = a" — ?-^
(3\

then, if A^ is the charge of thfe upper disk, distributed as when undisturbed

by the lower disk, the density at any point is

" =2^ W-

If A, is the charge of the lower disk, also undisturbed, the potential at

the given point due to it is

i// = ^,a"' coseC'a (5),

or, if we write a- =y+l (6),

V;
= ^,a-'('^-tan-'yj (7).

We have next to find the relation between p and y when the given

point is in the upper disk, and therefore z = h.

Equation (2) becomes b- = ay- [l — ^) (8),

and p-=l-a'/3' (9),

or p* = ___y + _ (10).^ ay- 'a- ^ '

Since the given point is on the upper disk, and since h is small, p must

be between 1 and 0, and y between- and (-) ; and between those limits we
a \aj

may write, as a sufficient approximation for our purpose,

-— .^[i.g)'][..e)T (u).

We have now to find the value of the surface integral of the product of

the density into the potential taken over the upper disk, or

\2nrdr(r^ = A,A,a-' (^ - Ttan-yrZ/j) (12).
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Substituting the value of tan~^y from (11), the integral in (12) becomes

The corresponding quantity for the action of the upper disk on itself is

got by putting A^ = Ai and 6 = 0, and is

^y'l (11)-

In the actual case, A^ = A^ = \E, when E is the whole charge; and the

lower limit of the capacity is therefore

"-a-©'j'4©'«j
;

'""

but since we have assumed that h is very small compared with a, we may

express our result with sufl&cient accuracy in the form

A'=|(« + ^Mogf) (16).

or, the capacity of two equal disks is equal to that of a single disk whose

circumference exceeds that of either disk by h log
a

b'

If the space between the disks is filled up, so as to form a single disk

uf sensible thickness, there will be a certain charge on the cylindric surface;

but, at the same time, the charge on the inner sides of the disks will vanish,

and that on the outer sides of the disks will be diminished, so that the capacity

of a disk of sensible thickness is very little greater than that given by (16).



[From the Philosophical Transactions of the Royal Society, Part I. 1879.]

XCIII. On Stresses in Rainfied Gases arising from Inequalities of Temperature.

1. In this paper I have followed the method given in my paper " On

the Dynamical Theory of Gases" (Phil. Trans., 1867, p. 49). I have shewn

that when inequalities of temperature exist in a gas, the pressure at a given

point is not the same in all directions, and that the difference between the

maximum and the minimum pressure at a point may be of considerable magnitude

when the density of the gas is small enough, and when the inequalities of

temperature are produced by small* solid bodies at a higher or lower temperature

than the vessel containing the gas.

2. The nature of this stress may be thus defined :—Let the distance from

a given point, measured in a given direction, be denoted by h ; then the space-

* The dimensions of the bodies must be of the same order of magnitude as a certain length

X, which may be defined as the distance travelled by a molecule with its mean velocity during

the time of relaxation of the medium.

The time of relaxation is the time in which inequalities of stress would disappear if the rate

at which they diminish were to continue constant. Hence

\7rpJ p '^Vy^pp)
'

On the hypothesis that the encounters between the molecules resemble those between " rigid

elastic" spheres, the free path of a molecule between two successive encounters has a definite

meaning, and if I is its mean value,

So that the mean path of a molecule may be taken as representing what we mean by "small".

If the force between the molecules is supposed to be a continuous function of the distance,

the free path of a molecule has no longer a definite meaning, and we must fall back on the

quantity X, as defined above.

VOL. II. 86
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variation of the temperature for a point moving along this line will be denoted

by -jr, and the space-variation of this quantity along the same line by -yy-,.

(PR
There will, in general, be a particular direction of the line h for which -yy-,

is a maximum, another for which it is a minimum, and a third for which it is

a maximum-minimum. These three directions are at right angles to each other,

and are the axes of principal stress at the given point ; and the part of the

stress arising from inequalities of temperature is, in each of these principal axes,

''

p9 dh'

'

where /u, is the coefficient of viscosity, p the density, and 6 the absolute

temperature.

3. Now for dry air at IS'C, jti, = l*9xl0"* in centimetre-gramme-second

measure, and -^ = -0'315, where p is the pressure, the unit of pressure being

one dyne per square centimetre, or nearly one-millionth part of an atmosphere.

If a sphere of 2a centimetres in diameter is T degrees centigrade hotter

than the air at large distances from it, then, when there is a steady flow

of heat, the temperature at a distance of r centimetres from the centre will be

6=0,+ —, and-T^ = —5-.

Hence, at a distance of r centimetres from the centre of the sphere, the

pressure in the direction of the radius arising from inequality of temperature

will be

—3 0*63 dynes per square centimetre.

4. In Mr Crookes' experiments the pressure, p, was often so small that

this stress would be capable, if it existed alone, of producing rapid motion

in a radiometer.

Indeed, if we were to consider only the normal part of the stress exerted

on solid bodies immersed in the gas, most of the phenomena observed by

Mr Crookes could be readily explained.

5. Let us take the case of two small bodies symmetrical with respect

to the axis joining their centres of figure. If both bodies are warmer than
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the air at a distance from them, then, in any section perpendicular to the

axis joining their centres, the point where it cuts this line will have the

highest temperature, and there will be a flow of heat outwards from this

axis in all directions.

Hence ,,, will be positive for the axis, and it will be a line of maximum

pressure, so that the bodies will repel each other.

If both bodies are colder than the air at a distance, everything will be

reversed ; the axis will be a line of minimum pressure, and the bodies will

attract each other.

If one body is hotter and the other colder than the air at a distance,

the effect will be smaller, and it will depend on the relative sizes of the

bodies, and on their exact temperatures, whether the action is attractive or

repulsive.

6. If the bodies are two parallel disks very near to each other, the

central parts will produce very little effect, because between the disks the

temperature varies uniformly, and -Tn=0. Only near the edges will there be

any stress arising from inequality of temperature in the gas.

7. If the bodies are encircled by a ring having its axis in the line

joining the bodies, then the repulsion between the two bodies, when they are

warmer than the air in general, may be converted into attraction by heating

the ring so as to produce a flow of heat inwards towards the axis.

8. If a body in the form of a cup or bowl is warmer than the air, the

distribution of temperature in the surrounding gas is similar to the distribution

of electric potential near a body of the same form, which has been investigated

by Sir W. Thomson. Near the convex surface the value of -rr^ is nearly the

same as if the body had been a complete sphere, namely 2T—, where T is

the excess of temperature, and a is the radius of the sphere. Near the

concave surface the variation of temperature is exceedingly small.

Hence the normal pressure will be greater on the convex surface than

on the concave surface, and if we were to neglect the tangential pressures we

might think this an explanation of the motion of Mr Crookes cups.
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Since the expressions for the stress are linear as regards the temperature,

everything will be reversed when the cup is colder than the surrounding air.

9. In a spherical vessel, if the two polar regions are made hotter than the

equatorial zone, the pressure in the direction of the axis will be greater than

that parallel to the equatorial plar^e, and the reverse will be the case if the

polar regions are made colder than the equatorial zone.

10. All such explanations of the observed phenomena must be subjected

to careful criticism. They have been obtained by considering the norqaal

stresses alone, to the exclusion of the tangential stresses, and it is much

easier to give an elementary exposition of the former than of the latter.

If, however, we go on to calculate the forces acting on any portion of the

gas in virtue of the stresses on its surface, we find that when the flow

of heat is steady, these forces are in equilibrium. Mr Crookes tells us that

there is no molar current or wind in his radiometer vessels. It is not easy

to prove this by experiment, but it is satisfactory to find that the system

of stresses here described as arising from inequalities of temperature will not,

when the flow of heat is steady, generate currents.

11. Consider, then, the case in which there are no currents of gas but

a steady flow of heat, the condition of which is

(In the absence of external forces such as gravity, and if the gas in contact

with solid bodies does not slide over them, this is always a solution of the

equations, and it is the only permanent solution.) In this case the equations

of motion shew that every particle of the gas is in equilibrium under the stresses

acting on it. Hence, any finite portion of the gas is also in equilibrium;

also, since the stresses are linear functions of the temperature, if we superpose

one system of temperatures on another, we also superpose the corresponding

systems of forces.

Now the system of temperatures due to a solid sphere of uniform tem-

perature immersed in the gas, cannot of itself give rise to any force tending

to move the sphere in one direction rather than in another. Let the sphere
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be placed within the finite portion of gas which, as we have said, is ah-eady

in equihbrium. The equihbriuin will not be disturbed. We may introduce

any number of spheres at difterent temperatures into the portion of gas, so as

to form a body of any shape, heated in any manner, and when the flow of

heat has become steady the whole system will be in equilibrium.

12. How, then, are we to account for the observed fact that forces act

between solid bodies immersed in rarified gases, and this, apparently, as long

as inequalities of temperature are maintained ?

I think we must look for an explanation in the phenomenon discovered in

the case of liquids by Helmholtz and Piotrowski", and for gases by Kundt and

Warburg t, that the fluid in contact wdth the surface of a solid must slide

over it with a finite velocity in order to produce a finite tangential stress.

The theoretical treatment of the boundary conditions between a gas and

a solid is difficult, and it becomes more diflicult if we consider that the gas

close to the surface is probably in an unknown state of condensation. We
shall therefore accept the results obtained by Kundt and Warburg on their

experimental evidence.

They have found that the velocity of sliding of the gas over the surface

due to a given tangential stress varies inversely as the pressure.

o

The coefficient of sliding for air on glass was found to be G = -

centimetres, where p is the pressure in millionths of an atmosphere. Hence

at ordinary pressures G is insensible, but in the vessels exhausted by Mr Crookes

it may be considerable.

Hence, if close to the surface of a solid there is a tangential stress S,

acting on a surface parallel to that of the body in a direction h parallel

to that surface, there will also be a sliding of the gas in contact with the

ST*
solid over its surface in the direction h with a finite velocity =-— .

13. I have not attempted to enter on the calculation of the efiect of

this sliding motion, but it is easy to see that if we begin with the case in

which there is no sliding, the instantaneous efiect of permission being given

• Wioier SUzb., xl. 1860, p. 607.

t Pogg. Ann., civ. 1875, p. 337.
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to the gas to slide must be to diminisli the action of all tangential stresses

on the surface, without affecting the normal stresses, and in course of time

to set up currents sweeping over the surfaces of solid bodies, thus completely-

destroying the simplicity of our first solution of the problem.

14. When external forces, such as gravity, act on the gas, and when the

thermal phenomena produce differences of density in different parts of the vessel,

then the well-known convection currents are set up. These also interfere with

the simplicity of the problem and introduce very complicated effects. All that

we know is that the rarer the gas and the smaller the vessel the less is

the effect of the convection currents, so that in Mr Crookes' experiments

they play a very small part.

We now proceed to the calculations :

—

(1) Encounter hetiveen Two Molecules.

The motion of the two molecules after an encounter depends on their

motion before the encounter, and is capable of being determined by purely

dynamical methods. If the encounter of the molecules does not cause rotation

or vibration in the individual molecules, then the kinetic energy of the centres

of mass of the two molecules must be the same after the encounter as it was

before.

This will be true on the average, even if the molecules are complex

systems capable of rotation and internal vibration, provided the temperature is

constant. If, however, the temperature is rising, the internal energy of the

molecules is, on the whole, increasing, and therefore the energy of translation

of their centres of mass must be, on an average, diminishing at every encounter.

The reverse will be the case if the temperature is falling.

But however important this consideration may be in the theory of specific

heat and that of the conduction of heat, it has only a secondary bearing on

the question of the stresses in the medium ; and as it would introduce great

complexity and much guesswork into our calculations, I shall suppose that the

gas here considered is one the molecules of which do not take up any sensible

amount of energy in the form of internal motion. Kundt and Warburg*

have shewn that this is the case with mercury gas.

* Pogg. Ann., clvii. 1876, p. 353.
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Let the masses of the molecule be M, and 3/„, and their velocity-

components ^,, -^i, ^,, and i„ rj,, Ci respectively. Let V be the velocity of

iT/, relative to M,.

Before the encounter let a straight line be drawn through M^ parallel to

V, and let a perpendicular 6 be drawn from M^ to this line. The magnitude

and direction of b and V will be constant as long as the motion is undisturbed.

Durino- the encounter the two molecules act on each other. If the force

acts in the line joining their centres of mass, the product hV will remain

constant, and if the force is a function of the distance, V and therefore 6

will be of the same magnitude after the encounter as before it, but their

directions will be turned in the plane of V and b through an angle 20, this

angle being a function of b and V, which vanishes for values of b greater

than the limit of molecular action. Let the plane through V and b make an

angle <j> %vith the plane through V parallel to x, then all values of
<f>

are

equally probable.

If ^i' be the value of ^i after the encounter,

^; = £. + ^.^^^^ ((^. - ^0 2 sin= ^ + K^^^

When the two molecules are of the same kind, TT^rq^^^' ^^^ ^^ ^^^

present investigation of a single gas we shall assume this to be the case.

If we use the symbol S to indicate the increment of any quantity due

to an encounter, and if we remember that all values of </> are equally probable,

so that the average value of cos
(f)

and of cos'
(f)

is zero, and that of cos'
<f>

is ^, we find

S(f, +Q =0 (2)

S(^.^+a=-[3(^.-^ir-^Tsin^^cos^^ (3)

S(fx^ + ^/)=-f(^. + ^.)[3(^,-^0=-P]sin-^cos'^ (4).

From these by transformation of coordinates we find

8(^>>7. + f.>7.)=-3(^,-^,){r7.-r70sin'^cos=^ (5)

HW + i;n^n = - 1 [9 i^.v: + ^^ri - 3 (^,V

+

W)
-

(^x +Q (077.^7, + P)]sin^ 6* cos' ^ (6)

+ LvX. + LvD']^nyOcos^e (7).
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[Application of Spherical Harmonics to the TJieory of Gases.

If we suppose the direction of the velocity of M^ relative to M^ to be

indicated by the position of a point P on a sphere, which we may call the

sphere of reference, then the direction of the relative velocity after the encounter

will be indicated by a point P', the angular distance PR being 2d, so that

the point R lies in a small circle, every position in which is equally probable.

We have to calculate the effect of an encounter upon certain functions of

the six velocity-components of the two molecules. These six quantities may
be expressed in terms of the three velocity-components of the centre of mass

of the two molecules (say u, v, iv), the relative velocity of M^ with respect

to M, which we call V, and the two angular coordinates which indicate the

direction of V. During the encounter, the quantities u, v, w and V remain the

same, but the angular coordinates are altered from those of P to those of P' on

the sphere of reference.

Whatever be the form of the function of ^i, t^j, 4, 4j "n-i^ 4> we may

consider it expressed in the form of a series of spherical harmonics of the

angular coordinates, their coefficients being functions of u, v, w, V, and we

have only to determine the effect of the encounter upon the value of the

spherical harmonics, for their coefficients are not changed.

Let 1'^"^ be the value at P of the surface harmonic of order n in the

series considered.

After the encounter, the corresponding term becomes what F^"^ becomes

at the point P", and since all positions of P' in a circle whose centre is P
are equally probable, the mean value of the function after the encounter must

depend on the mean value of the spherical harmonic in this circle.

Now the mean value of a spherical harmonic of order n in a circle, the

cosine of whose radius is /x, is equal to the value of the harmonic at the pole of

the circle multiplied by P^"' (/a), the zonal harmonic of order n, and amphtude /i.

Hence, after the encounter, F" becomes F">P<"^ (/a), and if F^ is the

corresponding part of the function to be considered, and 8F„ the increment of

P„ arising from the encounter, 8P„ = P„ (P'"' (/a)- 1).

This is the mean increment of F„ arising from an encounter in which

cos 20 = /x. The rate of increment is to be found from this by multiplying it
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by the number of encounters of each molecule per second in which /x lies

between /x and /x + f^/x, and integrating for all values of ^ from — 1 to + 1

.

This operation requires, in general, a knowledge of the law of force be-

tween the molecules, and also a knowledge of the distribution of velocity

among the molecules.

When, as in the present investigation, we suppose both the molecules to

be of the same kind, and take both molecules into account in the final

summation, the spherical harmonics of odd orders will disappear, so that if we

restrict our calculations to functions of not more than three dimensions, the

effect of the encounters will depend on harmonics of the second order only, in

which case P(«(/t) - 1 = |(/x^- 1) = -f 8in^2^.—Note added May, 1879.]

(2) Number of Encounters in Unit of Time.

We now abandon the dynamical method and adopt the statistical method.

Instead of tracing the path of a single molecule and determining the effects

of each encounter on its velocity-components and their combinations, we fix

our attention on a particular element of volume, and trace the changes in

the average values of such combinations of components for all the molecules

which at a given instant happen to be within it. The problem which now

presents itself may be stated thus : to determine the distribution of velocities

among the molecules of any element of the medium, the current-velocity and

the temperature of the medium being given in terms of the coordinates and

the time. The only case in which this problem has been actually solved is

that in which the medium has attained to its ultimate state, in which the

temperature is uniform and there are no currents.

Denoting by
dN =/i (^, 7), I, X, y, z, t) d^drjd^dxdydz

the number of molecules of the kind M, which at a given instant are within

the element of volume dxdydz, and whose velocity-components lie between the

limits ^±ic?^, 'q±\<i'n' C±i<^^^> Boltzmann has shewn that the function f must

satisfy the equation

di-^^\lx-^'^^dy^^^d^.'''^di^^d-n^'^di,^

+jjjdLdrjjc.jhdbjd<i>v{ff-f:f:)=o (8)

VOL. II. 87
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where /j, //, // denote what / becomes when in place of the velocity-com-

ponents of Ml before the encounter we put those of M., before the encounter,

and those of M^ and M^ after the encounter, respectively, and the integration

is extended to all values of
(f>

and h and of ^.,, rj.,, 4, the velocity-com-

ponents of the second molecule M,.

It is impossible, in general, to perform this integration without a know-

ledge, not only of the law of force between th^^ molecules, but of the form

of the functions fi, fa, /', //, which have themselves to be found by means of

the equation.

It is only for particular cases, therefore, that the equation has hitherto

been solved.

If the medium is surrounded by a surface through which no communica-

tion of energy can take place, then one solution of the equation is given by

the conditions

and

which give

/; = ^,e-'^(2^-+f'^'"^-^^'^> (9)

where i/zi is the potential of the force whose components are X^, Fj, Z^, and

^1 is a constant which may be different for each kind of molecules in the

medium, but h is the same for all kinds of molecules.

This is the complete solution of this problem, and is independent of any

hypothesis as to the manner in which the molecules act on each other during

an encounter. The quantity h which occurs in this expression may be deter-

mined by finding the mean value of i\ which is -. . Now in the kinetic

theory of gases, _
pe=p=Rpd (10)

where p is the pressure, p the density, 6 the absolute temperature, and R a

constant for a given gas. Hence

4=^" (11)-
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We shall suppose, however, with Boltzmann, that in a medium in which there

are inequalities of temperature and of velocity

dN=N{\+F(t'n,d)Mtr,,i)d^dridt, (12)

where i^ is a rational function of ^, tj, t„ which we shall suppose not to

contain terms of more than three dimensions, and f^ is the same function as

in equation (9).

Now consider two groups of molecules, each defined by the velocity-

components, and let the two groups be distinguished by the suffixes (,) and

(3). We have to estimate the nuAber of encounters of a given kind between

these two groups in a unit of volume in the time ht, those encounters only

being considered for which the limits of h and ^ are 'b±\dh and <f>±ld(f>.

Let us first suppose that both groups consist of mere geometrical points

which do not interfere with each other's motion. The group dN^ is moving

through the group dN, with the relative velocity V, and we have to find

how many molecules of the first group approach a molecule of the second group

in a manner which would, if the molecules acted on each other, produce an

encounter of the given kind. This will be the case for every molecule of the

first group which passes through the area hdbd(f> in the time 8^. The number

of such molecules is dN^Vhdhd^ht for every molecule of the second group,

so that the whole number of pairs which pass each other within the given

limits is

Vhdhd<l>dN,dN,ht,

and if we take the time Zt small enough, this will be the number of encounters

of the real molecules in the time ht.

(3) Effect of the Encounters.

We have next to estimate the efiect of these encounters on the average

values of different functions of the velocity-components. The effect of an indi-

vidual encounter on these functions for the pair of molecules concerned is

given in equations (3), (4), (5), (6), (7), each of which is of the form

SP = g sin' ^ cos' ^ (13)

where P and Q are functions of the velocity-components of the two molecules,
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and if we write P for the average value of P for the N molecules in unit

of volume, then taking the sum of the effects of the encounters

—

SSP = iV8P (14).

We thus find

^ =N ((((((((gsm^e COB'' eVbdhd<f>fJM^dr,M^di,drJJL --(IS). .

Now, since ^ is a function of h and V, the definite integral

vf'"! hsm'ecos'ddbd<i> = B (16)

will be a function of V only.

If the molecules are " rigid-elastic " spheres of diameter s,

B = ^7rs'V (17).

If they repel each other with a force inversely as the fifth power of the

distance, so that at a distance r the force is Kr~\ then

^=(iy^- (i«)

where A, is the numerical quantity 1'3682. In this case B is independent of V.

The experiments of 0. E. Meyer*, Kundt and Warburgt, PulujJ, Von
Obermayer§, Eilhard Wiedemann ||, and HolmanlT, shew that 'the viscosity of

air varies according to a lower power of the absolute temperature than the

first, probably the 077 power. If the \iscosity had varied as the first power

of the absolute temperature, B would have been independent of V. Though

this is not the case, we shall assume, for the sake of being able to effect the

integrations, that B is independent of V.

We shall find it convenient to write for B,

^=4 (">

where p is the hydrostatic pressure, N the number of molecules in unit of

Pogg. Ann., 1873, Bd. 148, p. 222. t Ibid. 1876, Bd. 159, p. 403.

X Wiener Sitz., 1874 and 1876. § Ibid. 1875.

|]
Arch, des Sci. Phys. et Nat., 1876, t. 56, p. 273.

H American Academy of Arts and Sciences, June 14, 1876. Phil. Mag., s. 5, vol, 3, No. 16,

Feb., 1877.
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volume, and /x a new coefficient which we shall afterwards find to be the

coefficient of viscosity.

Equation (15) may now be written

^^ = ^jjjjjJQfJMdvM4Ldr],dC, (2^)

where the integrations are all between the limits — ao and + oo , and f^ and /,

are of the form

f={l+F{lr),0}h'-7T-h-'^^-^'-^^ (21)

J^ H' 1' being small compared with unity.

We may write F in the form

F= (2hy {ai+/3ri + yi) + 2h (^a^f +i^T + W^' + l^ni + jo-i^+ ^^^)

+ (2A)* (la'f + \^rf + i/r + ia^ySf^ + ^aVf^ +^P^mX

+iparC+^r<'^+irPCi+apyH) (22)

where each combination of the symbols afiy is to be taken as a single in-

dependent symbol, and not as a product of the component symbols.

(4) Mean Values of Combinations of ^, -q, t,.

To find the mean value of any function of ^, -q, ^ for all the molecules

in the element, we must multiply this function by f and integrate with respect

to ^, -q, and l

If the non-exponential factor of any term contains an odd power of any

of the variables, the corresponding part of the integral will vanish, but if

it contains only even powers, each even power, such as 2n, will introduce a

factor

Rre^(2n-l)(2n-^) 3-1

into the corresponding part of the integral.

First, let the function be 1, then

l=|||/Jfrf,rf£ (-23)
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or

l = l+i{a' + l3' + y) (24)

which gives the condition

a- + /8= +/ = (25).

Let us next find the mean value of ^ in the same wsty, denoting the result

by the symbol $,

f=(i2^)i[a+ ^(a' + a^ + ay-")] (26).

Since in what follows we shall denote the velocity-components of each

molecule by u + ^, v-{-r), w + ^, where u, v, lo are the velocity-components of

the centre of mass of all the molecules within the element, it follows that the

mean values of $, tj, ^ are each of them zero. We thus obtain the equations

l3+ ^{a^fi +^ + /3y) = \ (27).

Remembering these conditions, we find that the mean values of combina-

tions of two, three, and four dimensions are of the forms

f =(Refa'

~ff ={Rd)ia^
\

(29)

|^=(i2^)ta/3y.

^ = '^'^-^
i (30).

(5) Rates of Decay of these Mean Values.

If any term of Q in equation (20) contains sjnnbols belonging to one

group alone of the molecules, the corresponding term of the integral may be

found from the above table, but if it contains symbols belonging to both



ARISING FROM INEQUALITIES OF TEMPERATURE. 695

groups we must consider the sextuple integral (20). But we shall not find

it necessary to do this for terms of not more than three dimensions, for in

these, if both groups of symbols occur, the index of one of them must be

odd, and the integral vanishes.

We thus find from equations (3), (4), (5), (G), and (7)

a' o.' (31)

l^ayS =-^a;8 (32)

|a^ =i^(-2a' + a^^ + ar) (33)

^ |a^^=i^(a-8a^ + ay) (34)

h^y=-ll-^y (^^)-

[Any rational homogeneous function of | 17 { is either a solid harmonic, or

a solid harmonic multiplied by a positive integral power of (^'-\-rj' + l;), or may

be expressed as the sum of a number of terms of these forms.

If we express any one of these terms as a function of u, v, u\ V and

the angular coordinates of V, we can determine the rate of change of each of

the spherical harmonics of the angular coordinates.

If we then transform the expression back to its original form as a function

of ^„ 77,, ^1, ^,, r},, 4. and if we add the corresponding functions for both

molecules, we shall obtain an expression for the rate of change of the original

function.

Thus among the terms of two dimensions we have the five conjugate soHd

harmonics

l(2f-T-C--),
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The rate of increase of each of these arising from the encounters of the

molecules is found by multiplying it by - -
. We may therefore call - the

" modulus of the time of relaxation " of this class of functions.

The function i"- + 7)- + C' is not changed by the encounters.

Homogeneous functions of three dimensions are either solid harmonics of

the third order or solid harmonics of the first order multiplied by C' + V^ + C\

or combinations of these.

3 V
The time modulus for solid harmonics of the third order is --.—Note

added May, 1879.]

That of I 7), or C, multiplied by e + v'-^C is ^^.

(6) Effect of External Foixes.

The only effect of external forces is expressed by equations of the form

1=^ w
The average values of ^, -q, I, and their combinations are not affected by

external forces.

(7) Variation of Mean Values ivithin an Element of Volume.

We have employed the symbol 8 to denote the variation of any quantity

within an element, arising either from encounters between molecules or from

the action of external forces.

There is a third way, however, in which a variation may occur, namely,

by molecules entering the element or leaving it, carrying their properties

with them.

We shall use the symbol d to denote the actual variation within a specified

element.

If MQ is the average value of any quantity for each molecule within the

element, then the quantity in unit of volume is pQ. We have to trace the

variation of p^.
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We begin with an element of volume moving with the velocity-com-

ponents U, V, W, then by the ordinary investigation of the "equation of

continuity
"

If after performing the differentiations we make U= u, V= v, W= iv, the

equation becomes for an element moving with the velocity {u, v, iv)

(8) Equation of Density.

Let us first make Q=l, then, since the mass of a molecule is invariable,

the equation becomes

5^ + ./^^^+^J^ + ^^) = (39),
dt ^\dx dy dzj ^ "

which is the ordinary "equation of continuity."

Eliminating by means of this equation the second term of the general

equation (38) we obtain the more convenient form

—

p'hiwi)+§^w^im)-pf, (^0).

(9) Equations of Motion.

Putting Q = u-\-^, this equation becomes

'''l + £(''f')+|;(''^)4z(''^«=''^' (*')

where any combination of the symbols ^, >y, t, is to be taken as the average

value of that combination.

Substituting their values as given in (28)

which is one of the three ordinary equations of motion of a medium in which

stresses exist.

VOL. IL 88
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(10) Terms of Two Dimensions.

Put Q = {u + ^)\ Since the resulting equation is true whatever be the values
of u, V, w, we may, after differentiation, put each of these quantities equal to
zero. We shall thus obtain the same result which we might have obtained
by elimination between this and the former equations. We find

or by substituting the mean values of these quantities from (29)

with two other equations of similar form.

Similarly we obtain by putting Q = {u + ^)(v-\-'q)

+pe[a dx + '^^Ty+ '^ydz+'^^T^ + ^-dy + ^y-dz

+ R [|^(p^aW + |^(p^a^) + ^^(p«Mr)]=--p^^ ...(45

with two other equations of like form for fiy and ya.

(11) Terms of TJiree Dimensions.

Putting Q=(uJr^* and in the final equation making u = c = iv = and

eliminating -j by (41) we find

"l^'-^yTx-^f^'nt^^f^^'Tz

='f'[s(''f')+^,(''f^)+lH=''sV" W'
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which gives

Since the combinations of a/3y represent small numerical quantities, we

may at this stage of the calculation, when we are dealing with terms of the

third order, neglect terms involving them, except when they are multiplied

by the large coeflScient p//x. The equation may then be written approxi-

mately :

—

3li?p0'^=^p{R0)'l£^{-2a' + ap-- + ay) ,(48).

Similarly, by putting Q = {u + i) {v + rjY, we obtain the approximate equation

(49),lf-pe^=p(Ref-P {a'-Sa^+ ay')

and in the same way we find

}^p0^J^
= p{R0)»l^(o.' + a^-Say) .(50).

(12) Approximate Values of Terms of Three Dimensions.

From equations (48), (49), and (50), we find

9iM/R\^d0 __^l^(R^dl
2p\dJ cbc' ''^-'^'>^~~2p\ej dx

From which by substitution we obtain

^ 9f./R\^de .. ., s,.(R\^de

, Sf.(R\^de

-y=^y=—2p[e I Tz

.(51).

The value of a^y is of a smaller order of magnitude, and we do not

require it in this investigation.

88—2
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(13) Equation of Temperature.

Adding the three equations of the form (44), and omitting tenns con-

taining small quantities of two dimensions, and also products of differential

coefficients such as i^ -7- , we find
ax ax

^_^_5iifdW d^ d^\ 2edp
dt 2p\dx''^df^ dzy'^zpdt ^^^^*

The first term of the second member represents the rate of increase of

temperature due to conduction of heat, as in Fourier's Theory, and the second

term represents the increase of temperature due to increase of density. We
must remember that the gas here considered is one for which the ratio of

the specific heats is 1"6.

(14) Stresses in the Gas.

Subtracting one-third of the sum of the three equations from (44), we

obtain

^ du 2 fdu dv dw\
^

. fji' d'0 ,
3 fji' fd'O ^

d'd
,
d'e\ , .

This equation gives the excess of the normal pressure in x above the

mean hydrostatic pressure jp. The first two terms of the second member

represent the effect of viscosity in a moving fluid, and are identical with those

given by Professor Stokes (Cambridge Transactions, Vol. viii., 1845, p. 297).

The last two terms represent the part of the stress which arises from inequality

of temperature, which is the special subject of this paper.

There are two other equations of similar form for the normal stresses in

y and z.

The tangential stress in the plane xy is given by the equation

n fdu d'v\ „ u,^ d-6 ,^ ..

^«^=-'^U+s)+%T<tory (^^)-

There are two other equations of similar form for the tangential stresses

in the planes of yz and zx.
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(15) F{7ial Equations of Motion.

"We are now prepared to complete the equations of motion by inserting in

(42) the values of the quantities a\ a/3, ay, and we find for the equation in x

dp fdhi d^u d?u\ 1 d fdu dv dw\

dx~^ \d? ^ 5P
"^
d?) ^l^dx\Ji^dy'^ dz)

9/x' df<P0 d'-e dH

2 pd ~dx [dx'
"*"

dy'
"^

dz

9 a' d (d'O d'd d'e\ ^ ,,^v

If we write

/--^^e4>j)-iie4>a (-)

-^^-^^ (")

or, if the pressure p is constant, so that po6-\- 9dp =

I0fjid$ f-a\P=P + Y0Ft ('')

then the equation (55) may be written

du dp' fd'u .
d^u .

d^uX ^ /-^x

If there are no external forces such as gravity, then one solution of the

equations is

u = v = w = 0, p' = constant,

and if the boundary conditions are such that this solution is consistent with

them, it will become the actual solution as soon as the initial motions, if any

exist, have subsided. This will be the case if no slipping is possible between

the gas and solid bodies in contact with it.

But if such slipping is possible, then wherever in the above solution there

is a tangential stress in the gas at the surface of a solid or liquid, there

cannot be equilibrium, but the gas will begin to slide over the surface till

the velocity of sliding has produced a frictional resistance equal and opposite

to the tangential stress. When this is the case the motion may become steady.
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I have not, however, attempted to enter into the calculation of the state of

steady motion.

[I have recently applied the method of spherical harmonics, as described

in the notes to sections (l) and (5), to carrying the approximations two

orders higher. I expected that this would have involved the calculation of

two new quantities, namely, the rates of decay of spherical harmonics of the

fourth and sixth orders, but I found that, to the order of approximation

required, all harmonics of the fourth and sixth orders may be neglected, so

that the rate of decay of harmonics of the second order, the time-modulus

of which is fi^p, determines the rate of decay of all functions of less than

6 dimensions.

The equations of motion, as here given (equation 55) contain the second

derivatives of u, v, w, with respect to the coordinates, with the coefficient fx.

I find that in the more approximate expression there is a term containing

the fourth derivatives of u, v, lu, with the coefficient
i^^

-h- pp.

The equations of motion also contain the third derivatives of 6 with the

coefficient i^-^pB, Besides these terms, there is another set consisting of the

fifth derivatives of with the coefficient fjL*-^p-j)0.

It appears from the investigation that the condition of the successful use

of this method of approximation is that I -„- should be small, where -rt denotes

differentiation with respect to a line drawn in any direction. In other words,

the properties of the medium must not be sensibly difierent at points within

a distance of each other, comparable with the "mean free path" of a molecule.

—Note added June, 1879.]
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APPENDIX.

(Added May, 1879.)

In the paper as sent in to the Royal Society, I made no attempt to

express the conditions which must be satisfied by a gas in contact with . a

sohd body, for I thought it very unUkely that any equations I could write

down would be a satisfactory representation of the actual conditions, especially

as it is almost certain that the stratum of gas nearest to a solid body is in

a very different condition from the rest of the gas.

One of the referees, however, pointed out that it was desirable to make

the attempt, and indicated several hypothetical forms of surfaces which might

be tried. I have tlierefore added the following calculations, which are carried

to the same degree of approximation as those for the interior of the gas.

It will be seen that the equations I have arrived at express both the

fact that the gas may slide over the surface with a finite velocity, the

previous investigations of which have been already mentioned;'" and the fact

that this velocity and the coiTesponding tangential stress are affected by

inequalities of temperature at the surface of the solid, which give rise to a

force tending to make the gas slide along the surface from colder to hotter

places.

This phenomenon, to which Professor Osborne Reynolds has given the

name of Thermal Transpiration, was discovered entirely by him. He was the

first to point out that a phenomenon of this kind was a necessary consequence

of the Kinetic Theory of Gases, and he also subjected certain actual phenomena,

of a somewhat different kind, indeed, to measurement, and reduced his measure-

ments by a method admirably adapted to throw light on the relations between

gases and solids.

It was not till after I had read Professor Reynolds' paper that I began

to reconsider the surface conditions of a giis, so that what I have done is

simply to extend to the surface phenomena the method which I think most

suitable for treating the interior of the gas. I think that this method is, in

* Sect. 12 of iutrodiictiou.
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some respects, better than that adopted by Professor Reynolds, while I admit

that his method is sufficient to establish the existence of the phenomena, though

not to afford an estimate of their amount.

The method which I have adopted throughout is a purely statistical one.

It considers the mean values of certain functions of the velocities within a

given element of the medium, but it never attempts to trace the motion of a

molecule, not even so far as to estimate the length of its mean path. Hence

all the equations are expressed in the forms of the differential calculus, in

which the phenomena at a given place are connected with the space variations

of certain quantities at that place, but in which no quantity appears which

explicitly involves the condition of things at a finite distance from that place.

The particular functions of the velocities which are here considered are

those of one, two, and three dimensions. These are sufficient to determine

approximately the principal phenomena in a gas which is not very highly

rarified, and in which the space-variations within distances comparable to \ are

not very great.

The same method, however, can be extended to functions of higher degrees,

and by a sufficient number of such functions any distribution of velocities,

however abnormal, may be expressed. The labour of such an approximation is

considerably diminished by the use of the method of spherical harmonics as

indicated in the note to Section I. of the paper.

On the Conditions to he Satisfied hy a Gas at the Surface of a Solid Body.

As a first hypothesis, let us suppose the surface of the body to be a

perfectly elastic smooth fixed surface, having the apparent shape of the scHd,

without any minute asperities.

In this case, every molecule which strikes the surface will have the normal

component of its velocity reversed, while the other components will not be

altered by impact.

The rebounding molecules will therefore move as if they had come from

an imaginary portion of gas occupying the space really filled by the solid, and

such that the motion of every molecule close to the surface is the optical

reflection in that surface of the motion of a molecule of the real gas.

In this case we may speak of the rebounding molecules close to the surface

as constituting the reflected gas. All directed properties of the incident gas
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are reflected, or, as Professor Listing might say, ^iJ^ri'er^ecZ in the reflected gas
;

that is to say, the properties of the incident and the reflected gas are sym-

metrical with respect to the tangent plane of the surface.

The incident and reflected gas together constitute the actual gas close to

the surface. The actual gas, therefore, cannot exert any stress on the surface,

except in the direction of the normal, for the ohlique components of stress in

the incident and reflected gas will destroy one another.

Since gases can actually exert oblique stress against real surfaces, such

surfaces cannot be represented as perfectly reflecting surfaces.

If a molecule, whose velocity is given in direction and magnitude, but

whose line of motion is not given in position, strikes a fixed elastic sphere,

its velocity after rebound may with equal probability be in any direction.

Consider, therefore, a stratum in which fixed elastic spheres are placed so

far apart from one another that any one sphere is not to any sensible extent

protected by any other sphere from the impact of molecules, and let the

stratum be so deep that no molecule can pass through it without striking one

or more of the spheres, and let this stratum of fixed spheres be spread over

the surface of the solid we have been considering, then every molecule which

comes from the gas towards the surface must strike one or more of the spheres,

after which all directions of its velocity become equally probable.

When, at last, it leaves the stratum of spheres and returns into the gas,

its velocity must of course be from the surface, but the probability of any

particular magnitude and direction of the velocity will be the same as in a

gas at rest with respect to the surface.

The distribution of velocity among the molecules which are leaving the

surface will therefore be the same as if, instead of the solid, there were a

portion of gas at rest, having the temperature of the solid, and a density

such that the number of molecules which pass from it through the surface in

a given time is equal to the number of molecules of the real gas outside

which strike the surface.

To distinguish the molecules, which, after being entangled in the stratum

of spheres, afterwards return into the sun*ounding gas, we shall call thera,

collectively, the absorbed and evaporated gas.

If the spheres are so near together that a considerable part of the surface

of each sphere of the outer layer is shielded from the direct impact of the

incident molecules by the spheres which lie next to it, then if we call that

VOL. II. 89



706 STRESSES IN RARIFIED GASES

point of each sphere which Hes furthest from the soHd the jpole of the sphere,

a greater proportion of molecules will strike any one of the outer layer of

spheres near its pole than near its equator, and the greater the obliquity of

incidence of the molecule, the greater will be the probability that it will strike

a sphere near its pole.

The direction of the rebounding molecule will no longer be with equal

probability in all directions, but there will be a greater probability of the

tangential part of its velocity being in the direction of the motion before

impact, and of its normal part being opposite to the normal part before

impact.

The condition of the molecules which leave the surface will therefore be

intermediate between that of evaporated gas and that of reflected gas, approach-

ing most nearly to evaporated gas at normal incidence and most nearly to

reflected gas at grazing incidence.

If the spheres, instead of being hard elastic bodies, are supposed to act

on the molecules at finite, though small distances, and if they are so close

together that their spheres of action intersect, then the gas which leaves the

surface will be still more like reflected gas, and less like evaporated gas.

We might also consider a surface on which there are a great number of

minute asperities of any given form, but since in this case there is consider-

able difficulty in calculating the eflect when the direction of rebound from the

first impact is such as to lead to a second or third impact, I have preferred

to treat the surface as something intermediate between a perfectly reflecting

and a perfectly absorbing surface, and, in particular, to suppose that of every

unit of area a portion f absorbs all the incident molecules, and afterwards

allows them to evaporate with velocities corresponding to those in still gas at

the temperature of the solid, while a portion 1 —f perfectly reflects all the

molecules incident upon it.

We shall begin by supposing that the surface is the plane yz, and that

the gas is on that side of it for which x is positive.

The incident molecules are those which, close to the surface, have their

normal component of velocity negative. We shall distinguish these molecules

by the suffix (i). For these, and these only, ^j is negative.

The rebounding molecules are those which have ^ positive. We shall

distinguish them by the suffix (,). Those which are evaporated will be further

distinguished by an accent.
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Symbols without any mark refer to the whole gas, incident, reflected, and

evaporated, close to the. surface.

The quantity of gas which is incident on unit of surface in unit of time,

is -pi^i'

Of this quantity the fraction 1-/ is reflected, so that the sign of ^ is

reversed, and the fraction / is evaporated, the mean value of | in evaporated

gas being f, where the accent distinguishes symbols belonging to unpolarized

gas at rest relative to the surface, and having the temperature, 0', of

the solid.

Equating the quantity of ga» which is incide.it on the absorbing part of the

surface to that which is evaporated from it, we have

fp.t+fp:i.'=o (60).

Equating the whole quantity of gas which leaves the surface to the reflected

and evaporated portions

pS={f-i)p.L+fp:L' (61)-

If we next consider the momentum of the molecules in the direction of

7j, that of the incident molecules is p,^,rj,. A fraction (1-/) of this is reflected

and becomes (l-f) p^Lv^, and a fraction/ of it is absorbed and then evaporated,

the mean value of -q being now -v, namely, the velocity of the surface rela-

tively to the gas in contact with it.

The momentum of the evaporated portion in the direction of y is there-

fore -fp.'L'v, and this, together with the reflected portion, makes up the whole

momentum which is leaving the surface, or

P.ein.={f-^)p^^^v^-fp^'^> (^-)-

Eliminating fp.'^.' between equations (61) and (62)

(l-/)M:^x + p.i.>?. + 4(l-/)p.^. + /'^^--l
= (63).

The values of functions of ^, rj and C for the incident molecules are to

be found by multiplying the expression in equation (22) by the given function,

and integrating with respect to ^ between the limits - oo and 0, and with

respect to -q and ^ between the limits ± oo

.

The values of the same functions for the molecules which are leaving the

surface are to be found by integrating with respect to ^ from to oo

.

We must remember, however, that since there is an essential discontmuity

in the conditions of the gas at the surface, the expression in equation (22) is

89—2
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a much less accurate approximation to the actual distribution of velocities in

the gas close to the surface than it is in the interior of the gas. We must,

therefore, consider the surface conditions at which we arrive in this way as

liable to important corrections when we shall have discovered more powerful

methods of attacking the problem.

For the present, however, we consider only terms of three dimensions or

less, and we find

p.^.= p{2u)-^(Ref{l+\a:)]
^^^^

p,^,-n,
= ipROa^ - ip (277)

-* Rda^^l

pljl., = \pRd<l^ + ^p{2ir)-^ Rdo:^\
^^^^•

Substituting these expressions in equation (63), and neglecting a^ in com

parison with unity, we find

{2-f)pRda/B-{-f{2TT)-^pR0a'^-^2f{27r)-^l+ia:)(Rdypv = O ...{66),

If we write

ff = |^(2,r)'(|>p)-»(?,-l) (67)

and substitute for ayS and a-/3 their values as given in equations (54) and (51),

and divide by 2 {ppf, equation (66) becomes

^Jdv S fx d'0 \ S fide ^ ,^-.

''-^\dx-2yed^ir)^4-pddy=^^
(^^^-

If there is no inequality of temperature, this equation is reduced to

^=^& (««)•

K, therefore, the gas at a finite distance from the surface is mo^dng

parallel to the surface, the gas in contact with the surface will be sUding over

it with the finite velocity v, and the motion of the gas will be very nearly

the same as if the stratum of depth G had been removed from the solid and

filled with the gas, there being now no slipping between the new surface of

the solid and the gas in contact with it.

The coefficient G was introduced by Helmholtz and Piotrowski under the

name of Gleitungs-coefficient, or coefficient of slipping. The dimensions of G are
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those of a line, and its ratio to I, the mean free path of a molecule, is given

by the equation

^=1(7-1)' (^°'-

Kundt and "Warburg found that for air in contact with glass, G = 2l,

whence we find f=^, or the surface acts as if it were half perfectly reflecting

and half perfectly absorbent. If it were wholly absorbent, G = ^l.

It is easy to write down the surface conditions for a surface of any form.

Let the direction-cosines of the formal v be I, m, n, and let us write

d ^ T
d , d , d

J tor l-j- + m^-+n-f-.
dv ax ay az

We then find as the surface conditions

dv 4: pd \dx dv^

..443 =

...(71).

In each of these equations the first term is one of the velocity-components

of the gas in contact with the surface, which is supposed fixed; the second

term depends on the slipping of the gas over the surface, and the third term

indicates the effect of inequalities of temperature of the gas close to the

surface, and shows that in general there will be a force urging the gas from

colder to hotter parts of the surface.

Let us take as an illustration the case of a capillary tube of circular

section, and for the sake of easy calculation we shall suppose that the motion

is so slow, and the temperature varies so gradually along the tube that we

may suppose the temperature uniform throughout any one section of the tube.

Taking the axis of the tube for that of z, we have for the condition of

steady motion parallel to the axis

dp

dz

/d*w d'wX ,^^.
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Since everything is symmetrical about the axis, if we write r^ for af + 2/'

we find as the solution of this equation

-=^+^1'" (^3).

If Q denotes the quantity, of gas which passes through a section of the

tube in unit of time

Q = 2nlpwrdr

=""^i^^r,t") ('')

At the inner surface of the tube we have r = a, and

4/A clz

Trpa^ 8 IX clz
^

'

also

dw_ 1 djj

'dv--2i,dz'' (^^)-

The last of equations (71) may therefore be written

Equation (77) gives the relation between the quantity of gas which passes

through any section of the tube, the rate of variation of pressure, and the

rate of variation of temperature in passing along the axis of the tube.

If the pressure is uniform there will be a flow of gas from the colder to

the hotter end of the tube, and if there is no flow of gas the pressure wiU

increase from the colder to the hotter end of the tube.

These efiects of the variation of temperature in a tube have been pointed

out by Professor Osborne Reynolds as a result of the Kinetic Theory of Gases,

and have received from him the name of Thermal Transpiration : a name in

strict analogy with the use of the word Transpiration by Graham.

But the phenomenon actually observed by Professor Reynolds in his ex-

periments was the passage of gas through a porous plate, not through a

capillary tube ; and the passage of gases through porous plates, as was shown
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by Graham, is of an entirely different kind from the passage of gases through

capillary tubes, and is more nearly analogous to the flow of a gas through a

small hole in a thin plate.

When the diameter of the hole and the thickness of the plate are both

small compared with the length of the free path of a molecule, then, as Sir

William Thomson has shown, any molecule which comes up to the hole on

either side will be in very little danger of encountering another molecule before

it has got fairly through to the other side.

Hence the flow of gas in either direction through the hole will take place

very nearly in the same manner as if there had been a vacuum on the other

side of the hole, and this whether the gas on the other side of the hole is

of the same or of a different kind.

If the gas on the two sides of the plate is of the same kind but at

different temperatures, a phenomenon will take place which we may call thermal

effusion.

The velocity of the molecules is proportional to the square root of the

absolute temperature, and the quantity which passes out through the hole is

proportional to this velocity and to the density. Hence, on whichever side the

product of the density into the square root of the temperature is greatest,

more molecules will pass from that side than from the other through the

hole, and this will go on till this product is equal on both sides of the hole.

Hence the condition of equilibrium is that the density must be inversely as

the square root of the temperature, and since the pressure is as the product

of the density into the temperature, the pressure will be directly proportional

to the square root of the absolute temperature.

The theory of thermal effusion through a small hole in a thin plate is

therefore a very simple one. It does not involve the theory of viscosity at all.

The finer the pores of a porous plate, and the rarer the gas which effuses

through it, the more nearly does the passage of gas through the plate corre-

spond to what we have called effusion, and the less does it depend on the

viscosity of the gas.

The coarser the pores of the plate and the denser the gas, the further

does the phenomenon depart from simple effusion, and the more nearly does it

approach to transpiration through a capillary tube, which depends altogether on

viscosity.
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To return to the case of transpiration through a capillary tube. When
the temperature is uniform

<^-tUO (^^)-

By experiments on capillary tubes of glass, MM. Kundt and Warburg

found* for the value of G for air at different pressures and at from 17"C
to 27" C,

o

G = - centimetres (79)
P

where ^) is the pressure in dynes per square centimetre, which is nearly the

same as in millionths of an atmosphere. For hydrogen on glass

15
G =— centimetres (80).

P

When there is no flow of gas in a tube in which the temperature varies

from end to end, the pressure is greater at the hot end than at the cold

end. Putting Q = we have

d&'^pdd' + iGa ^"'^-

The quantity 6 ^ is just double of that calculated in section (3) of the

introduction, and is therefore in C.G.S. measure 0'63 x_p for dry air at 15" C.

Let us suppose a = 0*01 centimetre, and the pressure 40 millimetres of mercury,

then (?= '00016 centimetre.

If one end of the tube is kept at 0"C. and the other at 100" C, the

pressure at the hot end will exceed that at the cold end by about 1*2

millionths of an atmosphere.

The difference of pressure might be increased by using a tube of smaller

bore and air of smaller density, but the effect is so. small that though the

theoretical proof of its existence seems satisfactory, an experimental verification

of it would be difficult.

* Pogg. Ann., July, 1876.



[From the Camhridrje Philosophical Society's Transactions, Vol. xii.]

XCIV. On Boltzmanns Theorem on the average distribution of energy in a system

of maternal points.

Dr Ludwig Boltzmann, in his " Studien liber das Gleichgewicht der

lebendigen Kraft zwisclien bewegten materiellen Punkten" [Sitzb. d. h. Akad.

Wien, Bd. lviii., 8 Oct. 1868], has devoted his third section to the general

solution of the problem of the equilibrium of kinetic energy among a finite

number of material points. His method of treatment is ingenious, and, as far

as I can see, satisfactory, but I think that a problem of such primary importance

in molecular science ought to be scrutinized and examined on every side, so

that as many persons as possible may be enabled to follow the demonstration,

and to know on what assumptions it rests. This is more especially necessary

when the assumptions relate to the degree of irregularity to be expected in

the motion of a system whose motion is not completely known.

Mr H. W. Watson, in his Treatise on the Kinetic Theory of Gases*, has

developed with great clearness the steps of the investigation of the distribution

of energy among a set of particles which are supposed to act on each other

only at very small distances. The particles may be acted on by external forces

such as gravity, but it is expressly stipulated that the time during which a

particle is encountering other particles is very small compared with the time

during which there is no sensible action between it and other particles ; and

also that the time during which a particle is simultaneously within the distance

of molecular action of more than one other particle may be neglected.

Now this method of treating the question, however necessary it may be

in the subsequent investigation of the processes of diffusion, &c. in gases, is

inapplicable to the theory of the equihbrium of temperature in liquids and

* Clarendon Press Series, 1876.

VOL. II. 90
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solids, for in these bodies the particles are never free from the action of

neighbouring particles. It is true that in following the steps of the investi-

gation, as given either by Boltzmann or by "Watson, it is difficult, if not

impossible, to see where the stipulation about the shortness and the isolation

of the encounters is made use of. We may almost say that it is introduced

rather for the sake of enabling the reader to form a more definite mental

image of the material system than as a condition of the demonstration. Be

this as it may, the presence of such a stipulation in the enunciation of the

problem cannot fail to leave in the mind of the reader the impression of a

corresponding limitation in the generality of the solution.

In the theorem of Boltzmann which we have now to consider there is no

such limitation. The material points may act on each other at all distances,

and according to any law which is consistent with the conservation of energy,

and they may also be acted on by any forces external to the system provided

these also are consistent with that law.

The only assumption which is necessary for the direct proof is that the

system, if left to itself in its actual state of motion, wall, sooner or later, pass

through every phase which is consistent with the equation of energy.

Now it is manifest that there are cases in which this does not take place.

The motion of a system not acted on by external forces satisfies six equations

besides the equation of energy, so that the system cannot pass through those

phases, which, though they satisfy the equation of energy, do not also satisfy

these six equations.

Again, there may be particular laws of force, as for instance that according

to which the stress between two particles is proportional to the distance between

them, for which the whole motion repeats itself after a finite time. In such

cases a particular value of one variable corresponds to a particular value of

each of the other variables, so that phases formed by sets of values of the

variables which do not correspond cannot occur, though they may satisfy the

seven general equations.

But if we suppose that the material particles, or some of them, occasionally

encounter a fixed obstacle such as the sides of a vessel containing the particles,

then, except for special forms of the surface of this obstacle, each encounter

will introduce a disturbance into the motion of the system, so that it will
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pass from one undisturbed path into another. The two paths must both satisfy

the equation of energy, and they must intersect each other in the phase for

which the conditions of encounter with the fixed obstacle are satisfied, but they

are not subject to the equations of momentum. It is difficult in a case of such

extreme complexity to arrive at a thoroughly satisfactory conclusion, but we may

with considerable confidence assert that except for particular forms of the surface

of the fixed obstacle, the system will sooner or later, after a sufficient number

of encounters, pass through every phase consistent with the equation of energy.

I shall begin with the case iip which the system is supposed to be contained

within a fixed vessel, and shall afterwards consider the case of a free system,

or of a system contained in a vessel rotating uniformly about an axis whicli

itself moves uniformly in a straight" line.

I have found it convenient, instead of considering one system of material

particles, to consider a large number of systems similar to each other in all

respects except in the initial circumstances of the motion, which are supposed

to vary from system to system, the total energy being the same in all. In

the statistical investigation of the motion, we confine our attention to the number

of these systems which at a given time are in a phase such that the variables

which define it lie within given limits.

If the number of systems which are in a given phase (defined with respect

to configuration and velocity) does not vary with the time, the distribution of

the systems is said to be steady.

It is shewn that if the distribution is steady, a certain function of the

variables must be constant for all phases belonging to the same path. If the

path passes through all phases consistent with the equation of energy, this

function must be constant for all such phases. If however there are phases

consistent with the equation of energy, but which do not belong to the same

path, the value of the function may be difierent for such phases.

But whether we are able or not to prove that the constancy of this

function is a necessary condition of a steady distribution, it is manifest that

if the function is initially constant for all phases consistent with the equation

of energy, it will remain so during the motion. This therefore is one solution,

if not the only solution, of the problem of a steady distribution.

Now we know from the empirical laws of the diffusion of heat that the

problem of the equilibrium of temperature in an isolated material system has

90—2
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one and only one solution. But we have found one solution of the problem

of equilibrium of energy in a system of material points in motion. If, therefore,

the real material system in which the equilibrium of temperature takes place

is capable of being accurately represented by a system of material points (as

defined in pure dynamics) acting on each other according to determinate, though

unknown, laws, then the mathematical condition of the equilibrium of energy

must be the dynamical representative of the physical condition of the equality

of temperature.

It appears from the theorem that in the ultimate state of the system the

average kinetic energy of two given portions of the system must be in the

ratio of the number of degrees of freedom of those portions. This, therefore,

must be the condition of the equality of temperature of the two portions of the

system.

Hence at a given temperature the total kinetic energy of a material system

must be the product of the number of degrees of freedom of that system

into a constant which is the same for all substances at that temperature, being

in fact the temperature on the thermodynamic scale multiplied by an absolute

constant.

If the temperature, therefore, is raised by unity, the kinetic energy is

increased by the product of the number of degrees of freedom into the absolute

constant.

The observed specific heat of the body, expressed in dynamical measure, is

the increment of the total energy when the temperature is increased by unity

The observed specific heat cannot therefore be less than the product of the

number of degrees of freedom into the absolute constant, unless the potential

energy diminishes as the temperature rises.

Dynamical Specification of the motion.

We shall begin by supposing the material system to be of the most general

type, having its configuration determined by the n variables q^, ^^-..^n, and its

motion determined by the corresponding momenta p^, 'p^...p^. The state of the

system at any instant is completely defined if we know the values of these

In variables for that instant.

We shall suppose the forces acting between the parts of the system to

be of the most general kind consistent with the conservation of energy. This
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may be expressed by defining V, the potential energy of the system, as a

function of <7i...g„, the variables which define the configuration.

The kinetic energy of the system is denoted by T. We shall suppose it

to be expressed in terms of the qs and ^j's as in Hamilton's method. The

total energy is denoted by
E=V+T (1),

and is a constant during the motion of the system.

Hamilton's equations of motion for this system are

dqr_dE
.^t dp^

^'^'

dt
~ dq,

^'^^'

where q^ and pr are the co-ordinate and the momentum corresponding to each

other.

Let us now consider a finite motion of the system. Let the initial co-

ordinates and momenta be distinguished by accented letters, and the final co-

ordinates and momenta by the same letters unaccented.

To define completely such a motion requires 2n+l variables to be given.

These may be the n initial co-ordinates, the n initial momenta, and the time

occupied by the motion.

There is another method however in which the 2« 4- 1 variables are the

n initial co-ordinates, the n final co-ordinates, and the total energy. "When

these quantities are given there are in general only a finite number of possible

motions.

Definition of the " Action " of the system during the motion.

Twice the time integral of the kinetic energy, taken from the beginning

to the end of the motion, and expressed in terms of the initial and final

co-ordinates and of the total energy, is called the "Action" of the system

during the motion. If we denote it by A,

\Tdt (4),

and is expressed as a function of q{...qn, q^-'-q^ and E.

i--
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and

It is shewn in treatises on dynamics* that

dA
d^r~^'
dA
d^r^^

••

dPr _ d^A_ _ _ dp^

dqg
~

dqfdq, dq^

The indices r and 5 in this equation may be the same or different.

Also if t' and t are the values of the time at the beginning and at the end

of the motion,
J A

t-f (8).

Hence

(5).

•(6)-.

.(7).

dA
dE'

Hence S=-f («)-^'^' =
dE

d^

'"dq:
,(10).

In the course of our investigation we shall have to compare the product

of the differentials of the co-ordinates and momenta at the beginning of the

motion with the corresponding product at the end of the motion. We shall

write for brevity ds = dq^...dqn for the product of the differentials of the co-

ordinates, and dcr = dpj^. . .dpn for the product of the differentials of the momenta,

and we shall use the product ds'dsdE as a middle term in conlparing ds dcr dt'

with dsdcrdt.

Now

^here

da dt' ds'dsdEt + f^
-\dq. dq^ dE)

^''^'

^<4.
dpn dt'

dqn dE,

denotes the functional determinant

dpi
dq,'

dp'

3^
dpi

dE

dpn

dqi
'

df^

dq,'

dpn dpri

dq^
' dE

dt' d£
^' dE

.(12).

Thomson and Tait's Natural Philosophy, § 330.
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Substituting for the elements of this determinant their values

equations (7), (9), and (10) it becomes

719

given by

-'^r-
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have to deal with in terms of the latter set of variables. Then since by

equation (2)
dE _ dq,' _

.(18),

dq^ dq^' dp( dp^ = dq^ dq^ dp,' dp^' dE —, . . ..(19).

dp^ dt

..dp^' = d

Similarly we find for the final state of the system

dq^ dq^ dp^ dp^ = dq^ dq^ dp, dp^ dE — (20).

The left-hand members of these equations have been proved equal, and in

the right-hand members dE is the same at the beginning and end of the

motion. Dividing out dE we find

dq! dq^dp: dp^ -^, = dq, dqjp, c/p„ ^ (21).

This equation is applicable to the case in which the total energy is supposed

not to vary from one particular instant of the motion to another, and in which,

therefore, the 2?i variables are no longer independent, but, being subject to the

equation of energy, are reduced to 2n — \.

Statisticcd Specification.

We have hitherto, in speaking of a phase of the motion of the system,

supposed it to be defined by the values of the n co-ordinates and the ?i momenta.

We shall call the phase so defined the phase (pq). We shall now adopt a

wider definition by saying that the system is in the phase (ajj) whenever the

values of the co-ordinates are such that q^ is between b^ and \ + d\, q^ between

h., and h,_ + dK, and so on; also p^ between cu and a^-\-da^, and so on. The

limits of the first component of momentum, t?, , are not specified, because the value

of p, is not independent of the other variables, being given in terms of E
and the other 2n - 1 variables in virtue of the equation of energy.

The quantities a, h are of the same kind as p and q respectively, only

they are not supposed to vary on account of the motion of the system. In

the statistical method of investigation, we do not follow the system during

its motion, but we fix our attention on a particular phase, and ascertain whether
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the system is in that phase or not, and also when it enters the phase and

when it leaves it.

Boltzmann defines the probability of the system being in the phase {a^b)

as the ratio of the aggregate time during which it is in that phase to the

whole time of the motion, the whole time being supposed to be very great.

I prefer to suppose that there are a great many systems the properties of

which are the same, and that each of these is set in motion with a different

set of values for the n co-ordinates and the n — 1 momenta, the value of the

total energy E being the same in all, and to consider the number of these

systems which, at a given instant, are in the phase {ajj). The motion of each

system is of course independent of the other systems.

Let ^y be the whole number of systems, and let the number of these

which, at the time t, are in the phase {a,h) he denoted by J\" (a,, b, t). The

aim of the statistical method is to express J\^ [a^, b, t) sls a function of X,

of the co-ordinates and momenta with their limits, and of t. It is manifest

that y can only enter the function as a factor, for the different systems do

not act on each other. Also any differential sls da or db can only enter as

a factor, for the number of systems within any phase must vary in the ratio

of the interval between the limits of that phase. AVe may therefore write

X[a,lf) = X/{a,, a„, b,, 5„, t) da, da^db, db„ (22),

where we have to determine the form of the function /
We shall now follow the motion of these systems from the time t\ when

we begin to watch the motion, to the time t when we cease to watch it.

Since the systems which at the time t form the group X{a^, b, t) are

individually the same systems which at the time ?' formed the group -^(a/, b', t')

wc have
X{a,^ b, t) = X{a:, V, t) (23),

or Nf{a, t)da, db^ = Xf{a: t') da; db,' (24).

But by equation (21)

da, db^{\)-^ = da: db^ih:)-^ (25).

Hence /(a, t)\=f(a: 0^.'=^ (26).

where C is a constant for all phases of the same motion, and we may write

/(«. t) = C(br (27),

and X(a^, b, t) = XC{b.y'da, db^ (28).

VOL. n. 91
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If the distribution of the N systems in the different phases is such that

the number in a given phase does not vary with the time, the distribution

is said to be steady. The condition of this is that C must be constant for

all phases belonging to the same path. It will require further investigation to

determine whether or not this path necessarily includes all phases consistent

with the equation of energy.

If, however, we assume that the original distribution of the systems according

to the different phases is such that C is constant for aU phases consistent

with the equation of energy, and zero for all phases which that equation shows

to be impossible, then the law of distribution will not change with the time,

and C will be an absolute constant.

We have therefore found one solution of the problem of finding a steady

distribution. Whether there may be other solutions remains to be investigated^

Let iV(6) denote the number of systems in which q^ is between b^ and

h, + dbi, q^ between h^ and h^ + dh.,, and so on, and g„ between 5„ and hn + d\,

the momenta not being specified otherwise than by their being consistent with

the equation of energy, then

N{h)= [ ... {N(a,, h)da,.,.da^ (29),

the integration being extended to all values of the momenta consistent with

the equation of energy.

To simplify the integration let us suppose the variables transformed so that

the kinetic energy is expressed in terms of the squares of the component momenta,

r=^(/x,a,'' + ia,a/+...+/.„a„=') (30),

where a^...an are the transformed momenta, and /x-i.-./x^ are functions of the

co-ordinates, which we may caU moments of mobility, and which, in the case

of material points, are the reciprocals of the masses.

Now let us assume

^I.^A^^=T=E-V (31),

ll..AnJ = l^n{Ar.'-a.') (32),

lln-AnJ = l^n-iAnJ-<^nJ) (33),

/x^/ = /x3(^/-a,=) (34).
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Then by the equation of energy

fi,,a,' = fi,{A,'-a,') (35).

Of these quantities, ^„ is a function of the co-ordinates only, because- E is

given and F is a function of the co-ordinates, ^„_i is a function of the co-

ordinates and a„, -4„_, of the co-ordinates and of a„ and a„_j, and so on.

Also by equation (2)

6.= ^^ = ^, a.

= (/.,,x,)H^4.'-a,f (36).

To integrate the expression

jjj...jc{K)-^da,...da^,

we begin by integrating with respect to a,, thus

f(7(6,)-^cZa3=fc(/.,/x,)-^(A'-a/)-W, (37),

the limits of integration being ±A^. The result is

M«C{m.;.=)-W (38).

For the next integration we have

j{fi.A,yda, = j\{A.'-^')Yda,= ^^A,^ (39).

Hence after r integrations, r being any number less than n, the result is

^~2~

Putting r = n-l and remembering that fi^A„* = 2E-2V, we find

N{h) = NC^^^{,.,H'.-f^n)-K'^E-2Vp^ (41).

This is the number of systems whose configuration is specified by the

variables 6,...6„, while the momenta may have any values consistent with tlie

equation of energy.

91—2
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The quantity E—V, which occurs in this equation, is, by equation (l),

equal in magnitude to T, the kinetic energy of the system. The quantity T,

however, is defined explicitly in terms of the velocities or the momenta of the

system, whereas E—V does not involve these quantities explicitly, but is

expressed as a function of the configuration.

We shall find it convenient, however, especially in the study of more

complicated problems, to remember that the number of systems in a given

configuration is a function of the kinetic energy corresponding to that configuration.

If the kinetic energy is not expressed as a sum of squares, but in the

more general form,

r=-^[ll]ai'+ [l2]aia, + &c.

+ i[22]a/+ [23]a,a3 + &c (42),

where the quantities denoted by [11] &c. are functions of the co-ordinates,

which we may call the moments and products of mobility of the system

;

then since the discriminant

[111 [12], [m]

[21], [22], [2n]
.(43)

[tiI], [7i2], [nn]

is an invariant, its value is the same when T is reduced to a sum of squares,

in which case all the elements except those in the principal diagonal of the

determinant vanish, and we have

A=/^i/i,...^„ (44),

and we may write the value of N (b),

N{b)=NC^^f± A-!(2£-2F)~d6....d6..

^',2

.(45).

If the system consists of n material particles, whose masses are m^...m„

then the number of degrees of freedom is n = 3n' and

/Xi = /Xj = ju.3 = m^~^ />t'4 = /^s = ft6= ^3~^ aiid so on -(46).

Hence in this case we may write

i\r(6) = A^C'^^^(m,...m„y [2^-27] ^ dh,...dK .(47).
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These expressions give the number of systems in a given configuration

only when ^— F is positive for that configuration, for since the kinetic energy

is necessarily positive, the potential energy cannot exceed the total ^energy.

For configurations specified in such a way that if they existed V would be

greater than E, the value of N{b) is zero.

The value of N(b) is also zero for configurations which, though they make

V less than E, cannot be reached by a continuous path from the original

configuration without passing through configurations which make V greater than E.

We shall return to this expression for the number of systems in a com-

pletely specified configuration, but in the mean time it will be useful to

consider how many of these systems have one of their momenta, p^, between

given limits. In this way we shall be able to determine completely the

average distribution of momentum among the variables without making any

assumptions about the nature of the system which might limit the generality

of our results.

In order to find the number of systems in the configuration (6) for which

one of the momenta, say _p„, lies between o„ and an + da^, we must stop

before the last integration. Putting r = n — 2 in equation (40)

N{b,a,) =NC );/_ ^^ (^..../Xn-r^Fn-x^n-.') ' da,db,...db^ (48).

2

The whole number of systems in configuration (b) is given by (45). Hence

the proportion of these systems for which a„ lies between a„ and a„-f c£a„ is

^-'^(L r^-F-w„.f;^,^^ (,«).

(i)r(^) lE-V]^

If we write

il^na.' =h (50),

then k^ denotes the part of the kinetic energy arising from the momentum a„.

The proportion of the systems in configuration (b) for which ^-„ is between k„

and K + dk^ is

_l(L_ l±iId^,-^aK (51).

r(l)r(V) [^-H'

t
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Since any one of the variables may be taken for ^„, the law of distribution

of values of the kinetic energy is the same for all the variables. The mean

value of the kinetic energy corresponding to any variable is

K=-(E-V) = - T (52).

The maximum value is T=nK (53).

The mean value of ^•' is

l-'^-^r-l ,^, ^^^y
V .7i + 2...n+2r-2

When n is very large, the expression (51) approximates to

7fek*<^* (")•

Mecapitulation.

The result of our investigation may therefore be stated as follows

:

(a) We begin by considering a set of material systems which satisfy the

general equations of dynamics (2) and (3), and the equation of energy (l). If

in these systems the distribution of configurations satisfies equation (45), and

the distribution of motion satisfies equation (51), these equations will continue

to be satisfied during the subsequent motion of the system. One result of

equation (51), to which we shall have to refer, is that the average kinetic

energy corresponding to any one of the variables is the same for every one

of the variables of the system,

(/8) We now turn our attention to a system of real bodies enclosed in

a rigid vessel impervious to matter and to heat. We know by experiment that

in such a system the temperature cannot remain steady in every part unless

the temperature of every part of the system is the same, and that this condition

is necessary in whatever manner the configuration of the system may be varied

by altering the position and mean density of the portions of sensible size into

which we are able to divide it.

Now if the system of real bodies is a material system which satisfies the

equations of dynamics, and if equations (45) and (51) are also satisfied, the

condition of the system will, as we have shewn, (a), be steady in every respect,
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and therefore in respect of temperature. Hence by (/8) the temperature of every

part of the system must be the same.

Therefore if equations (45) and (51) are satisfied, the condition of equahty

of temperature is also satisfied.

But the condition of equality of temperature does not depend on the

configuration of the system, for though we can alter the configuration by external

constraint we cannot prevent the temperature from becoming equalized. It does

not depend, therefore, on equation (45). We must therefore conclude, that if

equation (51) is satisfied, the condition of equality of temperature is also satisfied,

or, in other words, that equation (51) is the condition of equality of temperature.

Hence when two parts of a system have the same temperature, the average

kinetic energy corresponding to any one of the variables belonging to these

parts must be the same.

If the system is a gas or a mixture of gases not acted on by external

forces, the theorem that the average kinetic energy of a single molecule is the

same for molecules of different gases is not sufficient to establish the condition

of equilibrium of temperature between gases of different kinds such as oxygen

and nitrogen, because when the gases are mixed we have no means of ascer-

taining the temperature of the oxygen or of the nitrogen separately. "We can

only ascertain the temperature of the mixture by putting a thermometer into it.

We cannot legitimately assert that the temperatures of the oxygen and

of the nitrogen must be equal because they are in contact with each other,

for the only way in which we can conceive the oxygen or the nitrogen as

existing in the mixture is by picturing the medium as a system of molecules,

and as soon as we begin to see the molecules distinctly, heat becomes resolved

into motion.

But since our investigation is equally applicable to a system of any kind,

provided only it satisfies the equations of dynamics, we may suppose it to

consist of pure oxygen and pure nitrogen separated by a solid diaphragm,

the solid diaphragm consisting of molecules capable of motion, but acting on

each other with forces which are sufficient to prevent any molecule from getting

far apart from its neighbours except under the action of disturbing forces

greater than any which would occur in a system at the given temperature.

In this system, though the oxygen and the nitrogen cannot mix, each can make
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an exchange of molecular energy with the surface molecules of the diaphragm,

and exchanges of energy can go on within the soHd diaphragm itself without

any exchange of molecules between distant parts of the diaphragm.

Hence, in this system, the average kinetic energy of a molecule of oxygen

will become equal to that of a molecule of nitrogen in the final state of the

system, that is to say, when the temperatures of all parts of the system have

become equal, and since in that final state we have pure oxygen on one side

and pure nitrogen on the other, we can verify the equahty of temperature by

means of a thermometer, and we can now assert that the temperatures, not

only of oxygen and nitrogen, but of all bodies, are equal when the average

kinetic energy of a single molecule of each of these substances is the same.

Approximate value of the prohahility when V is small compared with E.

To find the number of systems the configuration of which is specified as

regards the limits of certain of the variables while the other variables are left

undetermined, we should have to integrate the expressions in equations (41),

(45), or (47) with respect to each of the undetermined variables in succession,

the integrations being extended to all values of these variables which are

consistent with the equation of energy.

These integrations cannot be performed unless the potential energy of the

system is a known function of the variables which determine its configuration.

We cannot therefore in general continue the integration so as to determine

the number of systems in which the limits are specified for some, but not all,

of the variables.

But when the number of variables is very great, and when the potential

energy of the specified configuration is very small compared with the total

energy of the system, we may obtain a useful approximation to the value of
n-2

[^— F] 2 in an exponential form, for if we write, as in equation (53), E= nK,

n-2 n-i n-2, /, r\

= ^Ve-2-^ (56),

nearly, provided n is very great and V is small compared with E. The
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expression is no longer approximate when V is nearly as great as E, and it

does not vanish, as it ought to do, when V=E.

Hence when the potential energy of the system in the given configuration

is very small compared with its kinetic energy, we may use the approximately

correct statement, that the number of systems in a given configuration is

invei-sely proportional to the exponential function, the index of which is half

the potential energy of the system in the given configuration divided by the

average kinetic energy corresponding to each variable of the system.

If we divide the system into any two parts, A and B, we may consider

V, the potential energy of the whole system, as made up of three parts,

V^ and Vji, the potential energy of A and B, each on itself, and W, that of

B with respect to A.

When, as in the case of a gas, the parts of a system are in a great

degree independent of each other, the average values of V^ and V^ may be

treated as constants, and the variations of V will be the same as those of W,

so that the variable part of the exponential function will be reduced to

e'2^ (57).

If we suppose that A denotes a single molecule of a particular kind of

gas, and that B denotes all the other molecules, of whatever kind, in the

system, then, since there are many molecules similar to A, we may pass, from

the number of systems in which A is within a given element of volume, to

the average number of molecules similar to A which are within that element,

or, in other words, the average density of the gas A within that element.

We may therefore interpret the expression (57) as asserting that the density

of a particular kind of gas at a given point is inversely proportional to the

exponential function whose index is half the potential energy of a single

molecule of the gas at that point, divided by the average kinetic energy

corresponding to a variable of the system.

We must remember that since the centre of mass of a molecule is

determined by three variables, the mean kinetic energy of agitation of the

centre of mass of a molecule is three times the quantity A' which denotes

the mean kinetic energy of a single variable.

VOL. II.
92
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Part II. A Free system.

In a material system not acted on by external forces the motion satisfies

six equations besides the equation of energy, so that we must not include in

our integration all the phases which satisfy the equation of energy, but only

those of them which also satisfy these six equations.

In what follows, we shall suppose the system to consist of ?i particles,

whose masses are 'mi...inn, and whose co-ordinates x, y, z, and velocity-components

w, V, w, are distinguished by the same suffix as the particle to which they belong.

Let us now consider a system consisting of s of these particles, and write

mi + mj+ &c. + m, = 1/g (58),

iUtX^ + mjr.^ + &c. + m^Xg = MgXg, "j

m^,+m^^ + &o. + 'mgyg = MgYg, I (59),

mjZj^ +m^2 +&C, -rin^g = M^Zg,
J

then Mg will be the mass of the minor system and Xg, Yg, Z, the co-ordinates

of its centre of mass. If we also write

WiWi + &c. + nigUg = M, Ug, 1

m^v^ + kc. + mgVg^ MgVg, I (60),

nijWi+ &c. + nigWg = MgWg,
J

m.iy.w, - z,v,) + &c. + mg(ygWg - ZgVg) = Fg+ Mg{YgWg - Z,F,), 1

m,{z,u, -x,iv,) + &c.+mg {ZgUg-XgWg) = Gg + Mg(ZgUg-XgWg), i ...(61),

m, {x,v, - y,u,) -\- &c. + rrig (a;,v,- ygUg) = H^+ Mg (Xg Vg - F, Ug)
, J

then Ug, Vg, Wg will be the velocity-components of the centre of mass, and

Fg, Gg, Hg the components of angular momentum round this point.

We shall also write

lm,(u^ + v^+ w^) + kc.+^mg{Ug^ + Vg^+ iVg^) = Tg (62).

The seven conditions satisfied by the whole system are that the seven

quantities U^, V^, W^, F^, G^, H^ and E are constant during the motion.

Under these conditions the Zn momentum-components are not independent.

We shall therefore transform equation (17) into one in which the difierentials
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of the first seven velocity-components are replaced by the differentials of the

seven constants.

The functional determinant is found by differentiating the seven quantities

Un, y^ ^^n. Fn, G^, H^ and E with respect to the momenta m^u^\ ^it',,

m\iL\\ m.^i(j, mj.\, m^ii\_; and m^iiy We thus obtain

1,
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We shall find it useful in what follows to define the energy of internal

motion as the excess of the whole kinetic energy of the system over that

which it would have if it were moving like a rigid body with the same con-

fio-uration, and the same components of momentum and of angular momentum.

If we suppose the internal motion of the system to be destroyed in a

very short time by internal forces, so that the configuration is not sensibly

altered during the process, then the work done by the system against these

forces is the measure of the energy of internal motion.

"Writing T for the kinetic energy referred to the origin, K for that of

the mass moving with the velocity of the centre of mass, J for the kinetic

energy due to the rotation of the system as a rigid body, and / for the

energy of internal motion, we have

I=T-K-J (71),

where T=t[^m (u' + v^ + vf)'] (72),

K=^M{U'-{-V'+W') (73),

J=i{Fp + Gq + Hr) (74),

where p, q, r are the components of angular velocity with respect to the

axes of X, y, z and are related to F, G, H by the equations

Ap-Nq-Mr = F,

N'p + Bq-Lr = G,

Mp-Lq+Cr=H,

aF-nG—mH=p,
-nF+hG- lH=q,

mF- IG+ cH=T,
.(75).

where
L = tm{y-Y){z-Z)

'

M=tm{z-Z){x-X)
N=tm{x-X){y-Y)

D=
a,
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.(79),

If we write

^=u — U + qz — rl/^

ri
= v — V -\-rx—pz >

^=w— W-\-py-qx]

then ^, 7}, C, will be the velocity-components of a particle with respect to

axes passing through the centre of mass of the system and rotating with the

angular velocity whose components are p, q, r. We may therefore call £, -q, i

the velocity-components of the internal motion. If the system were to become

rigid, the internal motion would become zero. The energy of internal motion

may be expressed in terms of ^, -q, ^, thus :

—

/=Sim(f + V + r) (80).

We have now to express the energy of internal motion of a system of

5-1 particles in terms of the quantities U, V, W, F, G, H and T belonging

to the system of s particles, together with the position and velocity of the

s^^ particle.

To avoid the repetition of suffixes we shall distinguish quantities belonging

to the minor system of s-1 particles by accented letters, and quantities

belonging to the complete system of s particles and the particle m, by unaccented

letters. We shall also write

Mm

We thus find M'=M-m
M'X' =MX-mx
M'U' =MU-mu,

F' = F-ii,{ij-Y){iv-\V) + ix,{z-Z)(v-V)

L' = L-t.(y-Y)(z-Z)
T=T-^m{u'+ if+ iif)

K'=K+^iJL[{u-uy+{v-vy+(w-wy']-im(u'+e+'uf).}

Since the choice of the axes of reference is arbitrary, we may simplify

the expressions by taking for origin the centre of mass of the system M, and

for the axis of z the line passing through the particle m. We may also turn

..(81).
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the axes of x and y about that of z till A becomes a maximum, the condition

of which is

LM-{-CN=0.

We shall also reckon velocities with reference to the centre of mass of

the system M.

With these simplifications we find

F' = F+ix,vz G' = G-fiuz H' =H
A' = A-iiz'- B' = B-iiz' C' = C
L' = L M' =M N' =N

1 — aiiz-
'

h

l-hfiz"

C' = C + /A2^
I

r=

h'= m =

l-hfJLZ'

m
1 — a/xz-

'

n' =? 71 = 0,

.(82).

1 —hiiz- 1 —aixz^j
'

U = D(l-aii,z'){l-liiz').

We are now able to calculate the energy of rotation, J\ of the minor

system

:

2J' = aF" + h'G'' + c'H"-2VG'H'-2m:H'F'-2nF'G' (83),

•I ^

= 2J+ ^_ ^, \faiiz'
- 2vfiz (Fa - Hm) + fiz' (Fa - Hrrif] I

+ Y^^^, iW'hiiz' + 2utiz {Gh - HI) + ixz' (Gh - Hiy]

Combining these results and reducing we find for the energy of internal

motion of the system M'

r = I-^fj.(l -h,jiz!')-' (u- Gh +my -ifi{l -afiz')-' (r- Fa + Hiy -iixw\..(S5).

(84).

Hence
III''

^dudvdw =
(r(-^))T|—^ , /ON I i 19+5;-l^

g) ii-a,rY .-6^.f/ ' ....(86).

the integration being extended to all values of u. v, and w which make /'

positive.

D'
Now (l — afiz^)(l—bfiz^) = ^, and this is an invariant.
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Hence in general, whatever axes we choose,

(r(^))T(^"^"')

[M,jD,_,-\^lJdu.dv.dw,= " } ^ ^
[imJ-«[l//Ar^/5~ (87).

For the system consisting of the two particles m^ and m., the energy of

rotation is

j,=i-^^,(i^/+(?.^+ir/) (88),
"2" U

and the energy of internal motion is

^. =4^'V (89).

Hence we may write equation (70)

/3»-7 / M \-h I

xY(6)= C{7n,'m.^m,a,r,)-'{2j^] I-^dv,...dw^ (90).

Wo have first to express /, in terms of quantities having the suffix ,.

If we make the plane of yz pass through the three particles w„ 7/1,, m„

so that the origin coincides with their centre of mass and has the same velocity,

and the axis of z passes through 7713, then a is twice the area of the triangle

whose vertices are 111^^, m^ and m^,

F, = F, + ^'z,v,, G,= G,-^^z,u,, H, = H, (91),

am^u,= G,{y,-7j,)-{-H,{z,-z,) (92),

r/ M^G^z, V/^ M,F,z, y]_,i{3m,^_
3

We have now to integrate

I \l~^ dv^dw^y

extending the integration to all values of v.^ and u\ which make /, positive, and
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remembering that equation (92) shews that U3 is independent of v, and w^.

The result is

jjl, dv.aw,-
J, ^3^ ^ ^, .

^^^^^^^, J
1, (94;.

Now for the three particles m^ m^, Wj,

A =—j^^-' [^23* ^^^2^8+ r^^ m,m, + r^/ m^mJ a" (95),

where r^, r-ji and rjj are the distances between the particles, and a is the area

of the triangle m^m^m^.

M
Also r^m^m^ + r^^m^rn^+ rjm^m^ = -~ {m^m^r^ -^-M^m^z^) (96).

We may now write equation (90) in the form

N (6) = r'c^^X \_\m,'mlm:MiD,J^l} du,.dw, (97).

Continuing the integration by equation (87) we find

3»-8 /^i^^"~^ a 8 1
3» -8

where /„ is what we have defined as the energy of internal motion of the

system, or the work which the system would do, in virtue of its motion,

against the system of internal forces which would be called into play if the

distances between the parts of the material system were in an insensibly small

time to become invariable.

In order to determine the number of systems in a given configuration for

which the velocity-components of the particle m^ lie between the limits

n±\du, v±\dv, w±\dw, we must form the expression for iV(6, w„, v„, w^
by stopping short before the last triple integration.

We thus find iV(6, w„, v„, w^

= ^ ' C'-L-gi—(m,..m„.,)-'jl/„..-»i)..,-»/„_.— A(„dv„<iw„...(99).



OF ENERGY IN A SYSTEM OF MATERIAL POINTS. 737

If, as in equations (82) to (86), we suppose the origin of co-ordinates to

be the centre of mass of the whole system, the axis of z to pass through

the particle w„, and the axes of x and ij to be in the directions of the

principal axes of the section of the momental ellipsoid normal to z, then writing

^=u-qz, 7; = i'-f;9r, l = w (100),

so that ^, T], ^ are the velocity-components of m^ relative to axes moving as

the system would do if it were then to become rigid, with the angular velocity

whose components are
i^, q, r, we may write

/„-. = /n-i/^(l-Z>/^r)-f-i;x(l-a/.r)-V-4/x- (101).

The sum of the last three terms of this expression, with its sign taken positive,

represents the part of the internal motion of the system which is due to the

fact that the particle in^ is moving with the relative velocity whose components

are ^, rj, I

We may also define it as the work which would be done by the particle

77i„ against the internal forces of the system, if these forces were suddenly to

become such as to render the whole system rigid in an infinitely short time.

Comparing this result with that obtained in equation (48), we see that

the law of distribution of the velocities of the particle m^ is the same as

what it would be in a fixed vessel containing n — 2 particles, provided that we

substitute for u', v\ vf the quantities (l-6/xr)"'f, (l-a^r)"Y, ^- respectively.

Hence the mean square of the velocity in the direction of the line joining

the particle with the centre of mass is the same at all points of the system,

but the mean square of the velocity in other directions is less than this in

the ratio of 1-a/xr to 1, where z is the perpendicular from the centre of mass

on the line of relative motion of the particle, and a is the moment of mobility

of the system about an axis through the centre of mass and normal to the

plane through that centre and the line of motion.

When the product of the mass of the particle into the square of its

distance from the centre is so small that it may be neglected in comparison

with the moments of inertia of the system, then quantities like a/ir' and 6/12*

may be neglected in respect of unity, and we may assert that the mean square

of the relative velocity, for a particle of given mass, is the same in all directions

and at all points of the system; but that for difierent particles it varies

VOL. II. 93
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inversely as their masses ; so that the average energy of motion relative to

the moving axes is the same for particles of all kinds throughout the system.

"We have already learned from equation (98) that in a free system of n

particles the number of cases in which the system is in a given configuration,

or, in other words, the probability of that configuration, is proportional to the

—-— power of the energy of internal motion corresponding to that configuration.

We have next to consider the manner in which this probability depends

on the position of a particular particle, say of the last particle, m„.

Let IJ'^ denote the energy of internal motion of the complete system when

m„ is at the centre of mass of the system and is without any velocity relative

to that centre. It is manifest that in this case m„ contributes nothing towards

the energy of internal motion.

Now let 77i„ be carried from the centre of mass to the point (0, 0, z) and

left there without any velocity (that is, let u = v = iv = 0).

Let W be the work which must be done against the forces of the system

to effect this transference, then since the total energy of the system and the

three angular momenta must be maintained constant, we shall have after this

displacement, for the energy of internal motion of the remaining n — 1 particles,

J„_, = J/)-T7 (102).

But by equation (85)

/n = ^«-i + i/x (1 - t/^tz^"' (^^ - ?2)' + i/^ (1 - otf^^T' (^ +^52)' + iF^- • -(103).

Substituting the value of /„_i from equation (102), and remembering that

u = v = w = 0, we find for the energy of internal motion in the new configuration

I^ = IJ^^-W + ifx{l-hixz')-'qY + ^fi{l-aiMz')pV (104).

The probability, therefore, of a configuration in which, the positions of all

8n-8

the other particles being given, that of w„ is varied, is proportional to /„ ^
,

/„ being given by equation (104).

When, as in the case of a gas, there are a great many particles similar

to m^, we may speak of the density of the medium consisting of such particles

in the element dxdydz. In this case, however, for reasons already given, neglect
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the quantities a/xz' and Z>/x£', and we may write m for /x. We may also choose

our axes in the manner which is most convenient. We shall therefore make
the axis of z that round which the system, if it were rendered rigid, would

rotate with velocity la, and we shall suppose this axis to be vertical, as

otherwise a steady motion under the action of gravity could not exist, and we
shall denote the horizontal distance from this axis by r.

We may now write for the density of the gas at the point (2, r)

3n-8

p = Po[l + {2/»<^>)'"(»i«''^-2wi5'2)] " (105),

where p^ is the density at the origin.

When 71 is a very large number and when the second term of the binomial

is very small compared with unity, we may write for this the exponential expression

p =p/ (106).

If iii\ is the mass of a molecule of hydrogen, yjin^ will be the mass of a

molecule of the kind of gas considered, where /x is the chemical equivalent of

the gas.

Also if T is the temperature on the centigrade scale, and a the coeflBcient

of dilatation of a perfect gas, then since the " velocity of mean square " of

agitation of the molecules of hydrogen at O^C. is l*844xl0' centimetres per

second, the kinetic energy of agitation of a system containing n molecules of

any kind will be

fWo^j(l-844)=10"(l + aT),

and the difference between this and the energy of internal motion may be

neglected.

We thus find for the density at any point

P = Poe (10/).

Let us now consider a tube of uniform section placed on a whirling table

so that one end, A, of the tube coincides with the axis while the other end,

B, revolves about the axis with the angular velocity w. The linear velocity

of B is 6jr, and we shall suppose, for the sake of easy calculation, that this

velocity is one-tenth of the velocity of agitation of the molecules of hydrogen.

93—2
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The velocity of the end B would be 184-4 metres per second. If the tube

contains hydrogen at 0"C., the ratio of the density of the gas at B to the

density at A will be e^, or approximately l+^oo--

If it contains a gas whose chemical equivalent is /x, the ratio will be

200

If the tube contains hydrogen and carbonic acid, and if a certain volume

of the tube at A contains 200 parts of hydrogen and 200 of carbonic acid,

then an equal volume of the tube at B will contain 201 parts of hydrogen

and 222 parts of carbonic acid.

The time during which the experiment would require to be continued in

order to obtain a given degree of approximation to the ultimate distribution

of the mixed gases varies as the square of the length of the tube.

Thus in Loschmidt's experiments on the diffiision of gases he used a tube

about a metre long, and continued his experiments from half an hour to an

hour in order to obtain the results from which he could best deduce the

coefficient of diffusion.

In these experiments the inequalities of distribution of. hydrogen and

carbonic acid were reduced to less than a third part of their original value

in half an hour, and if the experiment had gone on for two hours the

differences from the ultimate distribution would have been reduced to a hundredth

part of their original value.

We may therefore consider two hours as ample time for an experiment

on the ultimate distribution of these two gases in a tube one metre in length.

But if we make the whirling tube 20 centimetres long, the difierences of

distribution from the ultimate distribution would be reduced to a hundredth

part of their original value in a twenty-fifth part of the time, that is to say

in 4 minutes 48 seconds.

If it were found more convenient to have bulbs on the ends of the tubes,

so as to be able to secure the gas at each end before it got mixed up by

the violent commotion arising from the stopping of the whirling tube, we

should have to allow a longer time for the whirling.
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In order to obtain a .similar distribution of the two gases in a vertical

tube by the action of gravity the tube would require to be 1720 metres high,

and in order to obtain the same degree of approximation to the ultimate

distribution we should have to let the experiment go on for 675 years,

carefully preserving the tube during that time from all inequalities of tempera-

ture, which, by causing convection-currents, would continually mix up the gases

and prevent their partial separation.



[From Nature, Vol. xviii.]

XCV. Tlie Telephone {Rede Lecture).

When, about two years ago, news came from the other side of the

Atlantic that a method had been invented of transmitting, by means of

electricity, the articulate sounds of the human voice, so as to be heard

hundreds of miles away from the speaker, those of us who had reason to

believe that the report had some foundation in fact, began to exercise our

imaginations in picturing some triumph of constructive skill—something as far

surpassing Sir William Thomson's Siphon Eecorder in delicacy and intricacy as

that is beyond a common bell-pull. When at last this little instrument appeared,

consisting, as it does, of parts, everyone of which is familiar to us, and capable

of being put together by an amateur, the disappointment arising from its

humble appearance was only partially relieved on finding that it was really

able to talk.

But perhaps the telephone, though simple in respect of its material and

construction, may involve some recondite physical principle, the study of which

might worthily occupy an hour's time of an academic audience : I can only

say that I have not yet met anyone acquainted with the first elements

of electricity who has experienced the slightest diflficulty in understanding the

physical process involved in the action of the telephone. I may even go

further, and say that I have never seen a printed article on the subject, even

in the columns of a newspaper, which shewed a sufficient amount of mis-

apprehension to make it worth preserving—a proof that among scientific subjects

the telephone possesses a very exceptional degree of lucidity.

However, if the telephone has something to say for itself, it would seem

hardly necessary for me to take up your time with any tedious introduction.

It is unfortunate, however, that up to the present time the telephone has kept

all his more perfect utterances to be whispered into the privileged ear of a

single listener. When he is older, he may get more accustomed to public
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speaking, but if we force him, in his present immature state, to exert his voice

beyond what is good for him, it may sound rather too like the pot quarrelling

with the kettle, and may call for the criticism with which Mr Tennyson's

Princess complimented the disguised Prince on his " Song of the Swallow
: "

—

" Not for thee, she said,

O Bulbul, any rose of Gulistan

Shall burst her veil: marah divers rather, maid,

Shall croak thee sister, or the meadow crake

Grate her harsh kindred in the grass."

Is it for this, then, that we are to forsake the luncheons and lawn tennis

and all the engrossing studies of the May Term, and to assemble in this

solemn hall, where the very air seems thick with the accumulation of unsolved

problems, or else redolent of the graces of innumerable congregations ?

It is not by concentrating our minds on any problem, however important,

but rather by encouraging them to expand, that we shall best fulfil the intention

of Sir Robert Rede when he founded this lecture.

It would be as useless as it would be tedious to try to explain the

various parts of this small instrument to persons in every part of the Senate

House. I shall, therefore, consider the telephone as a material symbol of the

widely separated departments of human knowledge, the cultivation of which has

led, by as many converging paths, to the invention of this instrun^'jnt by

Professor Graham Bell.

For whatever may be said about the importance of aiming at depth

rather than width in our studies, and however strong the demand of the present

age may be for specialists, there will always be work, not only for those who

build up particular sciences and write monographs on them, but for those who

open up such communications between the different groups of builders as will

facilitate a healthy interaction between them. And in a university we are

especially bound to recognise not only the unity of science itself, but the

communion of the workers in science. We are too apt to suppose that we are

congregated here merely to be within reach of certain appliances of study, such

as museums and laboratories, libraries and lecturers, so that each of us may

study what he prefers. I suppose that when the bees crowd round the flowers

it is for the sake of the honey that they do so, never thinking that it is

the dust which they are carrying from flower to flower which is to render
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possible a more splendid array of flowers, and a busier crowd of bees, in the

years to come. We cannot, therefore, do better than improve the shining hour

in helping forward the cross-fertilization of the sciences.

Before we go further, I wish to express my obligation to Mr Garnett for

the able assistance he has given me. lie has not only collected the apparatus

before you, but constructed some of it himself. But for him, I might have

given you some second-hand information about telephones. He has made it

possible for you to hear something yourselves. I have also to thank Mr Gower,

who has brought his telephone harp, and Mr Middleton, who has contributed

several instruments of his own invention.

We shall begin with the telephone in its most obvious aspect, as an

instrument depending on certain physical principles.

The apparatus consists of two instruments, the transmitter and the receiver,

doubly connected by a circuit capable of conducting electricity. The speaker

talks to the transmitter at one end of the line, and at the other end of the

line the listener puts his ear to the receiver, and hears what the speaker says.

The process in its two extreme stages is so exactly similar to the old-

fashione4 method of speaking and hearing that no preparatory practice is

requirea on the part of either operator.

We must not, however, fall into the error of confounding the principle of

the electric telephone with that of other contrivances for increasing the distance

at which a conversation may be carried on. In all these the principle is the

same as in the ordinary transmission of sound through the air. The different

portions of matter which intervene between the speaker and the hearer take

part, in succession, in a certain mechanical process. Each receives a certain

motion from the portion behind it and communicates a precisely similar motion

to the portion in front of it, in doing which it gives out all the energy it

received, and is again reduced to rest.

The medium which takes part in this process may be the open air, or air

confined in a long tube, or some other medium such as a brick wall, as when

we hear what goes on in the next house, or a long wooden rod, or a metal

wire, or even a stretched string. In all these it is by the actual motion of

the successive portions of the medium that the message is transmitted.

In the electric telephone there is also a medium extending from the one

instrument to the other. It is a copper wire, or rather two wires forming a

closed circuit. But it is not by any motion of the copper that the message
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is transmitted. The copper remains at rest, but a variable electric current

flows to and fro in the circuit.

It is this which distinguishes the electric telephone from the ordinary-

speaking tube, and from the transmission of vibrations along wooden rods by

which Sir Charles Wheatstone used to cause musical instruments to sound in

a mysterious manner without any visible performer.

On the other hand, we have to distinguish the principle of the articulating

telephone from that of a great number of electrical contrivances which produce

visible or audible signals at a distance. Most of these depend on the alternate

transmission and interruption of an electric current. In some part of the

circuit a piece of apparatus is introduced corresponding to this instrument which

is called a key. Whenever two pieces of metal, called the contact pieces, touch

each other, the current flows from the one to the other, and so round the

circuit. Whenever the contact pieces are separated the current is interrupted,

and the effects of this alternation of current and no current may be made to

produce signals at any other part of the circuit.

In the Morse system of signalling, currents of longer and of shorter duration

are called dashes and dots respectively, and by combinations of these the

symbols of letters are formed. The rate at which these little currents succeed

one another depends on the rate at which the operator can work the key,

and may be increased by mechanical methods till the receiving clerk can no

longer distinguish the symbols.

But the capability of the telegraph wire for transmitting signals is by no

means exhausted ; as the rapidity of the succession is increased, the ear ceases

to distinguish them as separate signals, but begins to recognise the impression

it receives as that of a musical tone, the pitch of which depends on the

number of currents in a second.

Tuning forks driven by electricity were used by Helmholtz in his researches

on the vowel sounds, and the periodically intermittent current which they

furnish is recognised as a most valuable agent in physical and physiological

research. The tuning forks are of the most massive construction, and the

succession of currents goes on with the most inflexible regularity, so that

whenever we have occasion to follow the march of a process which takes place

in a short time, such as the vibration of a violin string or the twitch of a

living muscle, the tuning fork becomes our appropriate timepiece.

Apparatus of this kind, however, the merit of which is its regularity, is quite
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incapable of adapting itself to the transmission of variable tones sucb as those

of a melody.

The first successful attempt to transmit variable tones by electricity was

made by Philip Reis, a teacher in a school at Friedrichsdorf, near Homburg.

On October 21, 18fil, Reis showed his instrument, which he called a telephone,

to the Physical Society of Frankfort on the Main. He succeeded in transmitting

melodies which were distinctly heard about the room.

The transmitter of Reis's telephone is essentially a make and break key

of so delicate a construction that the sound-waves in the air are able to

work it.

The air vibrations set in motion a stretched membrane like a drumhead,

with a piece of platinum fastened to it. This piece of platinum, when vibrating,

strikes against another piece of platinum, and so completes the circuit every

time contact is made.

At every point of the circuit there is thus a series of currents corresponding

in number to the vibrations of the drumhead, and by causing these to pass

through the cod of an electromagnet, the armature of the electromagnet is

attracted every time the current passes, and if the armature is attached to a

resonator of any kind, the succession of tugs will set it in vibration, and cause

it to emit a sound, the pitch of which is the same as that of the note sung

into the transmitter at the other end of the line.

[Mr Gower here played the "March of the Men of Harlech" on the

telephone harp placed in the Geological Museum. The instrument consists of

a set of steel reeds worked by percussion, which make and break contact on

the battery circuit, of which the primary wire of an induction coil forms part.

The receivers are worked by the secondary current. There were four receivers,

one of them Prof Bell's original one, placed in different parts of the Senate-house.]

If the pitch of a sound were the only quality which we are able to

distinguish, the problem of telephony would have received its complete solution

in the instrument of Reis. But the human ear is so constructed, and we

ourselves are so trained by continual practice, that we recognise distinctions

in sound of a far more subtle character than that of pitch ; and these finer

distinctions have become so much more important for the purposes of human

intercourse than the musical distinction of pitch, that many persons can detect

the slightest variation in the pronunciation of a word wbo are comparatively

indifferent to the variations of a melody.
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Now, the telephone of Prof. Graham Bell is an articulating telephone,

which can transmit not only melodies sung to it, but ordinary speech, and

that so faithfully that we can often recognise the speaker by his v.oice as

heard through the telephone. How is this eflfected ? It is manifest that if by

any means we can cause the tinned plate of the receiving instrument to vibrate

in precisely the same manner as that of the transmitter, the impression on the

ear will be exactly the same as if it had been placed at the back of the

plate of the transmitter, and the words will be heard as if spoken at the

other side of a tinned plate.

But this implies an exact correspondence, not only in the number of

vibrations, but in the type of each vibration.

Now, if the electrical part of the process consisted merely of alternations

between current and no current, the receiving instrument could never elicit

from it the semblance of articulate speech. If the alternations were sufficiently

regular, they would produce a sound of a recognisable pitch, which would be

very rough music if the pitch were low, but might be less unendurable if the

pitch were high ; still, at the best, it would be like playing a violin with a

saw instead of a bow.

What we want is not a sudden starting and stopping of the current, but

a continuous rise and fall of the current, corresponding in every gradation and

inflexion to the motion of the air agitated by the voice of the speaker.

Prof. Graham Bell has recounted the many unsuccessful attempts which he

made to produce undulatory currents instead of mere intermittent ones. He

had, of course, to give up altogether the method of making and breaking

contact. Every method involving impact of any kind, whether between electric

contact pieces or between the sounding parts of the instrument, introduces

discontinuity of motion, and therefore precludes a faithful reproduction of

speech.

In the ultimate form which the telephone in his hands assumed, the electric

current is not merely regulated but actually generated by the aerial vibrations

themselves.

The electric principle involved in Bell's telephone is that of the induction

of electric currents discovered by Faraday in 1831. Faraday's own statement

of this principle has been before the scientific world for nearly half a century,

but has never been improved upon.

Consider first a conducting circuit, that is to say, a wire which after any

94—2



748 THE TELEPHONE.

number of convolutions returns into itself. Round such a circuit an electric

current may flow, and will flow if there is an electromotive force to drive it.

Consider next a line of magnetic force, such a hne as you see here made

visible by sprinkling iron filings on a sheet of paraffin paper. This line, as

Faraday also first showed, is a line returning into itself, or, as the mathema-

ticians would say, it is a closed curve.

Now, if there are two closed curves in space, they must either embrace

one another so as to be linked together, or they must not embrace each other.

If the line of force as well as the circuit were made of wire, and if it

embraced the copper circuit, it would be impossible to unlink them without

cutting one or other of the wires. But the line of force is more like one of

Milton's spirits, which cannot

"In their liquid texture mortal wound

Receive, no more than can the fluid air."

Now, if the copper circuit or the lines of force move relatively to each

other, then in general some of the lines of force which originally embraced the

circuit will cease to embrace it, or else some of those which did not embrace

it will become linked with it.

For every line of force which ceases to embrace the circuit there is a

certain amount of positive electromotive force, which, if unopposed, will generate

a current in the positive direction, and for every new line which embraces

the circuit there is a negative electromotive force, causing a negative current.

In Bell's telephone the circuit forms a coil round a small core of soft iron

fastened to the end of a steel magnet. Now lines of magnetic force pass more

freely through iron than through any other substance. They will go out of

their way in order to pass through iron instead of air. Hence a large proportion

of the lines of force belonging to the magnet pass through the iron core, and,

therefore, through the coil, even though there is no iron beyond the core, so

that they have to complete their circuit through air.

But if another piece of soft iron is placed near the end of the core it

will aflbrd greater facilities for lines which have passed through the core to

complete theii' circuit, and so the Hnes belonging to the magnet will crowd

still closer together to take advantage of an easy passage through the core

and the iron beyond it. If then the iron is moved nearer to the core, there

will be an increase in the number of such lines, and, therefore, a negative

current in the circuit. If it is moved away there will be a diminution in ih".
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number of lines, and a positive current in the circuit. This principle was

employed by Page in the construction of one of the earliest magneto-electric

machines, but it was reserved for Prof. Bell to discover that the vibrations of

a tinned iron plate, set in motion by the voice, would produce such currents

in the circuit as to set in motion a similar tinned plate at the other end of

the line.

It will help us to appreciate the fertility of that germ of science which

Faraday first detected and developed if we recollect that year after year he

had employed the powerful batteries and magnets and delicate galvanometers of

the Royal Institution to obtain evidence of what he all along hoped to discover

—the production of a current in one circuit by a current in another, but all

without success, till at last he detected the induced current as a transient

phenomenon, to be observed only at the instant of making or breaking the

primary circuit.

In less than half a century, and by the aid of no second Faraday, but

in the course of the ordinary growth of scientific principles, this germ, so

barely caught by Faraday, has developed on the one hand into the powerful

currents which maintain the illumination of the lighthouses on our coasts ; and

on the other, into these currents of the telephone which produce an audible

eSect, though the engine that drives them is itself driven by the tremors of a

child's voice.

Prof. Tait has recently measured the absolute strength of these telephone

currents. He produced them by means of a tuning fork vibrating in front of

the coil of the transmitter. Before the transmitted note ceased to be audible

at the other end of the line he measured by means of a microscope the

amplitude of the vibrations of the fork.

He then placed a very delicate galvanometer in the circuit and found what

deflection was produced by a measured motion of the fork.

Finally he measured the deflection of the galvanometer produced by a small

electromotive force of known magnitude. He thus found that the telephone

currents produced an audible eflect when reversed 500 times a second, though

their strength was no greater than what a Grove's cell would send through a

million megohms, about a thousand million times less than the currents used

in ordinary telegraphic work.

One great beauty of Prof. Bell's invention is that the insti-uments at the

two ends of the line are precisely alike. When the tin plate of the transmitter
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approaches the core of its bobbin it produces a current in the circuit, which

has also to circulate round the bobbin of the receiver, and thus the core of the

receiver is rendered more or less magnetic, and attracts its tin plate with greater

or smaller force. Thus the tin plate of the receiver reproduces on a smaller

scale, but with perfect fidelity, every motion of the tin plate of the transmitter.

This perfect symmetry of the whole apparatus—the wire in the middle,

the two telephones at the end of the wire, and the two gossips at the ends

of the telephones—may be very fascinating to a mere mathematician, but it

would not satisfy an evolutionist of the Spencerian type, who would consider

anything with both ends alike to be an organism of a very low type, which

must have its functions differentiated before any satisfactory integration can

take place.

Accordingly, many attempts have been made, by differentiating the function

of the transmitter from that of the receiver, to overqome the principal limitation

to the power of the telephone. As long as the human voice is the sole motive

power of the apparatus it is manifest that what is heard at one end must

be fainter than what is spoken at the other. But if the vibration set up by

the voice is used no longer as the source of energy, but merely as a means

of modulating the strength of a current produced by a voltaic battery, then

there will be no necessary limitation of the intensity of the resulting sound,

so that what is whispered to the transmitter may be proclaimed ore rotundo

by the receiver.

A result of this kind has already been obtained by Mr Edison by means

of a transmitter in which the sound vibrations produce a varying pressure on

a piece of carbon, which forms part of the electric circuit. The greater the

pressure, the smaller is the resistance due to the insertion of the carbon, and

therefore the greater is the current in the circuit.

I have not yet seen Mr Edison's transmitter, but the microphone of Prof.

Hughes is an application of carbon and other substances to the construction

of a transmitter, which modulates the intensity of a battery current in more

or less complete accordance with the sound-vibrations it receives. The energy

of the sound produced is no longer limited by that of the original sound. All

that the original sound does is to draw supplies of energy from the battery,

so that a very feeble sound may give rise to a considerable effect. Thus, when

a fly walks over the table of the microphone the sound of his tramp may be

heard miles off.
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Indeed, the microphone seems to open up several new lines of research.

We shall have London physicians performing stethoscopic auscultations on patients

in all parts of the kingdom. The Entomological Society have been much interested

by Mr Wood-Mason's discovery of a stridulating apparatus in scorpions. Perhaps

ere long a microphone, placed in a nest of tropical scorpions, may be connected

up to a receiver in the apartments of the society, so as to give the members

and their musical friends an opportunity of deciding whether the musical taste

of the scorpion resembles that of the nightingale or that of the cat.

I have said that the telephone is an instance of the benefit to be derived

from the cross-fertilization of the sciences. Now this is an operation which

cannot be performed by merely collecting treatises on the different sciences, and

binding them up into an encyclopaedia. Science exists only in the mind, and

the union of the sciences can take place only in a living person.

Now, Prof. Graham Bell, the inventor of the telephone, is not an electrician

who has found out how to make a tin plate speak, but a speaker, who, to

gain his private ends, has become an electrician. He is the son of a very

remarkable man, Alexander Melville Bell, author of a book called "Visible

Speech," and of other works relating to pronunciation. In fact, his whole life

has been employed in teaching people to speak. He brought the art to such

perfection that, though a Scotchman, he taught himself in six months to speak

English, and I regret extremely that when I had the opportunity in Edinburgh

I did not take lessons from him. Mr Melville Bell has made a complete

analysis and classification of all the sounds capable of being uttered by the

human voice, from the Zulu clicks to coughing and sneezing; and he has

embodied his results in a system of symbols, the elements of which are not

taken from any existing alphabet, but are founded on the different configurations

of the organs of speech.

The capacities of this new mode of representing speech have been put to

the test by Mr Alexander J. Ellis, author of "The Essentials of Phonetics,"

a gentleman who has studied the whole theory of speech acoustically, philologically,

and historically. He describes the result in a letter to Tlie Reader:—
" The mode of procedure was as follows :—Mr Bell sent his two sons, who

were to read the writing, out of the room—it is interesting to know that the

elder, who read all the words in this case, had only had five weeks' instruction

in the use of the alphabet—and I dictated slowly and distinctly the sounds which

I wished to be written. They consisted of a few words in Latin, pronounced
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first as at Eton, then as in Italy, and then according to some theoretical

notions of how the Latins might have uttered them. Then came some EngHsh

provincialisms and afiected pronunciations, the words ' how odd ' being given in

several distinct ways. Suddenly German provincialisms were introduced; then

discriminations of sounds often confused. Some Arabic, some Cockney English,

with an introduced Arabic guttural, some mispronounced Spanish, and a variety

of shades of vowels and diphthongs.

" The result was perfectly satisfactory—that is, Mr Bell wrote down my
queer and purposely exaggerated pronunciations and mispronunciations, and

delicate distinctions, in such a manner that his sons, not having heard them,

so uttered them as to surprise me by the extremely correct echo of my own

voice Accent, tone, drawl, brevity, indistinctness were all reproduced with

surprising accuracy. Being on the watch, I could, as it were, trace the

alphabet in the lips of the readers. I think, then, that Mr Bell is justified

in the somewhat bold title which he has assumed for his mode of writing

—

'Visible speech.' I only hope that for the advantage of linguists, such an

alphabet may soon be made accessible, and that, for the intercourse of nations,

it may be adopted generally, at least for extra-European nations, as for the

Chinese dialect and the several extremely diverse Indian languages, where such

an alphabet would rapidly become a great social and political engine."

The inventor of the telephone was thus prepared, by early training in the

practical analysis of the elements of speech, to associate whatever scientific

knowledge he might afterwards acquire with those elementary sensations and

actions, which each of us must learn from himself, because they Ue too deep

within us to be described to others. This training was put to a very severe

test, when, at the request of the Boston Board of Education, Prof Graham

Bell conducted a series of experiments with his father's system in the Boston

School for the Deaf and Dumb. I cannot conceive a nobler application of the

scientific analysis of speech, than that by which it enables those to whom aU

sound is

" expunged and rased

And wisdom at one entrance quite shut out,"

not only to speak themselves, but to read by sight what other people are saying.

The successful result of the experiments at Boston is not only the most

valuable testimonial to the father's system of visible speech, but an honour
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which the inventor of the telephone may well consider as the highest he has

attained.

An independent method of research into the process of speech was employed

by Wheatstone, Willis, and Kempelen, the aim of which was to imitate the

sounds of the human voice by means of artificial apparatus. This apparatus

was in some cases modelled so as to represent as nearly as possible the form

as well as the functions of the organs of speech, but it was found that an

equally good imitation of the vocal sounds could be obtained from apparatus

the form of which had no resemblance to the natural organs.

Several isolated facts of considerable importance were established by this

method, but the whole theory of speaking and hearing has been so profoundly

modified by Helmholtz and Bonders, that much of what was advanced before

their time has come to possess only an historical interest.

Among all the recent steps in the progress of science, I know none of

which the truly scientific or science-producing consequences are likely to be so

influential as the rise of a school of physiologists, who investigate the conditions

of our sensations by producing on the external senses impressions, the physical

conditions of which can be measured with precision, and then recording the

verdict of consciousness as to the similarity or difierence of the resulting sensa-

tions.

Prof. Helmholtz, in his recent address as Rector of the University of Berlin,

lays great stress on that personal interaction between living minds, which I

have already spoken of as essential to the life of a University. " I appreciate,"

he says, "at its full value this last advantage, when, looking back, I recall

my student days, and the impression made upon us by a man like Johannes

Miiller, the physiologist. When one finds himself in contact with a man of

the first order, the entire scale of one's intellectual conceptions is modified for

life ; contact with such a man is perhaps the most interesting thing life may

have to offer."

Now, the form in which Johannes Miiller stated what we may regard as

the germ which fertilized the physiology of the senses is this, that the difierence

in the sensations due to different senses does not depend upon the actions

which excite them, but upon the various nervous arrangements which receive

them.

To accept this statement out of a book, as a matter of dead faith, may not

be difficult to an easy-going student; but when caught Hke a contagion, as

VOL. n. 95



754 THE TELEPHONE.

Helmholtz caught it, from the lips of the living teacher, it has become the

guiding principle of a life of research.

No man has done more than Helmholtz to open up paths of communication

between isolated departments of human knowledge; and one of these, lying in

a more attractive region than that of elementary psychology, might be explored

under exceptionally favourable conditions, by some of the fresh minds now

coming up to Cambridge.

Helmholtz, by a series of daring strides, has effected a passage for himself

over that untrodden wild between acoustics and music—that Serbonian bog

where whole armies of scientific musicians and musical men of science have

sunk without filling it up.

We may not be able even yet to plant our feet in his tracts and follow

him right across. That would require the seven league boots of the German

colossus ; but to help us in Cambridge we have the Board of Musical Studies,

vindicating for music its ancient place in a liberal education. On the physical

side we have Lord Rayleigh laying the foundation deep and strong in his

Theory of Sound. On the aesthetic side we have the University Musical

Society doing the practical work, and in the space between, those conferences

of Mr Sedley Taylor, where the wail of the siren draws musician and mathematician

together down into the depths of their sensational being, and where the gorgeous

hues of the phoneidoscope are seen to seethe and twine and coil like the

"Dragon boughs and elvish emblemings"

on the gates of that city where

•'an ye heard a music, like enow

They are building still, seeing the city ia built

To music, therefore never built at all.

And therefore built for ever."

The special educational value of this combined study of music and acoustics

is that more than almost any other study it involves a continual appeal to

what we must observe for ourselves.

The facts are things which must be felt; they cannot be learned from any

description of them.

All this has been said more than two hundred years ago by one of our

own prophets—William Harvey, of Gonville and Caius College. "For whosoever

they be that read authors, and do not by the aid of their own senses, abstract
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true representations of the things themselves (comprehended in the author's

expressions) they do not represent true ideas, but deceitful idols and phantasms,

by which they frame to themselves certain shadows and chimseras, and all their

theory and contemplation (which they call science) represents nothing but waking

men's dreams and sick men's phrensies."

Prof. Maxwell was assisted in his practical demonstrations by Mr Gamett,

of St John's College.



[From Nature, Vol. xix.]

XCVI.

—

Paradoxical Philosophy*

On opening this book, the general appearance of the pages, and some of

the phrases on which we happened to light made us somewhat doubtful whether

it lay within our jurisdiction, as it is not the practice of Nature to review

either novels or theological works.

In the dedication, however, the book is described as an account of the

Proceedings of a learned society, a species of literature which we are under a

special vow to rescue from oblivion, even when, as in this case, the proceed-

ings are those of one of those jubilee meetings, in which learned men seem

to aim rather at being lively than scientific.

On the title-page itself there is no name to indicate whether the author

is one of those who by previous conviction have rendered themselves liable to

our surveillance, but on the opposite page we find The Unseen Universe; or,

Physical Speculations on a Future State, to which this book is a "Sequel,"

ascribed to the well-known names of Balfour Stewart and P. G. Tait.

Mr Browning has expressed his regret that the one volume in which

Rafaelle wrote his sonnets, and the one angel which Dante was drawing when

he was interrupted by "people of importance," are lost to the world. We
shall therefore make the most of our opportunity when two eminent men of

science, "driven," as they tell us, "by the exigencies of the subject," have

laid down all the instruments of their art, shaken the very chalk from their

hands, and, locking up their laboratories, have betaken themselves to those

blissful country seats where Philonous long ago convinced Hylas that there

can be no heat in the fire and no matter in the world; and where in more

recent times. Peacock and Mallock have brought together in larger groups the

more picturesque of contemporary opinions.

In this book we do not indeed catch those echoes of well-known voices

in which the citizens of the "New Republic" tell us how they prefer to

* Paradoxical Philosophy. A Sequel to TJie Unseen Universe (London : Macmillan & Co., 1878).
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regard themselves as thinking, taking care, all the while, that no actual thought

shall disturb their enjoyment of the luxury of extravagant opinion. The

members of the Paradoxical Society, with their guest, Dr Hermann Stoffkraft,

are far too earnest to adopt this pose of mind, but they exhibit that sympathy

in fundamentals overlaid with variety in opinions which is one of the main

conditions of good-fellowship. Dr Stoffkraft, in spite of his name and of his

office as the single-handed opponent of the thesis of the book, makes it his

chief care so to brandish his materialistic weapons as not to hurt the feelings

of his friends ; and when, near the end of the book, he gets a little out of

temper, it is about matters with which a materialist, as such, has no concern.

As the book is not a novel there is no literary reason for not telling

" what became of the Doctor," as narrated in the last chapter. He goes to

Strathkelpie Castle to take part in an investigation of spiritualistic phenomena.

He begins by detecting the mode in which one young lady performs her spirit-

rapping, but forthwith falls into an "electro-biological" courtship of another,

and, this proving successful, he is persuaded by his wife and her priest to

renounce the black arts in the lump as works of the foul fiend ; and then

we are told that, having quieted his spirit by a few evolutions in four

dimensions, he has now settled down to compose his Exposition of the Relations

hetweeyi Religion and Science, which he intends to be a thoroughly matured

production.

The Doctor—and, indeed, most of the other characters—are no mere

materialised spirits, or opinions labelled with names of the Euphranor and

Alciphron type. They do not reduce their subject to a capiit mortmnn by an

exhaustive treatment, but take care, like well-bred people, to drop it and pass

on to another before we have time to suspect that the last word has been

said.

We cannot accuse the authors of leading us through the mazy paths of

science only to entrap us into some peculiar form of theological belief. On the

contrary, they avail themselves of the general interest in theological dogmas

to imbue their readers at unawares with the newest doctrines of science. There

must be many who would never have heard of Carnot's reversible engine, if

they had not been led through its cycle of operations while endeavouring to

explore the Unseen Universe. No book containing so much thoroughly scientific

matter would have passed through seven editions in so short a time without

the allurement of some more human interest.
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Nor need we fear to draw down on Nature the admonition which fell on

the inner ear of the poet

—

" Thou pratesfc here where thou art least

;

This faith hath many a purer priest,

And many an abler voice than thou."

For even those words and phrases which seemed at first sight to remove the

book from the field of our criticism, are found on a nearer view to have

acquired a new, and indeed a jparadoxical sense, for which no right of sanctuary

can be claimed.

The words on the title-page :
" In te, Domine, speravi, non confundar in

setemum," may recall to an ordinary reader the aspiration of the Hebrew

Psalmist, the closing prayer of the "Te Deum," or the dying words of Francis

Xavier; and men of science, as such, are not to be supposed incapable either

of the nobler hopes or of the nobler fears to which their fellow-men have

attained. Here, however, we find these venerable words employed to express

a conviction of the perpetual vahdity of the "Principle of Continuity," enforced

by the tremendous sanction, that if at any place or at any time a single

exception to that principle were to occur, a general collapse of every intellect

in the universe would be the inevitable result.

There are other well-known words in which St Paul contrasts things seen

with things unseen. These also are put in a prominent place by the authors

of the Unseen Universe. What, then, is the Unseen to which they raise their

thoughts ?

In the first place the luminiferous sether, the tremors of which are the

dynamical equivalent of all the energy which has been lost by radiation from

the various systems of grosser matter which it surrounds. In the second place

a still more subtle medium, imagined by Sir WiUiam Thomson as possibly

capable of furnishing an explanation of the properties of sensible bodies; on

the hypothesis that they are built up of ring vortices set in motion by some

supernatural power in a frictionless liquid: beyond which we are to suppose an

indefinite succession of media, not hitherto imagined by any one, each mam-

foldly more subtle than any of those preceding it. To exercise the mind in

speculations on such media may be a most delightful employment for those who

are intellectually fitted to indulge in it, though we cannot see why they should

on that account appropriate the words of St Paul.
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Nature is a journal of science, and one of the severest tests of a scientific

mind is to discern the Hmits of the legitimate application of scientific methods.

We shall therefore endeavour to keep within +he bounds of science in speaking

of the subject-matter of this book, remembering that there are many things

in heaven and earth which, by the selection required for the application of

our scientific methods, have been excluded from our philosophy.

No new discoveries can make the argument against the personal existence

of man after death any stronger than it has appeared to be ever since men

began to die, and no language can express it more forcibly than the words

of the Psalmist :

—

" His breath goeth forth, he returneth to his earth ; in that very day his

thoughts perish."

Physiology may supply a continually increasing number of illustrations of

the dependence of our actions, mental as well as bodily, on the condition of

our material organs, but none of these can render any more certain those facts

about death which our earliest ancestors knew as well as our latest posterity

can ever learn them.

Science has, indeed, made some progress in clearing away the haze of

materialism which clung so long to men's notions about the soul, in spite of

their dogmatic statements about its immateriality. No anatomist now looks

forward to being able to demonstrate my soul by dissecting it out of my pineal

gland, or to determine the quantity of it by the process of double weighing.

The notion that the soul exerts force lingered longer. We find it even in the

late Isaac Taylor's Physical Theorij of a Future State. It was admitted that

one body might set another in motion; but it was asserted that in every case,

if we only trace the chain of phenomena far enough back, we must come to

a body set in motion by the direct action of a soul.

It would be rash to assert that any experiments on living beings have as

yet been conducted with such precision as to account for every foot-pound of

work done by an animal in terms of the diminution of the intrinsic energy of

the body and its contents; but the principle of the conservation of energy has

acquired so much scientific weight during the last twenty years that no physio-

logist would feel any confidence in an experiment which shewed a considerable

difference between the work done by an animal and the balance of the account

of energy received and spent.

Science has thus compelled us to admit that that which distinguishes a
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living body from a dead one is neither a material thing, nor that more refined

entity, a "form of energy." There are methods, however, by which the applica-

tion of energy may be directed without interfering with its amount. Is the

soul like the engine-driver, who does not draw the train himself, but, by means

of certain valves, directs the course of the steam so as to drive the engine

forward or backward, or to stop it?

The dynamical theory of a conservative material system shews us, however,

that 171 general the present configuration and motion determine the whole course

of the system, exceptions to this rule occurrmg only at the instants when the

system passes through certain isolated and smgular phases, at which a strictly

infinitesimal force may determine the course of the system to any one of a finite

number of equally possible paths, as the pomtsman at a railway junction directs

the train to one set of rails or another. Prof B. Stewart has expounded a

theory of this kind in his book on The Conservation of Energy, and MM. de

St Venant and Boussinesq have examined the correspondmg phase of some

purely mathematical problems.

The science which rejoices in the name of " Psychophysik " has made con-

siderable progress in the study of the phenomena which accompany our sensations

and voluntary motions. We are taught that many of the processes which we

suppose entu-ely under the control of our own will are subject to the strictest

laws of succession, with which we have no power of interfering; and we are

shewn how to verify the conclusions of the science by deducing from it methods

of physical and mental training for ourselves and others.

Thus science strips off, one after the other, the more or less gross

materialisations by which we endeavour to form an objective image of the soul,

till men of science, speculating, in then: non-scientific intervals, like other men

on what science may possibly lead to, have prophesied that we shall soon have

to confess that the soul is nothing else than a function of certain complex

material systems.

Men of science, however, are but men, and therefore occasionally contemplate

their souls from within. Those who, Hke Du Bois-Beymond, cannot admit that

sensation or consciousness can be a function of a material system, are led to

the conception of a double mind.

"On the one side the acting, inventing, unconscious material mind, which puts the muscles

into motion, and determines the world's history; this is nothing else but the mechanics of atoms,

and is subject to the causal law, and on the other side the inactive, contemplative, remembering,
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fancying, conscious, immaterial mind, which feels pleasure and pain, love, and hate ; this one lies

outside of the mechanics of matter, and cares nothing for cause and effect."

We might ask Prof. Du Bois-Reymond which of these it is that does right

or wrong, and knows that it is his act, and that he is responsible for it, but

we must go on to the other view of the case, which Dr Btoffkraft alludes to

at p. 78, although by some law of the Paradoxical, he is not allowed to pursue

a subject which might have afforded excellent sport to the Society.

" I feel myself compelled to believe," says the learned Doctor, " that all

kinds of matter have their motions accompanied with certain simple sensations.

In a word, all matter is, in some occult sense, alive."

This is what we may call the "levelling up" policy, and it has been

expounded with great clearness by Prof, von Niigeli in a lecture, of which a

translation was given in Nature, Vol. xvl p. 531.

He can draw no line across the chain of being, and say that sensation

and consciousness do not extend below that line. He cannot doubt that every

molecule possesses something related, though distantly, to sensation, " since each

one feels the presence, the particular condition, the peculiar forces of the other,

and, accordingly, has the inclination to move, and under circumstances really

begins to move—becomes alive as it were ;"
. . . "If, therefore, the molecules feel

something which is related to sensation, then this must be pleasure if they can

respond to attraction and repulsion, i.e. follow their inclination or disinclination
;

it must be displeasure if they are forced to execute some opposite movement,

and it must be neither pleasure nor displeasure if they remain at rest."

Prof von Nageli must have forgotten his dynamics, or he would have

remembered that the molecules, like the planets, move along like blessed gods.

They cannot be disturbed from the path of their choice by the action of any

forces, for they have a constant and perpetual will to render to every force

precisely that amount of deflexion which is due to it. Their condition must,

therefore, be one of unmixed and unbroken pleasure.

But even if a man were built up of thinking atoms would the thoughts

of the man have any relation to the thoughts of the atoms ? Those who try

to account for mental processes by the combined action of atoms do so, not by

the thoughts of the atoms, but by their motions.

Dr Stoffkraft explains the origin of consciousness at p. 77 and at p. 107.

We recommend to his attention Mr Herbert Spencer's statement in his Principles

of Psychology, § 179, where he shews in a most triumphant manner how, under

VOL. IL 96
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certain circumstances, "there must arise a consciousness." Such statements, care-

fully studied, may contribute to the further progress of science in the path

which we have been describing, by shewing more clearly that consciousness

cannot be the result of a plexus of nervous communications any more than of

a congeries of plastidule souls.

Personality is often spoken of as if it were another name for the continuity

of consciousness as reproduced in memory, but it is impossible to deal with

personality as if it were something objective that we could reason about. My
knowledge that I am is quite independent of my recollection that I was, and

also of my behef that, for a certain number of years, I have never ceased to

be. But as soon as we plunge into the abysmal depths of personaUty we get

beyond the limits of science, for all science, and, indeed, every form of human

speech, is about objects capable of being known by the speaker and the hearer.

Whenever we pretend to talk about the Subject we are really dealing with an

Object under a false name, for the first proposition about the Subject, namely,

" I am," cannot be used in the same sense by any two of us, and therefore

can never become part of science at all.

The progress of science, therefore, so far as we have been able to follow

it, has added nothing of importance to what has always been known about the

physical consequences of death, but has rather tended to deepen the distinction

between the visible part, which perishes before our eyes, and that which we

are ourselves, and to shew that this personality, with respect to its nature as

well as to its destiny, lies quite beyond the range of science.



[From Encyclopaedia Britannica.]

XCVII. Ether.

Ether, or ^ther {aWrjp, probably from aWcj, I burn, though Plato in his

Cratihis (410, b) derives the name from its perpetual motion—ort act O^Z nepl

Tov depa pecou, deiderjp Stxatcus dv KaXotro), a material substance of a more

subtle kind than visible bodies, supposed to exist in those parts of space which

are apparently empty.

The hypothesis of an sether has been maintained by different speculators

for very different reasons. To those who maintained the existence of a plenum

as a philosophical principle, nature's abhorrence of a vacuum was a sufficient

reason for imagining an all-surrounding sether, even though every other

argument should be against it. To Descartes, who made extension the sole

essential property of matter, and matter a necessary condition of extension,

the bare existence of bodies apparently at a distance was a proof of the

existence of a continuous medium between them.

But besides these high metaphysical necessities for a medium, there were

more mundane uses to be fulfilled by sethers. ^Ethers were invented for

the planets to swim in, to constitute electric atmospheres and magnetic effluvia,

to convey sensations from one part of our bodies to another, and so on, till

all space had been filled three or four times over with aethers. It is only

when we remember the extensive and mischievous influence on science which

hypotheses about sethers used formerly to exercise, that we can appreciate the

horror of sethers which sober-minded men had during the 18th century, and

which, probably as a sort of hereditary prejudice, descended even to the late

Mr John Stuart Mill.

The disciples of Newton maintained that in the fact of the mutual gravi-

tation of the heavenly bodies, according to Newton's law, they had a complete

quantitative account of their motions; and they endeavoured to follow out the

path which Newton had opened up by investigating and measuring the attrac-

96—2
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tions and repulsions of electrified and magnetic bodies, and the cohesive forces

in the interior of bodies, without attempting to account for these forces.

Newton himself, however, endeavoured to account for gravitation by dif-

ferences of pressure in an aether (see Art. Attraction^, Vol. iii. p. 64); .but

he did not publish his theory, "because he was not able from experiment and

observation to give a satisfactory account of this medium, and the manner of

its operation in producing the chief phenomena of nature."

On the other hand, those who imagined aethers in order to explain phe-

nomena could not specify the nature of the motion of these media, and could

not prove that the media, as imagined by them, would produce the effects

they were meant to explain. The only aether which has survived is that

which was invented by Huygens to explain the propagation of light. The

evidence for the existence of the luminiferous aether has accumulated as addi-

tional phenomena of light and other radiations have been discovered; and the

properties of this medium, as deduced from the phenomena of light, have been

found to be precisely those required to explain electromagnetic phenomena.

Function of the cether in the propagation of radiation.—The evidence for

the undulatory theory of light will be given in full, under the Article on

Light, but we may here give a brief summary of it so far as it bears on

the existence of the aether.

That Hght is not itself a substance may be proved from the phenomenon

of interference. A beam of light from a single source is divided by certain

optical methods into two parts, and these, after travelling by different paths,

are made to reunite and fall upon a screen. If either half of the beam is

stopped, the other falls on the screen and illuminates it, but if both are allowed

to pass, the screen in certain places becomes dark, and thus shews that the

two portions of light have destroyed each other.

Now, we cannot suppose that two bodies when put together can annihilate

each other; therefore light cannot be a substance. What we have proved is

that one portion of light can be the exact opposite of another portion, just

as -fa is the exact opposite of -a, whatever a may be. Among physical

quantities we find some which are capable of having their signs reversed, and

others which are not. Thus a displacement in one direction is the exact

opposite of an equal displacement in the opposite direction. Such quantities

* [p. 485 of the present vol.]
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are the measures, not of substances, but always of processes taking place in a

substance. We therefore conclude that light is not a substance but a process

going on in a substance, the process going on in the first portion of light

being always the exact opposite of the process going on in the other at the

same instant, so that when the two portions are combined no process goes

on at all. To determine the nature of the process in which the radiation of

light consists, we alter the length of the path of one or both of the two

portions of the beam, and we find that the light is extinguished when the

difierence of the length of the paths is an odd multiple of a certain small

distance called a half wave-length. In all other cases there is more or less

light ; and when the paths are equal, or when their difference is a multiple

of a whole wave-length, the screen appears four times as bright as when one

portion of the beam falls on it. In the ordinary form of the experiment these

different cases are exhibited simultaneously at different points of the screen,

so that we see on the screen a set of fringes consisting of dark lines at

equal intervals, with bright bands of graduated intensity between them.

If w^e consider what is going on at different points in the axis of a beam

of light at the same instant, we shall find that if the distance between the

points is a multiple of a wave-length the same process is going on at the

two points at the same instant, but if the distance is an odd multiple of

half a wave-length the process going on at one point is the exact opposite

of the process going on at the other.

Now, light is known to be propagated with a certain velocity (3 '004 x 10'"

centimetres per second in vacuum, according to Cornu). If, therefore, we sup-

pose a movable point to travel along the ray with this velocity, we shall

find the same process going on at every point of the ray as the moving point

reaches it. If, lastly, we consider a fixed point in the axis of the beam, we

shall observe a rapid alternation of these opposite processes, the interval of time

between similar processes being the time light takes to travel a wave-length.

These phenomena may be summed up in the mathematical expression

u = A cos (nt —px + a)

which gives u, the phase of the process, at a point whose distance measured

from a fixed point in the beam is x, and at a time t.

We have determined nothing as to the nature of the process. It may

be a displacement, or a rotation, or an electrical disturbance, or indeed any
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physical quantity which is capable of assuming negative as well as positive

values. Whatever be the nature of the process, if it is capable of being

expressed by an equation of this form, the process going on at a fixed point

is called a vibration; the constant A is called the amplitude; the time — is

called the period; and nt—px + a is the phase.

The configuration at a given instant is called a wave, and the distance —
P

is called the loave-length. The velocity of propagation is -. When we contem-

plate the different parts of the medium as going through the same process in

succession, we use the word undulatory to denote this character of the process

without in any way restricting its physical nature.

A further insight into the physical nature of the process is obtained from

the fact that if the two rays are polarized, and if the plane of polarization

of one of them be made to turn round the axis of the ray, then when the

two planes of polarization are parallel the phenomena of interference appear as

above described. As the plane turns round, the dark and light bands become

less distinct, and when the planes of polarization are at right angles, the

illumination of the screen becomes uniform, and no trace of interference can be

discovered.

Hence the physical process involved in the propagation of light must not

only be a directed quantity or vector capable of having its direction reversed,

but this vector must be at right angles to the ray, and either in the plane

of polarization or perpendicular to it. Fresnel supposed it to be a displace-

ment of the medium perpendicular to the plane of polarization. Maccullagh and

Neumann supposed it to be a displacement in the plane of polarization. The

comparison of these two theories must be deferred till we come to the phenomena

of dense media.

The process may, however, be an electromagnetic one, and as in this case

the electric displacement and the magnetic disturbance are perpendicular to each

other, either of these may be supposed to be m the plane of polarization.

All that has been said with respect to the radiations which affect our

eyes, and which we call light, applies also to those radiations which do not

produce a luminous impression on our eyes, for the phenomena of interference
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have been observed, and the wave-lengths measured, in the case of radiations,

which can be detected only by their heating or by their chemical effects.

Elasticity, tenacity, and density of the cether.—Having so far determined the

geometrical character of the process, we must now turn our attention to the

medium in which it takes place. We may use the term cether to denote this

medium, whatever it may be.

In the first place, it is capable of transmitting energy. The radiations which

it transmits are able not only to act on our senses, which of itself is evidence

of work done, but to heat bodies which absorb them ; and by measuring the

heat communicated to such bodies, the energy of the radiation may be calculated.

In the next place this energy is not transmitted instantaneously from the

radiating body to the absorbing body, but exists for a certain time in the

medium.

If we adopt either Fresnel's or Maccullagh's form of the undulatory theory,

half of this energy is in the form of potential energy, due to the distortion of

elementary portions of the medium, and half in the form of kinetic energy,

due to the motion of the medium. We must therefore regard the aether as

possessing elasticity similar to that of a soHd body, and also as having a finite

density. If we take Pouillet's estimate of 17633 as the number of gramme-

centigrade units of heat produced by direct sunlight falling on a square centi-

metre in a minute, this is equivalent to 1*234x10^ ergs per second. Dividing

this by 3-004x10"', the velocity of light in centimetres per second, we get for

the energy in a cubic centimetre 4*1 x 10"' ergs. Near the sun the energy in

a cubic centimetre would be about 46,000 times this, or r886 ergs. If we
further assume, with Sir W. Thomson, that the amplitude is not more than one

hundredth of the wave-length, we have Ap = , ^^ , or about — ; so that we have

—

Energy per cubic centimetre =\pV^A'^p-=l'Q^Q ergs.*

Greatest tangential stress per square centimetre = pV'Ap =30' 176 dynes.

Coefficient of rigidity of ether = pV^ =842'8.

Density of aether = p =9-36x10"".

The coefficient of rigidity of steel is about 8 x 10", and that of glass

2-4x10".

* [The numbers in this column are incorrectly deduced from the data. They should be 1886,

60-352, 965-632 and 1-07 x lO"''.]
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If the temperature of the atmosphere were everywhere 0" C, and if it were

in equilibrium about the earth supposed at rest, its density at an infinite distance

from the earth would be 3 x lO""^ which is about 1-8 xlO"^ times less than

the estimated density of the sether. In the regions of interplanetary space the

density of the aether is therefore very great compared with that of the at-

tenuated atmosphere of interplanetary space, but the whole mass of aether

within a sphere whose radius is that of the most distant planet is very small

compared with that of the planets themselves*.

The OBther distinct from gross matter.—When light travels through the

atmosphere it is manifest that the medium through which the light is propagated

is not the air itself, for in the first place the air cannot transmit transverse

vibrations, and the normal vibrations which the air does transmit travel about

a million times slower than light. Solid transparent bodies, such as glass

and crystals, are no doubt capable of transmitting transverse vibrations, but

the velocity of transmission is still hundreds of thousand times less than that

with which light is transmitted through these bodies. We are therefore obliged

to suppose that the medium through which light is propagated is something

distinct from the transparent medium known to us, though it interpenetrates

all transparent bodies and probably opaque bodies too.

The velocity of hght, however, is different in different transparent media,

and we must therefore suppose that these media take some part in the process,

and that their particles are vibrating as well as those of the sether, but the

energy of the vibrations of the gross particles must be very much smaller

than that of the aether, for otherwise a much larger proportion of the incident

light would be reflected when a ray passes fi:om vacuum to glass or from

glass to vacuum than we find to be the case.

Relative motion of the (Bther.—We must therefore consider the aether within

dense bodies as somewhat loosely connected with the dense bodies, and we

have next to inquire whether, when these dense bodies are in motion through

the great ocean of sether, they carry along with them the sether they con-

tain, or whether the sether passes through them as the water of the sea

passes through the meshes of a net when it is towed along by a boat. If

it were possible to determine the velocity of light by observing the time it

takes to travel between one station and another on the earth's surface, we

* See Sir W. Thomson, Tran^. R. S. Edin. Vol. xxi. p. 60.
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might, by comparing the observed velocities in opposite directions, determine

the velocity of the sether with respect to these terrestrial stations. All

methods, however, by which it is practicable to determine the velocity of light

from terrestrial experiments depend on the measurement of the time required

for the double journey from one station to the other and back, again, and the

increase of this time on account of a relative velocity of the aether equal to

that of the earth in its orbit would be only about one hundred milliontli

part of the whole time of transmission, and would therefore be quite insensible.

The theory of the motion of the aether is hardly sufficiently developed to

enable us to form a strict mathematical theory of the aberration of light,

taking into account the motion of the aether. Professor Stokes, however, has

shewn that, on a very probable hypothesis with respect to the motion of the

sether, the amount of aberration would not be sensibly affected by that motion.

The only practicable method of determining directly the relative velocity of

the aether with respect to the solar system is to compare the values of the

velocity of light deduced from the observation of the eclipses of Jupiter's satellites

when Jupiter is seen from the earth at nearly opposite points of the ecliptic.

Arago proposed to compare the deviation produced in the light of a star

after passing through an achromatic prism when the direction of the ray within

the prism formed different angles with the direction of motion of the earth

in its orbit. If the aether were moving swiftly through the prism, the deviation

might be expected to be different when the direction of the light was the

same as that of the aether, and when these directions were opposite.

The present writer * arranged the experiment in a more practicable manner

by using an ordinary spectroscope, in which a plane mirror was substituted

for the slit of the collimator. The cross wires of the observing telescope were

illuminated. The light from any point of the wire passed through the object-

glass and then through the prisms as a parallel pencil till it fell on the

object-glass of the collimator, and came to a focus at the mirror, where it was

reflected, and after passing again through the object-glass it formed a pencil

passing through each of the prisms parallel to its original direction, so that

the object-glass of the observing telescope brought it to a focus coinciding

with the point of the cross wires from which it originally proceeded. Since

* Phil. Trans. CLViii. (1868), p. 532. [Communicated by Prof. JNIaxwell to Dr Ilugjins ami

included by him in his paper on the spectra of some of the stars and nebulre.]

VOL, II. 97
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the image coincided with the object, it could not be observed directly, but by-

diverting the pencil by partial reflection at a plane surface of glass, it was

found that the miage of the finest spider line could be distinctly seen, though

the light which formed the image had passed twice through three prisms of

60". The apparatus was first turned so that the direction of the light in first

passing through the second prism was that of the earth's motion in its orbit,

The apparatus was afterwards placed so that the direction of the light was

opposite to that of the earth's motion. If the deviation of the ray by the

prisms was increased or diminished for this reason in the first journey, it would

be diminished or increased in the return journey, and the image would appear

on one side of the object. When the apparatus was turned round it would

appear on the other side. The experiment was tried at different times of the

year, but only negative results were obtained. We cannot, however, conclude

absolutely from this experiment that the aether near the surface of the earth

is carried along with the earth in its orbit, for it has been shown by Professor

Stokes * that according to Fresnel's hypothesis the relative velocity of the aether

within the prism would be to that of the aether outside inversely as the

square of the index of refraction, and that in this case the deviation would

not be sensibly altered on account of the motion of the prism through the {«ther.

Fizeaut, however, by observing the change of the plane of polarization of

light transmitted obliquely through a series of glass plates, obtained what he

supposed to be evidence of a difference in the result when the direction of

the ray in space was different, and Angstrom obtained analogous results by

difiraction. The writer is not aware that either of these very difficult experi-

ments has been verified by repetition.

In another experiment of M. Fizeau, which seems entitled to greater con-

fidence, he has observed that the propagation of light in a stream of water takes

place with greater velocity in the direction in which the water moves than

in the opposite direction, but that the change of velocity is less than that

which would be due to the actual velocity of the water, and that the

phenomenon does not occur when air is substituted for water. This experiment

seems rather to verify Fresnel's theory of the aether; but the whole question

of the state of the luminiferous medium near the earth, and of its connexion

with gross matter, is very far as yet from being settled by experiment.

* Phil. Mag. 1846, p. 53. t Ann. de Chimie et de Physique, Feb. 1860.
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Function of the (Ether in eleetromagnetic 'phenomena.—Faraday conjectured

that, the same medium which is concerned in the propagation of light might

also be the agent in electromagnetic phenomena. "For my own part," he says,

"considering the relation of a vacuum to the magnetic force, and the general

character of magnetic phenomena external to the magnet, I am much more

inclined to the notion that in the transmission of the force there is such an

action, external to the magnet, than that the effects are merely attraction and

repulsion at a distance. Such an action may be a function of the aether;

for it is not unlikely that, if there be an aether, it should have other uses

than simply the conveyance of radiation*." This conjecture has only been

strengthened by subsequent investigations.

Electrical energy is of two kinds, electrostatic and electrokinetic. We
have reason to believe that the former depends on a property of the medium,

in virtue of wliich an electric displacement elicits an electromotive force in the

opposite direction, the electromotive force for unit displacement being inversely

as the specific inductive capacity of the medium.

The electrokinetic energy, on the other hand, is simply the energy of the

motion set up in the medium by electric currents and magnets, this motion not

being confined to the wires which carry the currents, or to the magnet, but

existing in every place where magnetic force can be found.

Electromagnetic Theory of Light.—The properties of the electromagnetic

medium are therefore as far as we have gone similar to those of the lumi-

niferous medium, but the best way to compare them is to determine the

velocity with which an electromagnetic disturbance would be propagated through

the medium. If this should be equal to the velocity of light, we would have

strong reason to believe that the two media, occupying as they do the same

space, are really identical. The data for making the calculation are furnished

by the experiments made in order to compare the electromagnetic with the

electrostatic system of units. The velocity of propagation of an electromagnetic

disturbance in air, as calculated from different sets of data, does not differ

more from the velocity of light in air, as determined by different observers,

than the several calculated values of these quantities differ among each other.

If the velocity of propagation of an electromagnetic disturbance is equal

to that of fight in other transparent media, then in non-magnetic media the

* Experimental Eesearclies, 3075.
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specific inductive capacity should be equal to the square of the index of

refraction.

Boltzmann'" has found that this is very accurately true for the gases which

he has examined. Liquids and solids exhibit a greater divergence from this

relation, but we can hardly expect even an approximate verification when ve
have to compare the results of our sluggish electrical experiments with the

alternations of light, which take place billions of times in a second.

The undulatory theory, in the form which treats the phenomena of light

as the motion of an elastic solid, is still encumbered with several difiicultiesf.

The first and most important of these is that the theory indicates the possi-

bility of undulations consisting of vibrations normal to the surface of the wave.

The only way of accounting for the fact that the optical phenomena which

would arise from these waves do not take place is to assume that the sether

is incompressible.

The next is that, whereas the phenomena of reflection are best explained

on the hypothesis that the vibrations are perpendicular to the plane of polari-

zation, those of double refraction require us to assume that the vibrations are

in that plane.

The third is that, in order to account for the fact that in a doubly re-

fracting crystal the velocity of rays in any principal plane aAd polarized in

that plane is the same, we must assume certain highly artificial relations among

the coeflacients of elasticity.

The electromagnetic theory of light satisfies all these requirements by the

single hypothesis J that the electric displacement is perpendicular to the plane of

polarization. No normal displacement can exist, and in doubly refracting crystals

the specific dielectric capacity for each principal axis is assumed to be equal

to the square of the index of refraction of a ray perpendicular to that axis,

and polarized in a plane perpendicular to that axis. Boltzmann § has found

that these relations are approximately true in the case of crystallized sulphur,

* Wiener Sitzb., 23 April, 1874.

t See Prof. Stokes, " Report on Double Refraction," British Ass. Report, 1862, p. 253.

X Over de tlieorie der terugkaatsing en hreking van het lichi,—Academisch Proefschrift door H. A.

Lorentz. Ai-nliem, K. van der Zande, 1875.

§ " Ueber die Verschiedenheit der Dielektricitatsconstante des krystallisirten Schwefels nach verschie-

denen Ricbtungen," by Ludwig Boltzmann, Wiener Sitzb., 8th Oct., 1874.
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a body having three unequal axes. The specific dielectric capacity for these

axes are respectively

4773 3-970 3-811

and the squares of the indices of refraction

4-576 3-886 3-591

Physical constitution of the cether.—What is the ultimate constitution of the

aether ? is it molecular or continuous ?

We know that the aether transmits transverse vibrations to very great

distances without sensible loss of energy by dissipation. A molecular medium,

moving under such conditions that a group of molecules once near together

remain near each other during the whole motion, may be capable of trans-

mitting vibrations without much dissipation of energy, but if the motion is

such that the groups of molecules are not merely slightly altered in configura-

tion but entirely broken up, so that their component molecules pass into new
tjrpes of grouping, then in the passage from one type of grouping to another

the energy of regular vibrations will be frittered away into that of the irregular

agitation which we call heat.

We cannot therefore suppose the constitution of the aether to be like that

of a gas, in which the molecules are always in a state of irregular agitation,

for in such a medium a transverse undulation is reduced to less than one five-

hundredth of its amplitude in a single wave-length. If the aether is molecular,

the grouping of the molecules must remain of the same type, the configuration

of the groups being only slightly altered during the motion.

Mr S. Tolver Preston* has supposed that the aether is like a gas whose

molecules very rarely interfere with each other, so that their mean path is far

greater than any planetary distances. He has not investigated the properties

of such a medium with any degree of completeness, but it is easy to see that

we might form a theory in which the molecules never interfere with each

other's motion of translation, but travel in all directions with the velocity of

light ; and if we further suppose that vibrating bodies have the power of im-

pressing on these molecules some vector property (such as rotation about an

axis) which does not interfere with their motion of translation, and which is

then carried along by the molecules, and if the alternation of the averao-e

* Phil. Mag., Sept aud Nov. 1877.
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value of this vector for all the molecules within an element of volume be the

process which we call light, then the equations which express this average

will be of the same form as that which expresses the displacement in the

ordinary theory.

It is often asserted that the mere fact that a medium is elastic or com-

pressible is a proof that the medium is not continuous, but is composed of

separate parts having void spaces between them. But there is nothing incon-

sistent with experience in supposing elasticity or compressibility to be properties

of every portion, however small, into which the medium can be conceived to

be divided, in which case the medium would be strictly continuous. A medium,

however, though homogeneous and continuous as regards its density, may be

rendered heterogeneous by its motion, as in Sir W. Thomson's hypothesis of

vortex-molecules in a perfect liquid (see Art. Atom)*.

The ^ther, if it is the medium of electromagnetic phenomena, is probably

molecular, at least in this sense.

Sir W. Thomsont has shewn that the magnetic influence on light discovered

by Faraday depends on the direction of motion of moving particles, and that it

indicates a rotational motion in the medium w^hen magnetized. See also

Maxwell's Electricity and Magnetism, Art., 806, &c.

Now, it is manifest that this rotation cannot be that of the medium as a

whole about an axis, for the magnetic field may be of any breadth, and there is

no evidence of any motion the velocity of which increases with the distance from

a single fixed line in the field. If there is any motion of rotation, it must be a

rotation of very small portions of the medium each about its ow^n axis, so

that the medium must be broken up into a number of molecular vortices.

We have as yet no data from which to determine the size or the number

of these molecular vortices. We know, however, that the magnetic force in the

region in the neighbourhood of a magnet is maintained as long as the steel

retains its magnetization, and as we have no reason to believe that a steel

magnet would lose all its magnetization by the mere lapse of time, we

conclude that the molecular vortices do not require a continual expenditure of

work in order to maintain their motion, and that therefore this motion does

not necessarily involve dissipation of energy.

*
[p. 445 of the present volume.] t Proceedings of the Royal Society, June, 1856.
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No theory of the constitution of tlie sether has yet been invented which

will account for such a system of molecular vortices being maintained for an

indefinite time without their energy being gradually dissipated into that irregular

agitation of the medium which, in ordinary media, is called heat.

Whatever difficulties we may have in forming a consistent idea of the con-

stitution of the aether, there can be no doubt that the interplanetary and

interstellar spaces are not empty, but are occupied by a material substance or

body, which is certainly the largest, and probably the most uniform body of

which we have any knowledge.

Whether this vast homogeneous expanse of isotropic matter is fitted not

only to be a medium of physical interaction betw^een distant bodies, and to

fulfil other physical functions of which, perhaps, we have as yet no conception,

but also, as the authors of the Unseen Universe seem to suggest, to con-

stitute the material organism of beings exercising functions of life and mind

as high or higher than ours are at present, is a question far transcending the

limits of physical speculation.



[From Nature, Vol. xx.]

XCVIII. Thomson and Tail's Natural Ph

The year 1867 will long be remembered by natural philosopbers as that

of the publication of the first volume of "Thomson and Tait." They had long

been waiting for the book, and in the preface the delay was accounted for

by the necessity of anticipating the wants of the other three volumes, in which

the remaining divisions of Natural Philosophy were to be treated. The reader

was also reminded, that if in any passage he failed to appreciate the aim of

the authors, the reason might be that what he was studying was in reality

a prospective contrivance, the true aim of which would not become manifest

until after the perusal of that part of the work for which it was designed to

prepare the way.

What we have had before us now for twelve years was, the authors

reminded us, strictly preliminary matter. The plan of the whole treatise

could only be guessed at from the scale on which its foundations were con-

structed.

In these days, when so much of the science of our best men is dribbled

out of them in the fragmentary and imperfectly elaborated form of the memoirs

which they contribute to learned societies, and when the work of making

books is relegated to professional bookmakers, who understand about as much

of one subject as of another, it was something to find that even one man of

known power had not shrunk from so great a work ; it was more when it

appeared that two men of mark were joined together in the undertaking ; and

when at last the plan of the work was described in the preface, and the

scale on which its foundations were being laid was exhibited in the vast sub-

structure of Preliminary Matter, the feeling with which we began to contemplate

the mighty whole was one in which delight was almost overpowered by awe.
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This feeling has been growing upon us during the twelve years we have

been exploring the visible part of the work, marking its bulwarks and telling

the rising generation what manner of a palace that must be, of which these

are but the outworks and first line of defences, so that now, when we have

before us the second edition of the first part of the first volume, we are

impelled to risk the danger of criticising an unfinished work, and to say some-

thing about the plan of what is already before us.

The first thing which we observe in the arrangement of the work is the

prominence given to kinematics, or the theory of pure motion, and the large

space devoted under this heading to what has been hitherto considered part

of pure geometry. The theory of the curvature of lines and surfaces, for

example, has long been recognised as an important branch of geometry, but

in treatises on motion it was regarded as lying as much outside of the subject

as the four rules of arithmetic or the binomial theorem.

The guiding idea, however, which, though it has long exerted its influence

on the best geometers, is now for the first time boldly and explicitly put

forward, is that geometry itself is part of the science of motion, and that it

treats, not of the relations between figures already existing in space, but of

the process by which these figures are generated by the motion of a point

or a line.

"We no longer, for example, consider the line AB simply as a white

stroke on a black board, and call it indifferently AB or BA, but we conceive

it as the trace of the motion of a point from A to B, and we distinguish

A as the beginning and B as the end of this trace.

This method of regarding geometrical figures seems to imply that the

idea of motion underlies the idea of form, and is in accordance with the

psychological doctrine which asserts that at any given instant the attention is

confined to a single and indivisible percept, but that as time flows on the

attention passes along a continuous series of such percepts, so that the path

of investigation along which the mind proceeds may be described as a con-

tinuous line without breadth. Our knowledge, therefore, of whatever kind, may

be compared to that which a blind man acquires of the form of solid bodies

by stroking them with the point of his stick, and then filling up in his

imagination the unexplored parts of the surface according to his own notions

about continuity and probability. The rapidity, however, with which we make

our exploration is such that we come to think that by a single glance we

VOL. II. 98
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can thoroughly see the whole of that surface of a body which is turned

towards us, if, indeed, we are not prepared to assert that we have seen the

other side too, when after all, if our attention were to leave a trace behind

it, as the point of the blind man's stick might do, this trace would appear

as a mere line meandering over the surface in various directions, but leaving

between its convolutions unexplored areas, the sum of which is still equal to.

the whole surface. We are at liberty no doubt to course over the surface and

to subdivide the meshes of the network of lines in which we envelope it, and

to conclude that there cannot be a hole in it of more than a certain diameter,

but no amount of investigation will warrant the conclusion, which nevertheless

we draw at once and without a scruple, that the surface is absolutely con-

tinuous and has no hole in it at all. Even when, in a dark night, a flash

of lightning discloses instantaneously a whole landscape with trees and buildings,

we discover these things not at once, but by perusing at our leisure the

picture which the sudden flash has photographed on our retina.

The reason why the phenomena of motion have been so long refused a

place among the most universal and elementary subjects of instruction seems

to be, that we have been relying too much on symbols and diagrams, to the

neglect of the vital processes of sensation and thought.

It is no doubt much easier to' represent in a diagram or a picture the

instantaneous relations of things coexisting in space than to illustrate in a full

and complete manner the simplest case of motion. When we have drawn our

diagram it remains on the paper, and the student may run his mind over the

lines in any order which pleases him. But when we are either perceiving

real motions, or thinking about them without the aid or the encumbrance of

a diagram, the mind is carried along the actual course of the motion, in a

manner far more easy and natural than when it is rushing indiscriminately

hither and thither along the lines of a diagram.

Having pursued kinematics from its elementary principles till its intricacies

begin to be appalling, we resume the study of the elements of science in the

opening of the chapter on " Dynamical Laws and Principles." It is here that

we first have to deal with something which claims the title of Matter, and

our authors, one of whom never misses an opportunity of denouncing meta-

physical reasoning, except when he has occasion to expound the pecuUarities

of the Unconditioned, make the following somewhat pusillanimous statement :

—

"We cannot, of course, give a definition of Matter which will satisfy the
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metaphysician, but the naturaUst may be content to know matter as that which

can be perceived by the senses, or as that which can be acted upon by, or can

exert, force."

The authors proceed to throw out a hint about Force being a direct

object of sense, and after telling us that the question Mliat is matter? will

be discussed in a future volume, in which also the Subjectivity of Force will

be considered, they retire to watch the effect of the definition they have thrown

into the camp of the naturalists.

Now all this seems to us very much out of place in a treatise on

Dynamics. We have nothing of the kind in treatises on Geometry. We have

no disquisitions as to whether it is by touch or by sight that we come to

know in what way a triangle differs from a square. We have not even a

caution that the diagrams of these figures in the book do not exactly corre-

spond with their definitions. Even in kinematics, when our authors speak of

the motion of points, Hnes, surfaces, and solids, though they introduce several

modem phrases, the kind of motion they speak of is none other than that

which Euclid recognises, when he treats of the generation of figures.

Why, then, should we have any change of method when we pass on from

kinematics to abstract dynamics? Why should we find it more difficult to

endow moving figures with mass than to endow stationary figures with motion ?

The bodies we deal with in abstract dynamics are just as completely known

to us as the figures in Euclid. They have no properties whatever except those

which we explicitly assign to them.

Again, at p. 222, the capacity of the student is called upon to accept

the following statement :

—

" Matter has an innate power of resisting external influences, so that

every body, as far as it can, remains at rest or moves uniformly in a

straight line."

Is it a fact that "matter" has any power, either innate or acquired, of

resisting external influences ? Does not every force which acts on a body

always produce exactly that change in the motion of the body by which its

value, as a force, is reckoned ? Is a cup of tea to be accused of having an

innate power of resisting the sweetening influence of sugar, because it persist-

ently refuses to turn sweet unless the sugar is actually put into it ?

But suppose we have got rid of this Manichaean doctrine of the innate

depravity of matter, whereby it is disabled from yielding to the influence of

98—2
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a moving force unless that force actually spends itself upon it, what sort of

facts are left us to be the subject-matter of abstract dynamics ?

We are supposed to have mastered so much of kinematics as to be able

to describe all possible motions of points, lines, and figures. In so far as real

bodies have figures and motions, we may apply kinematics to them.

The new idea appropriate to dynamics is that the motions of bodies are

not independent of each other, but that, under certain conditions, dynamical

transactions take place between two bodies, whereby the motions of both bodies

are affected.

Every body and every portion of a body in dynamics is credited with a

certain quantitative value, called its mass. The first part of our study must

therefore be the distribution of mass in bodies. In every dynamical system

there is a certain point, the position of which is determined by the distribution

of mass. This point was called by Boscovich the centre of mass—a better

name, we think, than centre of inertia, though either of these is free from

the error involved in the term centre of gravity.

In every dynamical transaction between two bodies there must be some-

thing which determines the relation between the alteration of the motions of

the two bodies. In other words, there must be some function of the motions

of the two bodies which remains constant during the transaction. According

to the doctrine of abstract dynamics it is the motion of the centre of mass

of the two bodies which is not altered on account of any dynamical trans-

action between the bodies. This doctrine, if true of real bodies, gives us the

means of ascertaining the ratio of the mass of any body to that of the body

adopted as the standard of mass, provided we can observe the changes in the

motions of the two bodies arising from an encounter between them.

We then confine our attention to one of the bodies, and estimate the

magnitude of the transaction between the bodies by its efi'ect in changing the

momentum of that body, momentum being merely a term for a quantity mathe-

matically defined in terms of mass and motion. The rate at which this change

of momentum takes place is the numerical measure of the force acting on the

body, and, for all the purposes of abstract dynamics, it is the force acting on

the body.

We have thus vindicated for figures with mass, and, therefore, for force

and stress, impulse and momentum, work and energy, their places in abstract

science beside form and motion.
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Tlie phenomena of real bodies are found to correspond so exactly with the

necessary laws of dynamical systems, that we cannot help applying the language

of dynamics to real bodies, and speaking of the masses in dynamics as if they

were real bodies or portions of matter.

We must be careful, however, to remember that what we sometimes, even

in abstract dynamics, call matter, is not that unknown substratum of real

bodies, against which Berkeley directed his arguments, but something as perfectly

intelligible as a straight line or a sphere.

Keal bodies may or may not Jiave such a substratum, just as they may

or may not have sensations, or be capable of happiness or misery, knowledge

or ignorance, and the dynamical transactions between them may or may not

be accompanied with the conscious effort which the word force suggests to us

when we imagine one of the bodies to be our own, but so long as their

motions are related to each other according to the conditions laid down in

dynamics, we call them, in a perfectly intelligible sense, dynamical or material

systems.

In this, the second edition, we notice a large amount of new matter, the

importance of which is such that any opinion which we could form w^ithin the

time at our disposal would be utterly inadequate. But there is one point of

vital importance in which we observe a marked improvement, namely, in the

treatment of the generalised equations of motion.

Whatever may be our opinion about the relation of mass, as defined in

dynamics, to the matter which constitutes real bodies, the practical interest of

the science arises from the fact that real bodies do behave in a manner

strikingly analogous to that in which we have proved that the mass-systems

of abstract dynamics must behave.

In cases like that of the planets, when the motions we have to account

for can be actually observed, the equations of Maclaurin, which are simply a

translation of Newton's laws into the Cartesian system of co-ordinates, are

amply sufficient for our purpose. But when we have reason to believe that

the phenomena which fall under our observation form but a very small part

of what is really going on in the system, the question is not—what phenomena

will result from the hypothesis that the system is of a certain specified kind ?

but—what is the most general specification of a material system consistent with

the condition that the motions of those parts of the system which we can

observe are what we find them to be ?
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It is to Lagrange, in the first place, that we owe the method which

enables us to answer this question without asserting either more or less than

all that can be legitimately deduced from the observed facts. But though this

method has been in the hands of mathematicians since 1788, when the Mecanique

Analytique was published, and though a few great mathematicians, such as Sir

W. E. Hamilton, Jacobi, &c., have made important contributions to the general

theory of dynamics, it is remarkable how slow natural philosophers at large

have been to make use of these methods.

Now, however, we have only to open any memoir on a physical subject

in order to see that these dynamical theorems have been dragged out of the

sanctuary of profound mathematics in which they lay so long enshrined, and

have been set to do all kinds of work, easy as well as difficult, throughout

the whole range of physical science.

The credit of breaking up the monopoly of the great masters of the spell,

and making all their charms familiar in our ears as household words, belongs

in great measure to Thomson and Tait. The two northern wizards were the

first who, without compunction or dread, uttered in their mother tongue the

true and proper names of those dynamical concepts which the magicians of old

were wont to invoke only by the aid of muttered symbols and inarticulate

equations. And now the feeblest among us can repeat the words of power

and take part in dynaipaical discussions which but a few years ago we should

have left for our betters.

In the present edition we have for the first time an exposition of the

general theory of a very potent form of incantation, called by our authors the

Ignoration of Co-ordinates. We must remember that the co-ordinates of Thomson

and Tait are not the mere scafiblding erected over space by Descartes, but

the variables which determine the whole motion. We may picture them as so

many independent driving-wheels of a machine which has as many degrees of

freedom. In the cases to which the method of ignoration is applied there are

certain variables of the system such that neither the kinetic nor the potential

energy of the system depends on the value of these variables, though of course

the kinetic energy depends on their momenta and velocities. The motion of

the rest of the system cannot in any way depend on the particular values of

these variables, and therefore the particular values of these variables cannot

be ascertained by means of any observation of the motion of the rest of the

system. We have therefore no right, from such observations, to assign to them
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any particular values, and the only scientific way of dealing with them is to

ignore them.

But this is not all. Since these variables do not appear in the expression

for the potential energy, there can be no force acting on them, and therefore

their momenta are, each of them, constant, and their velocities are functions

of the variables, but, since their own variables do not enter into the expressions,

we may consider them as functions of the other variables, or, as they are here

called, the retained co-ordinates, and of the constant momenta of the ignored

co-ordinates.

From the velocities as thus expressed, together with the constant momenta,

we obtain the contribution of the ignored co-ordinates to the kinetic energy

of the system in terms of the retained co-ordinates and of the constant momenta

of the ignored co-ordinates. This part of the kinetic energy, being independent

of the velocities of the retained co-ordinates, is, as regards the retained co-

ordinates, strictly positional'-, and may be considered for all experimental purposes

as if it were a term of the potential energy. The other part of the kinetic

energy is a homogeneous quadratic function of the velocities of the retained

co-ordinates. In the final equations of motion neither the ignored co-ordinates

nor their velocities appear, but everjrthing is expressed in terms of the retained

co-ordinates and their velocities, the coefficients, however, being, in general,

functions of the constant momenta of the ignored co-ordinates.

We may regard this investigation as a mathematical illustration of the

scientific principle that in the study of any complex object, we must fix our

attention on those elements of it which we are able to observe and to cause

to vary, and ignore those which we can neither observe nor cause to vary.

In an ordinary belfiry, each bell has one rope which comes down through

a hole in the floor to the bellringers' room. But suppose that each rope, in-

stead of acting on one bell, contributes to the motion of many pieces of

machinery, and that the motion of each piece is determined not by the motion

of one rope alone, but by that of several, and suppose, further, that all this

machinery is silent and utterly unknown to the men at the ropes, who can

only see as far as the holes in the floor above them.

Supposing all this, what is the scientific duty of the men below? They

have full command of the ropes, but of nothing else. They can give each

rope any position and any velocity, and they can estimate its momentum by

* The division of forces into motional and positional is introduced at p. 370.
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stopping all the ropes at once, and feeling what sort of tug each rope gives.

If they take the trouble to ascertain how much work they have to do in

order to drag the ropes down to a given set of positions, and to express

this in terms of these positions, they have found the potential energy of the

system in terms of the known co-ordinates. If they then find the tug on any

one rope arising from a velocity equal to unity communicated to itself or to

any other rope, they can express the kinetic energy in terms of the co-ordinates

and velocities.

These data are suflScient to determine the motion of every one of the

ropes when it and* all the others are a^ted on by any given forces. This is

all that the men at the ropes can ever know. If the machinery above has

more degrees of freedom than there are ropes, the co-ordinates which express

these degrees of freedom must be ignored. There is no help for it.

Of course, if there are co-ordinates for which there are no ropes, but which

enter into the expression for the energy, then, if the motion of these co-

ordinates is periodic, there will be "adynamic vibrations" communicated to the

ropes, and by these the men below will know that there is something peculiar

going on above them. But if they pull the ropes in proper time, they can

either quiet these adynamic vibrations or strengthen them, so that in this case

these co-ordinates cannot be ignored.

There are other cases, however, in which the conditions for the ignoration

of co-ordinates strictly apply. For instance, if an opaque and apparently rigid

body contains in a cavity within it an accurately balanced body, mounted on

frictionless pivots, and previously set in rapid rotation, the co-ordinate which

expresses the angular position of this body is one which we are compelled to

ignore, because we have no means of ascertaining it. An unscientific person on

receiving this body into his hands would immediately conclude that it was

bewitched. A disciple of the northern wizards would prefer to say that the

body was subject to gyrostatic domination.

Of the sections on cycloidal motions of systems, we can only here say

that the investigation of the constitution of molecules by means of their

vibrations, as indicated by spectroscopic observations, will be greatly assisted by

a thorough study of this part of the volume.

We have not space to say anything of what to many readers must be

one of the most interesting parts of the book—that o^ continuous calculating

machines, in which pure rolling friction is taken from the class of unavoidable
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evils, and raised to the rank of one of the most powerful aids to science.

Rolling and sliding have been more than once combined in the hope of obtaining

accurate measurements, but the combination is fatal to accuracy, and these

new machines, one at least of which has been actually constructed and used,

are the first in which pure rolling friction has had fair play given it as a

method of mechanically accurate integration.

A method is also given of combining a number of disk, globe, and cylinder

integrators, so as to form a machine the motions of two pieces of which are

related to each other by a differential equation of any given form. These

machines all work in a purely statical manner, that is, in such a way that

the kinetic energy of the system is not an essential element in the practical

theory of the machine (as in the case of pendulums, &c.), but has to be taken

into account only in order to estimate the magnitude of the tangential forces

at the points of contact which might, if great enough, produce shpping between

the surfaces. Thus, by means of a machine, which will go as slowly as may

be necessary to keep pace with our powers of thought, motions may be

calculated, the phases of which in nature pass before us too rapidly to be

followed by us.

In the original preface some indications were given of what we were to

expect in the remaining three volumes of the work. "We hope that the reason

why this part of the preface is omitted in the new edition is that the work

will now go on so steadily that it will be unnecessary to preface performance

by promise.
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[From Encyclopaedia Britannica.]

XCIX.—Faraday.

Faraday, Michael, chemist, electrician, and philosopher, was bom at New-

ington, Surrey, 22nd September, 1791, and died at Hampton Court, 25th August,

1867. His parents had migrated from Yorkshire to London, where his father

worked as a blacksmith. Faraday himself became apprenticed to Mr Riebau,

a bookbinder. The letters written to his friend Benjamin Abbott at this time

give a lucid account of his aims in life, and of his methods of self-culture,

when his mind was beginning to turn to the experimental study of nature.

In 1812 Mr Dance, a customer of his master, took him to hear four lectures

by Sir Humphry Davy. Faraday took notes of these lectures, and afterwards

wrote them out in a fuller form. Under the encouragement of Mr Dance, he

wrote to Sir H. Davy, enclosing these notes. "The reply was immediate, kind,

and favourable." He continued to work as a journeyman bookbinder till 1st

March, 1813, when, at the recommendation of Sir H. Davy, he was appointed

assistant in the laboratory of the Royal Institution of Great Britain. He

was appointed director of the laboratory 7th February, 1825 ; and in 1833

he was appointed Fullerton Professor of Chemistry in the Institution for life,

without the obligation to deliver lectures. He thus remained in the Institu-

tion 54 years. He accompanied Sir H. Davy on a tour through France, Italy,

Switzerland, Tyrol, Geneva, etc. from October 13th, 1813, to April 23, 1815.

Faraday's earliest chemical work was in the paths opened by Davy, to whom

he acted as assistant. He made a special study of chlorine, and discovered two

new chlorides of carbon. He also made the first rough experiments on the

diffusion of gases, a phenomenon first pointed out by Dalton, the physical

importance of which has been more fully brought to light by Graham and

Loschmidt. He succeeded in Hquifying several gases; he investigated the alloys

of steel, and produced several new kinds of glass intended for optical purposes.
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A specimen of one of these heavy glasses afterwards became historically im-

portant as the substance in which Faraday detected the rotation of the plane

of polarization of light when the glass was placed in the magnetic field, and

also as the substance which was first repelled by the poles of the magnet.

He also endeavoured with some success to make the general methods of

chemistry, as distinguished from its results, the subject of special study and of

popular exposition. See his work on Chemical Manipulation.

But Faraday's chemical work, however important in itself, was soon com-

pletely overshadowed by his electrical discoveries. The first experiment which

he has recorded was the construction of a voltaic pile with seven halfpence,

seven disks of sheet zinc, and six pieces of paper moistened with salt water.

With this pile he decomposed sulphate of magnesia (first letter to Abbott,

July 12, 1812). Henceforward, whatever other subjects might from time to

time claim his attention, it was from among electrical phenomena that he

selected those problems to which he applied the full force of his mind, and

which he kept persistently in view, even when year after year his attempts

to solve them had been bafiled.

His first notable discovery was the production of the continuous rotation

of magnets and of wires conducting the electric current round each other.

The consequences deducible from the great discovery of Orsted (21st July,

1820) were still in 1821 apprehended in a somewhat confused manner even by

the foremost men of science. Dr WoUaston indeed had formed the expectation

that he could make the conducting wire rotate on its own axis, and in April,

1821, he came with Sir H. Davy to the laboratory of the Royal Institution

to make an experiment. Faraday was not there at the time, but coming in

afterwards he heard the conversation on the expected rotation of the wire.

In July, August, and September of that year Faraday, at the request of

Mr Phillips, the editor of the Annals of Philosophy, wrote for that journal

an historical sketch of electro-magnetism, and he repeated almost all the ex-

periments he described. This led him in the beginning of September to dis-

cover the method of producing the continuous rotation of the wire round the

magnet, and of the magnet round the w^re. He did not succeed in making

the wire or the magnet revolve on its own axis. This first success of Faraday

in electromagnetic research became the occasion of the most painful, though

unfounded, imputations against his honour. Into these we shall not enter, re-

ferring the reader to the Life of Faraday, by Dr Bence Jones.

99—2
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We may remark, however, that although the fact of the tangential force

between an electric current and a magnetic pole was clearly stated by Orsted,

and clearly apprehended by Ampere, WoUaston, and others, the realization of

the continuous rotation of the wire and the magnet round each other was a

scientific puzzle requiring no mean ingenuity for its original solution. For on

the one hand the electric current always forms a closed circuit, and on the

other the two poles of the magnet have equal but opposite properties, and

are inseparably connected, so that whatever tendency there is for one pole to

cu-culate round the current in one direction is opposed by the equal tendency

of the other pole to go round the other way, and thus the one pole can

neither drag the other round the wire nor yet leave it behind. The thing

cannot be done unless we adopt in some form Faraday's ingenious solution, by

causing the current, in some part of its course, to divide into two channels,

one on each side of the magnet, in such a way that during the revolution

of the magnet the current is transferred from the channel in front of the

magnet to the channel behind it, so that the mi(idle of the magnet can pass

across the current without stopping it, just as Cyrus caused his army to pass

dryshod over the Gyndes by diverting the river into a channel cut for it in

his rear.

We must now go on to the crowning discovery of the induction of electric

currents.

In Dec. 1824 he had attempted to obtain an electric current by means

of a magnet, and on three occasions he had made elaborate but unsuccessful

attempts to produce a current in one wire by means of a current in another

wire or by a magnet. He still persevered, and on the 29th August, 1831, he

obtained the first evidence that an electric current can induce another in a

different circuit. On September 23 he writes to his friend E. Phillips—" I am busy

just now again on electromagnetism, and thmk I have got hold of a good

thing, but can't say. It may be a weed instead of a fish that, after all

my labour, I may at last pull up." This was his first successful experiment.

In nine more days of experimenting he had anived at the results described

in his first series of " Experunental Kesearches" read to the Eoyal Society,

November 24, 1841.

By the intense application of his mind he had brought the new idea, in

less than three months from its first development, to a state of perfect maturity.

The magnitude and originaHty of Faraday's achievement may be estimated by
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tracing the subsequent history of his discovery. As might be expected, it was

at once made the subject of investigation by the whole scientific world, but

some of the most experienced physicists were unable to avoid mistakes in

stating, in what they conceived to be more scientific language than Faraday's,

the phenomena before them. Up to the present time the mathematicians who

have rejected Faraday's method of stating his law as unworthy of the preci-

sion of their science have never succeeded in devising any essentially different

formula which shall fully express the phenomena without introducing hypotheses

about the mutual action of things which have no physical existence, such as

elements of currents which flow out of nothing, then along a wire, and finally

sink into nothing again.

After nearly half a century of labour of this kind, we may say that,

though the practical applications of Faraday's discovery have increased and are

increasing in number and value every year, no exception to the statement of

these laws as given by Faraday has been discovered, no new law has been

added to them, and Faraday's original statement remains to this day the only

one which asserts no more than can be verified by experiment, and the only

one by which the theory of the phenomena can be expressed in a manner

which is exactly and numerically accurate, and at the same time within the

range of elementary methods of exposition.

During his first period of discovery, besides the induction of electric cur-

rents, Faraday established the identity of the electrification produced in different

ways ; the law of the definite electrolytic action of the current ; and the fact, upon

which he laid great stress, that every unit of positive electrification is related in

a definite manner to a unit of negative electrification, so that it is impossible

to produce what Faraday called "an absolute charge of electricity" of one

kind not related to an equal charge of the opposite kind.

He also discovered the difference of the capacities of different substances

for taking part in electric induction, a fact which has only in recent years

been admitted by continental electricians. It appears, however, from hitherto

unpublished papers that Henry Cavendish had before 1773 not only disco-

vered that glass, wax, rosin and shellac have higher specific inductive capacities

than air, but had actually determined the numerical ratios of these capacities.

This, of course, was unknown both to Faraday and to all other electricians of

his time.

The first period of Faraday's electrical discoveries lasted 10 years. In 1841 he
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found that he required rest, and it was not till 1845 that he entered on his

second great period of research, in which he discovered the effect of magnetism

on polarized light, and the phenomena of diamagnetism.

Faraday had for a long time kept in view the possibility of using a ray

of polarized light as a means of investigating the condition of transparent

bodies when acted on by electric and magnetic forces. Dr. Bence Jones (Z-i/e,

of Faraday, vol. i. p. 362) gives the following note from his laboratory book,

10th September, 1822:—

"Polarized a ray of lamp-light by reflexion, and endeavoured to ascertain whether any depolarizing

action (was) exerted on it by water placed between the poles of a voltaic battery and in a glass

cistern; one Wollaston's trough used; the fluids decomposed were pure water, weak solution of

sulphate of soda, and strong sulphuric acid; none of them had any eff^ect on the polarized light,

either when out of or in the voltaic circuit, so that no particular arrangement of particles could be

ascertained in this way."

Eleven years afterwards we find another entry in his note-book, on 2nd

May, 1833 {Life by Dr Bence Jones, vol. ii. p. 29). He then tried, not only

the effect of a steady current, but the effect on making and breaking contact.

"I do not think, therefore, that decomposing solutions or substances will be found to have (as

a consequence of decomposition or arrangement for the time) any efi^ect on the polarized ray. Should

now try non-decomposing bodies, as solid nitre, nitrate of silver, borax, glass, etc. whilst solid, to see

if any internal state induced, which by decomposition is destroyed, i.e. whether, when they cannot

decompose, any state of electrical tension is present. My borate of glass good, and common electricity

better than voltaic."

On May 6 he makes further experiments, and concludes—" Hence I see

no reason to expect that any kind of structure or tension^ can be rendered

evident, either in decomposing or non-decomposing bodies, in insulatmg or con-

ducting states."
J 1. -n

Experiments similar to the last-mentioned have recently been made by Dr

Kerr of Glasgow, who considers that he has obtained distinct evidence of

action on a ray of polarized light when the electric force is perpendicular to

the ray and incHned 45" to the plane of polarization. Many physicists, how-

ever, have found themselves unable to obtain Dr Kerr's result.

At last, in 1845, Faraday attacked the old problem, but this time with

complete success. Before we describe this result we may mention that m

1862 he made the relation between magnetism and light the subject of his

very last experimental work. He endeavoured, but in vain, to detect any
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change in the lines of the spectrum of a flame wlien the flame was acted on

by a powerful magnet.

This long series of researches is an instance of his persistence. His energy

is shewn in the way in which he followed up his discovery in the single

instance in which he was successful. The first evidence which he obtained of

the rotation of the plane of polarization of light under the action of mag-

netism was on the 13th September, 1845, the transparent substance being his

own heavy glass.

He began to work on August 30, 1845, on polarized light passing through

electrolytes. After three days he worked with common electricity, trying glass,

heavy optical glass, quartz, Iceland spar, all without effect, as on former trials.

On September 13 he worked with lines of magnetic force. Air, flint, glass,

rock-crystal, calcareous spar, were examined but without effect.

" Heavy glass was experimented with. It gave no eflects when the same magnetic poles or the

contrary poles were on opposite sides (as respects the course of the polarized ray), nor when the

same poles were on the same side either with the constant or intermitting current. But when con-

trary magnetic poles were on the same side there was an eflfect produced on the polarized ray,

and thus magnetic force and light were proved to have relations to each other. This fact will most

likely prove exceedingly fertile, and of great value in the investigation of the conditions of natural

force."

He immediately goes on to examine other substances, but with " no effect,"

and he ends by saying, "Have got enough for to-day." On September 18 he

"does an excellent day's work." During September he had four days of work,

and in October six, and on 6th November he sent in to the Eoyal Society the

19th series of his "Experimental Researches," in which the whole conditions

of the phenomena are fully specified. The negative rotation in ferromagnetic

media is the only fact of importance which remains to be discovered afterwards

(by Verdet in 1856).

But his work for the year was not yet over. On November 3, a new

horseshoe magnet came home, and Faraday immediately began to experiment

on the action in the polarized ray through gases, but with no effect. The

following day he repeated an experiment which had given no result on October 6.

A bar of heavy glass was suspended by silk between the poles of the new

magnet. "When it was arranged, and had come to rest, I found I could

affect it by the magnetic forces and give it position." By the 6th December

he had sent in to the Royal Society the 20th, and on 24th December the

2l8t series of his "Researches," in which the properties of diamagnetic bodies
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are fully described. Thus these two great discoveries were elaborated, like his

earlier one, in about three months.

The discovery of the magnetic rotation of the plane of polarized light,

though it did not lead to such important practical applications as some of

Faraday's earlier discoveries, has been of the highest value to science, as fur-

nishing complete dynamical evidence that wherever magnetic force exists there

is matter, small portions of which are rotating about axes parallel to the

direction of that force.

We have given a few^ examples of the concentration of his efforts in seeking

to identify the apparently different forces of nature, of his far-sightedness in

selecting subjects for investigation, of his persistence in the pursuit of what he

set before him, of his energy in working out the results of his discoveries, and

of the accuracy and completeness with which he made his final statement of

the laws of the phenomenon.

The characteristics of his scientific spirit lie on the surface of his work,

and are manifest to all who read his writings. But there was another side of

his character, to the cultivation of which he paid at least as much attention,

and which was reserved for his friends, his family, and his church. His letters

and his conversation were always ftiU of whatever could aw^aken a healthy interest,

and free from anything that might rouse ill-feeling. When, on rare occasions, he

was forced out of the region of science into that of controversy, he stated the

facts, and let them make their own way. He was entirely free from pride and

undue self-assertion. During the growth of his powers he always thankfully

accepted a correction, and made use of every expedient, however humble, which

would make his work more effective in every detail. When at length he found

his memory failing and his mental powers declining, he gave up, without ostenta-

tion or complaint, whatever parts of his work he could no longer carry on

according to his own standard of efficiency. When -he was no longer able to

apply his mind to science, he remained content and happy in the exercise of

those kindly feelings and w^arm affections which he had cultivated no less care-

fully than his scientific powers.

The parents of Faraday belonged to the very small and isolated Christian

sect which is commonly called after Robert Sandeman. Faraday himself attended

the meetings from childhood; at the early age of 30 he made public profession

of his faith, and during two different periods he discharged the office of elder.

His opinion with respect to the relation between his science and his religion is



FARADAY. 793

expressed in a lecture on mental education delivered in 1854, and printed at the

end of his Researches in Chemistry and Physics.

" Before entering upon the subject, I must make one distinction which, however it may appear

to others, is to me of the utmost importance. High as man is placed above the creatures around him,

there is a higher and far more exalted position within his view ; and the ways are infinite in

which he occupies his thoughts about the fears, or hopes, or expectations of a future life. I

believe that the truth of that future cannot be brought to his knowledge by any exertion of his

mental powers, however exalted they may be ; that it is made known to him by other teaching

than his own, and is received through simple belief of the testimony given. Let no one suppose for

an instant that the self-education I am about to commend, in respect of the things of this life,

extends to any considerations of the hope set before us, as if man by reasoning could find out God.

It would be improper here to enter upon the subject farther than to claim an absolute distinction

between religious and ordinary belief. I shall be reproached with the weakness of refusing to apply

those mental operations which I think good in respect of high things to the very highest. 1 am
content to bear the reproach. Yet even in earthly matters I believe that 'the invisible things of

Him from the creation of the world are clearly seen, being understood by the things that ai*e

made, even His eternal power and Godhead'; and I have never seen anything incompatible between

those things of man which can be known by the spirit of man which is within him, and those

higher things concerning his future which he cannot know, by that spirit."

Faraday gives the following note as to this lecture :

—

"These obser\'ations were delivered as a lecture before His Royal Highness the Prince Consort

and the members of the Royal Institution on the 6th of May, 1854. They are so immediately con-

nected in their nature and origin with my own experimental life, considered either as cause or

consequence, that I have thought the close of this volume not an unfit place for their repro-

duction."

As Dr Bence Jones concludes

—

" His standard of duty was supernatural. It was not founded on any intuitive ideas of right

and wrong, nor was it fashioned upon any outward experiences of time and place, but it was

formed entirely on what he held to be the revelation of the will of God in the written woi-d,

and throughout all his life his faith led him to act up to the very letter of it."

Published Works.—C/iemical Manipulation, being Instructions to Students in Chemistry, 1 vol.,

John Mun-ay, 1st edition 1827, 2nd 1830, 3rd 1842; Experimental Researches in Electricity, vols.

I. and II., Richard and John Edward Taylor, vols. I. and ii. 1844 and 1847; vol, ill. 1844; vol. ill.,

Richard Taylor and William Franci.»<, 1855 ; Experimental Researches in Chemistry and Physics,

Taylor and Francis, 1859 ; Lectures on the Cliemical History of a Candle (edited by W. Crookes),

Griffin, Bohn, and Co., 1861 ; On the various Forces in Nature (edited by W. Crookes), Chatto and

Windus (no date).

Biographies.—Faraday as a Discoverer, by John Tyndall, Longmans, 1st edition 1868, 2nd edition

1870; The Life and Letters of Faraday, by Dr Bence Jones, Secretary of the Royal Institution, in

2 vols., Longmans, 1870; Michael Faraday, by J. H. Gladstone, Ph.D., F.R.S., Macmillan, 1872.
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[From British Association Report.l

C.

—

Reports on Special Branches of Science.

Reports on special branches of science may be of several different types,

corresponding to every stage of organisation, from the catalogue up to the

treatise.

When a person is engaged in scientific research, it is desirable that he

should be able to ascertain, with as Httle labour as possible, what has been

written on the subject and who are the best authorities. The ordinary method

is to get hold of the most recent German paper on the subject, to look up

the references there given, and by following up the trail of each to find out

who are the most influential authors on the subject. German papers have the

most complete references because the machinery for docketing and arranging

scientific papers is more developed in Germany than elsewhere.

The " Fortschritte der Physik " gave an annual list of all papers, good

and bad, arranged in subjects, with abstracts of the more important ones.

Wiedemann's "Beiblatter" is a more select assortment, given more in full.

I think it doubtful whether a publication of this kind, if undertaken by

the British Association, would succeed. Lists of the titles of the proceedings

of Societies and of the contents of periodicals are given in Nature. These

are useful for strictly contemporary science, and I do not think that a more

elaborate system of collection could be kept up for long.

The intending publisher of a discovery has to examine the whole mass of

science to see whether he has been anticipated, but the student wishes to

read only what is worth reading. What he requires is the names of the best

authors. The selection or election of these is constantly done by skimming

individual authors, who indicate by the names they quote the men whose

opinions have had most influence. But a report on the history and present
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state of a science has for its main aim to enumerate the various authors and
to point out their relative weight, and this has been very well done in several

British Association Reports, some of which are nearly as old as the British

Association.

There are some branches of science whose position with respect to the

public, or else to the educational interest, is such that treatises or text-books

can be published on commercial principles, either as books to be read by the

free public, or to be got up by the school public.

There is little encouragement, however, for a scientific man to write a

treatise so long as he can, with much less trouble, produce an original memoir,

which will be much more readily received by a learned society than the treatise

would have been by a publisher.

The systematisation of science is therefore carried on under difficulties

when left to itself; and I think that the experience of the British Association

warrants the belief that its action in asking men of science to furnish reports

has conferred benefits on science which would not otherwise have accrued to it.

There are so many valuable reports in the published volumes that 1 shall

indicate only a few, the selection being founded on the direction of my own work

rather than on any less arbitrary principle.

First, when a branch of science contains abstruse calculations as well as

interesting experiments, it is desirable that those who cultivate the experimental

side should be conscious that certain things have been done by the mathema-

ticians. The matter to be reported on in this case is not voluminous, but it is

hard reading, and those who are not experts require a guide.

Thus, Professor Challis in 1834 gave a most useful report on the mathe-

matical investigations by Young, Laplace, Poisson, and Gauss on Capillary

Attraction, and Professor Stokes in 1862 reports on Theories of Double Re-

fraction. This report may, indeed, be accepted as an instalment of the treatises

which, if the desire of the scientific world were law, Professor Stokes would

long ago have written. It is meant, no doubt, as a guide to other men's

writings, but it is intelligible in itself without reference to those writings. Such

a report is a full justification of the existence of the British Association, if it had

done nothing else.

Another type of report is that of Professor Cayley on Dynamics (1857

and 1862). This seems intended rather as a guide in reading the original

authors than as a self-interpreting document, though, of course, besides the

100—2
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criticism and the methodical arrangement, there is much origmal Hght thrown

on the mass of memoirs discussed in it. It will be many years before the

value of this report will be superseded by treatises.

The Report of the Committee on Mathematical Tables deals with a subject

which, though not so abstruse, is larger and drier than any of the preceding.

It is, however, a most interesting as well as valuable report, and supplies in-

formation which would never have been printed unless the British Association

had asked for the Report, and which never would have been obtained if the

author of the report had not been available.

There are several other reports which are not mere reports, but rather

original papers preceded by a historical sketch of the subject. No special en-

couragement is needed to get people to write reports of this kind.



[From the Encydopcedia Britannica.]

CI.

—

Harmonic Analysis.

Harmonic Analysis is the name given by Sir William Thomson and

Professor Tait in their treatise on Natural Philosophy to a general method of

investigating physical questions, the earliest appHcations of which seem to have

been suggested by the study of the vibrations of strings and the analysis of

these vibrations into their fundamental tone and its harmonics or overtones.

The motion of a uniform stretched string fixed at both ends is a periodic

motion ; that is to say, after a certain interval of time, called the fundamental

period of the motion, the form of the string and the velocity of every part

of it are the same as before, provided that the energy of the motion has not

been sensibly dissipated during the period.

There are two distinct methods of investigating the motion of a uniform

stretched string. One of these may be called the wave method, and the other

the harmonic method. The wave method is founded on the theorem that in

a stretched string of infinite length a wave of any form may be propagated

in either direction with a certain velocity, F, which we may define as the

"velocity of propagation." If a wave of any form travelling in the positive

direction meets another travelling in the opposite direction, the form of which

is such that the lines joining corresponding points of the two waves are all

bisected in a fixed point in the line of the string, then the point of the

string corresponding to this point will remain fixed, while the two waves pass

it in opposite directions. If we now suppose that the form of the waves

travelling in the positive direction is periodic, that is to say, that after the

wave has travelled forward a distance I, the position of every particle of the

string is the same as it was at first, then I is called the wave-length, and the

time of travelling a wave-length is called the periodic time, which we shall

denote by T, so chat

l=VT.
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If we now suppose a set of waves similar to these, but reversed in position,

to be travelling in the opposite direction, there will be a series of points,

distant ^l from each other, at which there will be no motion of the string;

it will therefore make no difference to the motion of the string if we suppose

the string fastened to fixed supports at any two of these points, and we may

then suppose the parts of the string beyond these points to be removed, as it

cannot affect the motion of the part which is between them. We have thus

arrived at the case of a uniform string stretched between two fixed supports,

and we conclude that the motion of the string may be completely represented

as the resultant of two sets of periodic waves travelling in opposite direc-

tions, their wave-lengths being either twice the distance between the fixed

points or a submultiple of this wave-length, and the form of these waves,

subject to this condition, being perfectly arbitrary.

To make the problem a definite one, we may suppose the initial displace-

ment and velocity of every particle of the string given in terms of its distance

from one end of the string, and from these data it is easy to calculate the

form which is common to all the travelling waves. The form of the string

at any subsequent time may then be deduced by calculating the positions of

the two sets of waves at that time, and compounding their displacements.

Thus in the wave-method the actual motion of the string is considered

as the resultant of two wave-motions, neither of which is of itself, and without

the other, consistent with the condition that the ends of the string are fixed.

Each of the wave-motions is periodic with a wave-length equal to twice the

distance between the fixed points, and the one set of waves is the reverse of

the other in respect of displacement and velocity and direction of propagation;-

but, subject to these conditions, the form of the wave is perfectly arbitrary.

The motion of a particle of the string, being determined by the two waves which

pass over it in opposite directions, is of an equally arbitrary type.

In the harmonic method, on the other hand, the motion of the string is

regarded as compounded of a series of vibratory motions which may be infinite

in number, but each of which is perfectly definite in type, and is in fact a

particular solution of the problem of the motion of a string with its ends

fixed.

A simple harmonic motion is thus defined by Thomson and Tait (§ 53) :

—

-When a point Q moves uniformly m a cii'cle, the perpendicular QP, drawn from
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its position at any instant to a fixed diameter AA' of the circle, intersects the

diameter in a point P whose position changes by a simple harmonic motion.

The amplitude of a simple harmonic motion is the range on one side or the

other of the middle point of the course.

The period of a simple harmonic motion is the time which elapses from
any instant until the moving-point again moves in the same direction through

the same position.

The phase of a simple harmonic motion at any instant is the fraction of

the whole period which has elapsed since the moving point last passed through

its middle position in the positive direction.

In the case of the stretched string, it is only in certain particular cases

that the motion of a particle of the string is a simple harmonic motion. In

these particular cases the form of the string at any instant is that of a curve

of sines having the line joining the fixed points for its axis, and passing

through these two points, and therefore having for its wave-length either twice

the length of the string or some submultiple of this wave-length. The ampli-

tude of the curve of sines is a simple harmonic function of the time, the

period being either the fundamental period or some submultiple of the funda-

mental period. Every one of these modes of vibration is dynamically possible

by itself, and any number of them may coexist independently of each other.

By a proper adjustment of the initial amplitude and phase of each of these

modes of vibration, so that their resultant shall represent the initial state of

the string, we obtain a new representation of the whole motion of the string,

in which it is seen to be the resultant of a series of simple harmonic vibra-

tions whose periods are the fundamental period and its submultiples. The
determination of the amplitudes and phases of the several simple harmonic

vibrations so as to satisfy the initial conditions is an example of harmonic

analysis.

We have thus two methods of solving the partial differential equation of

the motion of a string. The first, which we have called the wave-method, ex-

hibits the solution in the form containing an arbitrary function, the nature of

which must be determined from the initial conditions. The second, or harmonic

method, leads to a series of terms involving sines and cosines, the coefficients

of which have to be determined. The harmonic method may be defined in a
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more general manner as a method by which the sokition of any actual problem

may be obtained as the sum or resultant of a number of terms, each of which

is a solution of a particular case of the problem. The nature of these par-

ticular cases is defined by the condition that any one of them must be con-

jugate to any other.

The mathematical test of conjugacy is that the energy of the system

arising from two of the harmonics existing together is equal to the sum of

the energy arising from the two harmonics taken separately. In other words,

no part of the energy depends on the product of the amplitudes of two dif-

ferent harmonics. When two modes of motion of the same system are conju-

gate to each other, the existence of one of them does not affect the other.

The simplest case of harmonic analysis, that of which the treatment of

the vibrating string is an example, is completely investigated in what is known

as Fourier's Theorem.

Fourier's theorem asserts that any periodic function of a single variable

period p, which does not become infinite at any phase, can be expanded in

the form of a series consisting of a constant term, together with a double

series of terms, one set involving cosines and the other sines of multiples of

the phase.

Thus if <^(^) is a periodic function of the variable ^ having a period _2^,

then it may be expanded as follows :

,^(f) = 4. + 2r^.cos^+2r£<sm2-|f (1).

The part of the theorem which is most frequently required, and which

also is the easiest to investigate, is the determination of the values of the

coefficients A^ A^ B^. These are

P J

?/>« dt,
P

1^ U ^^ P
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This part of the tlieorem may be verified at once by multiplying both

sides of (1) by d^, by cos —- d^, or by sin d^, and in each case inte-

grating from to p.

The series is evidently single-valued for any given value of f. It cannot

therefore represent a function of ^ which has more than one value, or which

becomes imaginary for any value of ^. It is convergent, approaching to the

true value of <^(^) for all values of ^ such that if f varies infinitesimally

the function also varies infinitesimally.

Sir W. Thomson, availing himself of the disk, globe, and cylinder inte-

grating machine invented by his brother. Professor James Thomson, has

constructed a machine by which eight of the integrals required for the ex-

pression of Fourier's series can be obtained simultaneously from the recorded

trace of any periodically variable quantity, such as the height of the tide, the

temperature of the pressure of the atmosphere, or the intensity of the different

components of terrestrial magnetism. If it were not on account of the waste

of time, instead of having a curve drawn by the action of the tide, and the

curve afterwards acted on by the machine, the time axis of the machine

itself might be driven by a clock, and the tide itself might work the second

variable of the machine, but this would involve the constant presence of an

expensive machine at every tidal station.

It would not be devoid of interest, had we opportunity for it, to trace

the analogy between these mathematical and mechanical methods of harmonic

analysis and the dynamical processes which go on when a compound ray of

light is analysed into its simple vibrations by a prism, when a particular over-

tone is selected from a complex tone by a resonator, and when the enormously

complicated sound-wave of an orchestra, ox even the discordant clamours of a

crowd, are interpreted into intelligible music or language by the attentive

listener, armed with the harp of three thousand strings, the resonance of

which, as it hangs in the gateway of his ear, discriminates the multifold

components of the waves of the aerial ocean.
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